ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling

Similar documents
Synchronous Machine Modeling

ECE 692 Advanced Topics on Power System Stability 2 Power System Modeling

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

ECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System. Instructor: Kai Sun Fall 2013

The synchronous machine (detailed model)

Dynamics of the synchronous machine

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Parameter Sensitivity Analysis of an Industrial Synchronous Generator

Lecture 9: Space-Vector Models

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

Estimation of synchronous generator parameters using an observer for damper currents and a graphical user interface

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Synchronous machine with PM excitation Two-axis model

Lesson 17: Synchronous Machines

Chapter 4. Synchronous Generators. Basic Topology

Lecture 1: Induction Motor

Synchronous Machines

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

SYMMETRICAL FAULTS Revised: 10/8/13 1:49 PM

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

International Journal of Advance Engineering and Research Development

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

INDUCTION MOTOR MODEL AND PARAMETERS

Chapter 5 Three phase induction machine (1) Shengnan Li

Understanding the Inductances

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

(Refer Slide Time: 00:55) Friends, today we shall continue to study about the modelling of synchronous machine. (Refer Slide Time: 01:09)

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Introduction to Synchronous. Machines. Kevin Gaughan

Generation, transmission and distribution, as well as power supplied to industrial and commercial customers uses a 3 phase system.

Lecture Set 8 Induction Machines

Three Phase Circuits

Dynamics of the synchronous machine

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

Generalized Theory of Electrical Machines- A Review

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

Steady State Modeling of Doubly Fed Induction Generator

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

Synchronous Machines

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

Magnetic Leakage Fields and End Region Eddy Current Power Losses in Synchronous Generators

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame

Lecture 7: Synchronous Motor Drives

PROBLEM SOLUTIONS: Chapter 4

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Revision Guide for Chapter 15

Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid

Revision Guide for Chapter 15

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

6.061 / Introduction to Electric Power Systems

DIRECT-CURRENT MOTORS

Lecture 8: Sensorless Synchronous Motor Drives

Homework 1/Solutions. Graded Exercises

SECTION 7: FAULT ANALYSIS. ESE 470 Energy Distribution Systems

1 Unified Power Flow Controller (UPFC)

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Voltage Induced in a Rotating Loop

Model of the Induction Machine including Saturation

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

Module 4. Single-phase AC Circuits

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics.

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab

Prince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)

Modeling of Symmetrical Squirrel Cage Induction Machine with MatLab Simulink

Unified Torque Expressions of AC Machines. Qian Wu

Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System

The Control of a Continuously Operated Pole-Changing Induction Machine

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Lecture Set 6 Brushless DC Machines

Power system modelling under the phasor approximation

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

TURBO-GENERATOR MODEL WITH MAGNETIC SATURATION

Generators for wind power conversion

Homework 3/ Solutions

MATHEMATICAL MODEL OF GENERALIZED ELECTRICAL MACHINES

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES

Transformer Fundamentals

UNIT I INTRODUCTION Part A- Two marks questions

Power and Energy Measurement

EEE3405 ELECTRICAL ENGINEERING PRINCIPLES 2 - TEST

Synchronous Machines - Structure

Modelling of Closed Loop Speed Control for Pmsm Drive

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS

Tutorial Sheet Fig. Q1

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

JRE SCHOOL OF Engineering

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

EFFICIENCY OPTIMIZATION OF PMSM BASED DRIVE SYSTEM WALEED J. HASSAN

For any use or distribution of this textbook, please cite as follows:

Transcription:

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous achine odeling Spring 214 Instructor: Kai Sun 1

Outline Synchronous achine odeling Per Unit Representation Simplified odels for Stability Studies 2

Synchronous Generators Salient-pole rotor Cylindrical/round rotor Field winding Armature winding Stator Field current 3

Types of Rotors Salient pole rotors Concentrated windings on poles and nonuniform air gap Short axial length and large diameter Hydraulic turbines operated at low speeds (large number of poles) Have damper/amortisseur windings to help damp out speed oscillations Round rotors 7% of large synchronous generators (15~15VA) Distributed winding and uniform air gap Large axial length and small diameter to limit the centrifugal forces Steam and gas turbines, operated at high speeds, typically 36 or 18rpm (2 or 4-pole) No special damper windings but eddy in the solid steal rotor gives damping effects 4 16 poles salient-pole rotor (12 W) Round rotor generator under construction (Source: http://emadrlc.blogspot.com)

Generator odel d F r n Flux linkage with coil a (leading the axis of a by ωt) ψa Nφcosωt Induced voltage: dψ a ea ωnφsinωt Emax sinωt dt (reaches the maximum at the current position) f P n 2 6 (n: synchronous speed in rpm; P: the number of poles) m N S γ γ F s e a Axis of coil a (reference) Assume: i a is lagging e a by γ (i a reaches the maximum when mn aligns with aa ) 2 4 ia Imax sin( ωt γ) ib Imax sin( ωt γ π) ic Imax sin( ωt γ π) 3 3 agnetic motive forces (F s) of three phases: F Ki F sin( ωt γ) a a m 2 Fb Kib Fmsin( ωt γ π) 3 4 Fc Kic Fmsin( ωt γ π) 3 F s 3 2 F m F s is orthogonal to mn and revolving synchronously with F F r due to the rotor 5

Under Steady-State Conditions F r + F s gives F F sr in air gap F s induces EF E ar F sr results air gap flux φ sr to induce EF N γ d F r F sr n Axis of coil a E sr E a +E ar For a round rotor, define the reactance of the armature reaction X ar -E ar /(ji a ) Terminal voltage V, resistance R a and leakage and reactance X l satisfy m S γ e a F s (reference) E V + [ R + j( X + X )] I V + ( R + jx ) I a a ar a a s a F r X s X l +X ar is known as the synchronous reactance F sr γ E a E a Load E sr E ar F s 6

Stator and Rotor Windings Armature windings: a-a, b-b and c-c windings Rotor windings: Field windings Field winding F-F produces a flux on the d-axis. Damper windings Two damper windings D-D and Q-Q respectively on d- and q-axes For a round-rotor machine, consider a second damper winding G-G on the q-axis (two windings on each axis) Total number of windings: Salient pole: 3+3 (discussed here) Round-rotor: 3+4 ANSI/IEEE standard 1-1977: the quadrature (q) axis is defined to lead the d-axis by 9 7

Winding Circuits Note: we define opposite directions for the current and flux Equations on the EF (electromotive force) and flux of each winding e a dψ a /dt R a i a ψ Q F ψ F ψ a l aa i a l aa i b l aa i c + l aa i F + l aa i D + l aa i Q ψ D e F dψ F /dt + R F i F ψ F l Fa i a l Fb i b l Fc i c + l FF i F + l FD i D + l FQ i Q ψ a ψ b ψ c ψ F ψ D ψ Q l aa l aa l aa l aa l aa l aa l bb l bb l bb l bb l bb l bb l cc l cc l cc l cf l cd l cq l FF l FF l FF l FF l FF l FF l DD l DD l DD l DD l DD l DD l QQ l QQ l QQ l QQ l QQ l QQ i a i b i c i F i D iq Stator self-inductances (l aa, l bb, l cc ) Stator mutual inductances (l ab, l bc, l ac ) Stator-to-rotor mutual inductances (l af, l bd, l aq ) Rotor self-inductances (l FF, l DD, l QQ ) Rotor mutual inductances (l FD, l DQ, l FQ ) ψ aaa ψ FFF L SS L SS L RR L RR i aaa i FFF ost of the efforts in synchronous machine modeling is to find constants and make the EF and flux equations be simpler 8

ψ a ψ b ψ c ψ F ψ D ψ Q l aa l aa l aa l aa l aa l aa l bb l bb l bb l bb l bb l bb l cc l cc l cc l bb l bb l bb l FF l FF l FF l FF l FF l FF l DD l DD l DD l DD l DD l DD l QQ l QQ l QQ l QQ l QQ l QQ i a i b i c i F i D iq Wb Turns The matrix is symmetric because the mutual inductance by definition is the flux linkage with one winding per unit current in the other winding, i.e. N x ~ turns of winding x l xy N x Φ my / i y N x N y P xy l yx Φ my ~ mutual flux linking windings x and y due to current in winding y P xy ~ permeance of the mutual flux path A salient pole machine has significantly different permeances in d and q axes, such that the P xy involving a stator winding (e.g. P ab and P af ) is a function of the rotor position α and reaches the maximum twice during o ~36 o P xy P +P 2 cos2α It is advisable to consider d- and q-axis components of P xy individually 9

Stator self-inductances (l aa, l bb, l cc ) l aa is equal to the ratio of flux linking phase a winding to current i a, with zero currents in all other circuits, and an be approximated as l aa L aa + L aa2 cos2θ Detailed calculation: F a has a sinusoidal distribution in space with its peak centered on phase a axis. Resolve F a into two Fs centered on d and q axes F ad has peak N a i a cosθ F aq has peak -N a i a sinθ Air-gap fluxes Φ gad (N a i a cosθ)p d Φ gaq (-N a i a sinθ)p q Φ gaa Φ gad cosθ - Φ gaq sinθ N a i a (P d cos 2 θ + P q sin 2 θ) l gaa N a i a ( P d+pq 2 + P d P q 2 N a Φ gaa /i a N 2 a( P d+pq 2 L g + L m cos2θ cos2θ) + P d P q 2 cos2θ) 1 Add the leakage inductance: l aa l al + l gaa L al + L g + L m cos2θ L s + L m cos2θ L s >L m l aa L s + L m cos2θ l bb L s + L m cos2(θ-2π/3) l cc L s + L m cos2(θ+2π/3)

Stator utual Inductances (l ab, l bc, l ac ) l ab < since windings a and b have12 o (>9 o ) displacement b q a Has the maximum absolute value when θ -3 or 15. S N θ -3 o d Detailed calculation: Φ gba Φ gad cos(θ-2π/3) - Φ gaq sin(θ-2π/3) N a i a [P d cosθcos(θ-2π/3)+p q sinθsin(θ-2π/3)] b c a N a i a [ - P d+pq 4 + P d P q cos(2θ-2π/3)] 2 l gba N a Φ gba /i a -L g /2 + L m cos(2θ-2π/3) d N θ15 o S q Add leakage flux: c l ab l ba s L s /2 L al - L g /2 + L m cos(2θ-2π/3) - s + L m cos(2θ-2π/3) - s - L m cos2(θ+π/6) l ab - s - L m cos2(θ+π/6) l bc - s - L m cos2(θ-π/2) l ca - s - L m cos2(θ+5π/6) 11

Stator to Rotor utual Inductances (l af, l bf, l cf, l ad, l bd, l cd, l aq, l bq, l cq ) The rotor sees a constant permeance if neglecting variations in the air gap due to stator slots b q (Q) θ d (F, D) a When the flux linking a stator winding and a rotor winding reaches the maximum when they aligns with each other and is when they are displaced by 9 o c d-axis l af l Fa F cosθ l bf l Fb F cos(θ-2π/3) l cf l Fc F cos(θ+2π/3) l ad l Da D cosθ l bd l Db D cos(θ-2π/3) l cd l Dc D cos(θ+2π/3) q-axis l aq l Qa - Q sinθ l bq l Qb - Q sin(θ-2π/3) l cq l Qc - Q sin(θ+2π/3) 12

For Salient-pole Rotors Which of the curves will be different for round rotors? 13 No 2 nd harmonic

Rotor Inductances (l FF, l DD, l QQ, l FD, l FQ, l DQ ) They are all constant Rotor self inductances l FF L F l DD L D l QQ L Q Rotor mutual inductances l FD l DF R l FQ l QF l DQ l QD 14

Summary ψ aaa ψ FFF L SS L SS L RR L RR i aaa i FFF L RS L T SR L RR L F R R L D L Q What if we define q-axis lagging d-axis by 9 o? Only L RR is constant L SS and L SR are θ or time dependent How to simplify L SS and L SR? Diagonalize L SS Remove time dependency 15

Observations ψ aaa ψ FFF L SS L SS L RR L RR i aaa i FFF All harmonic terms in L SS (1 st harmonic) and L SR (2 nd harmonic) are due to the rotor rotating relative to a, b and c to cause variations in permeance Constant L RR doesn t have harmonic terms because it is in a reference frame rotating with the rotor ψ FDQ - L SR i abc + L RR i FDQ L SR i abc -ψ FDQ + L RR i FDQ L SR i abc may be represented by functions independent of θ Represent stator currents and flux linkages also in a reference frame rotating with the rotor. 16

ψ FDQ - L SR i abc + L RR i FDQ ψ F -l af i a - l bf i b l cf i c +l FF i F + l FD i D + l FQ i Q - F cosθ i a F cos(θ-2π/3) i b F cos(θ+2π/3)i c +L F i F + R i D + - F [i a cosθ + i b cos(θ-2π/3) + i c cos(θ+2π/3)] + L F i F + R i D K 1 i d ψ D -l ad i a - l bd i b l cd i c +l DF i F + l DD i D + l DQ i Q - D cosθ i a - D cos(θ-2π/3) i b - D cos(θ+2π/3)i c + R i F + L D i D + - D [i a cosθ + i b cos(θ-2π/3) + i c cos(θ+2π/3)] + R i F + L D i D K 2 i d ψ Q -l aq i a - l bq i b l cq i c +l QF i F + l QD i D + l QQ i Q Q sinθ i a + Q sin(θ-2π/3) i b + Q sin(θ+2π/3) i c + + + L Q i Q Q [i a sinθ + i b sin(θ-2π/3) + i c sin(θ+2π/3) ] +L Q i Q K 3 i q 17

Park s (dq) Transformation Define For balanced steady-state conditions: i a I m sinω s t i b I m sin(ω s t - 2π/3) i c I m sin(ω s t + 2π/3) i d k d [i a cosθ +i b cos(θ-2π/3) +i c cos(θ+2π/3)] i d k d I m sin(ω s t-θ) 3/2 i q - k g [i a sinθ +i b sin(θ-2π/3) +i c sin(θ+2π/3) ] i q -k q I m cos(ω s t-θ) 3/2 θω r t+θ, ω r ω s Define i k (i a + i b + i c ) i d -k d I m sinθ 3/2 i q -k q I m cosθ 3/2 Constant What if we define q-axis lagging d-axis by 9 o? 18

Park s Transformation atrix - P ψ aaa ψ FFF L SS L SS L RR L RR i aaa i FFF ψ dq P ψ abc i dq P i abc ψ ddd ψ FFF LL SS LL SS LL RR L RR i ddd i FFF We hope L RS (L SR ) T like L RS (L SR ) T L RS L RS P -1 L T SR P -1 (P -T L SR ) T (L SR ) T (P L SR ) T P -T P or P T PI (P is a unitary matrix) k d k q 2 3 and k 1 3 19

Flux Equations after Park s Transformation ψ d ψ q ψ ψ F ψ D ψ Q L d k F k D L q k Q L k F L F R k D R L D k Q L Q i d i q i i F i D i Q k 3 2 L d L s + s + 3L m /2 L q L s + s - 3L m /2 L L s - 2 s ψ ψ d ψ F ψ D ψ q ψ Q L L d k F k D k F L F R k D R L D L q k Q k Q L Q i i d i F i D i q i Q 2

Voltage Equations edψ/dt ± R i Stator: ψ and i are in opposite directions Rotor: ψ and i are the same directions ea en ψ a Ra ia e b e ψ b Rb i n b e c e ψ n c R c i c + ef ψ F RF if ed ψ D R D i D eq ψ Q RQ iq e aaa e FFF R aaa R FFF i aaa i FFF + ψ aaa ψ FFF + e n (A neutral line is added compared to slide #8) Neutral line: e n 1 Rn Rn Rn ia Ln Ln Ln ia di n d e e n ( Rnin Ln )1 Rn Rn R n i b Ln Ln L n i n + b dt dt e n 1 Rn Rn R n i c Ln Ln L n i c d Ri n abc Ln iabc dt 21

e aaa e FFF R aaa R FFF i aaa i FFF + ψ aaa ψ FFF + e n Assume R a R b R c ψ dq P ψ abc i dq P i abc 22

P ψ aaa ψ ddd d Pψ aaa dd P ψ aaa + Pψ aaap P 1 ψ ddd + Pψ aaa θω r t+θ 23

Transformer voltages due to flux change in time ( under steady-state conditions) Speed voltages due to flux change in space S ω r ψ q ω r ψ d ω r ( L q i q + k Q i Q ) ω r ( L d i d + k F i F + k D i D ) ωrl q ( i q ) ω r k Q i Q ω r L d ( i d ) + ω r k F i F + ω r k D i D ) 24

P e n P e n P ( -R n i abc - L n di abc /dt ) -P R n P -1 P i abc - P L n P -1 P di abc /dt -P R n P -1 i dq - P L n P -1 (di dq /dt dp/dt i abc ) PR P n PL P 3R n 3L n 1 1 n Note: P L n P -1 dp/dt i abc Pen 3Ri n d 3Ln i d ndq R L n n R R R n n n Rn Rn R n Rn Rn R n L L L n n n Ln Ln L n L L L n n n 25

e ddd e FFF R R R i ddd i FFF + ψ ddd ψ FFF + S + n ddd e e d ef e D eq e Q R a + 3R n R a R F R D R a R Q i i d i F i D i q i Q ω r L q ω r k Q ω r L d ω r k F ω r k D + L + 3L n i i d i F i D i q i Q 26 L d k F k D k F L F R k D R L D L q k Q k Q L Q d i i d i F i D i q i Q /dt +

Voltage Equations after Park s Transformation e e d ef e D eq e Q L + 3L n R a + 3R n R a ω r L q ω r k Q R F R D ω r L d ω r k F ω r k D R a R Q L d k F k D k F L F R k D R L D L q k Q k Q L Q d i i d i F i D i q i Q /dt i i d i F i D i q i Q + 27

Winding Circuits after Park s Transformation e e d ef e D eq e Q R a + 3R n R a R F R D R a R Q i i d i F i D i q i Q + L + 3L n L d k F k D k F L F R k D R L D L q k Q k Q L Q d i i d i F i D i q i Q /dt + ω r ψ q ω r ψ d d axis flux causes a speed voltage ω r ψ d in the q axis winding q axis flux causes a speed voltage ω r ψ q in the d axis winding 28

29 If k d k q 2/3 and k 1/3, a unit-to-unit relationship holds between abc and dq variables. i a I m sinω s t i b I m sin(ω s t - 2π/3) i c I m sin(ω s t + 2π/3) i d k d I m sin(ω s t-θ) 3/2 i q -k q I m cos(ω s t-θ) 3/2 i k (i a + i b + i c ) P By defining proper base inductances, the matrix may become symmetric in per unit Alternative Park s Transformation Q D F q d Q Q D R D R F F Q q D F d Q D F q d i i i i i i L L L L L L 2 3 2 3 2 3 ψ ψ ψ ψ ψ ψ

Per Unit Representation Quantity in p.u. Actual quantity / Base quantity x x x bbbb p.u. 3

Base Quantities for Synchronous achines S base ~i base e base ψ base ~ L base i base Z base ~ e base /i base L base ~ Z base /ω base T base ~ S base / ω base For steady-state conditions, only two base quantities for each voltage level should be provided, e.g. e base and i base, or S base and e base Considering dynamics, 3 base quantities are needed, e.g. f base, e base, i base S base, Z base, L base, ψ base, T base f base, e base, S base i base, Z base, L base, ψ base, T base Base d q F D Q 1 f base f base f base f base f base f base 2 3 31

Stator Base Quantities Using the machine ratings as the base values e s base (V) peak value of rated line-to-neutral voltage i s base (A) peak value of rated line current f base (Hz) rated frequency Accordingly: S 3φ base (VA) 3E RS base I RS base 3(e s base / 2) (i s base / 2) 3 2 e s base i s base Z s base (Ω ) e s base /i s base L s base (H) Z s base /ω base ω base (elec. rad/s) 2πf base ω mbase (mech. rad/s) ω base (2/p f ) t base (s) 1/ ω base 1/(2πf base ) ψ s base (Wb turns) L s base i s base e s base /ω base T base (N m) S 3φ base / ω mbase 3 2 (p f 2 s base i s base Base d q F D Q 1 f base f base f base f base f base f base 2 e s base e s base e s base S 3φ base S 3φ base S 3φ base 3 i s base i s base i s base 32

33 Base d q F D Q 1 f base f base f base f base f base f base 2 e s base e s base e s base 3 i s base i s base i s base i F base i D base i Q base S 3φ base S 3φ base S 3φ base Q D F q d Q Q D R D R F F Q q D F d Q D F q d i i i i i i L L L L L L 2 3 2 3 2 3 ψ ψ ψ ψ ψ ψ i Fbase, i Dbase and i Qbase should enable a symmetric per-unit inductance matrix How to select rotor base quantities?

Ld ψ d ψ q ψ 3 ψ 2 F 3 ψ D 2 ψ Q F D 3 2 L q Q L L F F R L D R D L Q Q i i i if id iq d q ψ d Ld F D id ψ q Lq Q iq ψ L i ψ F F LF R if ψ D D R LD i D ψ Q Q LQ iq ψ d ψ s bbbb L d i d L s bbbb i s bbbb + L d i d L s bbbb i s bbbb + F i F bbbb L s bbbb i s bbbb F i F L s bbbb i s bbbb + i F i F bbbb + ψ d L d i d + F i F + D i D D i D L s bbbb i s bbbb D i D bbbb L s bbbb i s bbbb i D i D bbbb F F F i F bbbb L s bbbb i s bbbb 3 2 F i S bbbb L F bbbb i F bbbb L F base i 2 F base 3 2 L S base i 2 S base ω base L F base i 2 F base 3 2 ω base L S base i 2 S base ψ F 3 F i d L F i F R i D + + ψ F bbbb 2 L F bbbb i F bbbb L F bbbb i F bbbb L F bbbb i F bbbb 3 2 F i S bbbb L F bbbb i F bbbb i d i s bbbb + L F i F L F bbbb i F bbbb + R i D bbbb L F bbbb i F bbbb i D i D bbbb e F base i F base 3 2 e S base i S base S 3φ base e D base i D base e Q base i Q base ψ F F i d +L F i F + R i D 34

Rotor Base Quantities ψ d Ld F D id ψ q Lq Q iq ψ L i ψ F F LF R if ψ D D R LD i D ψ Q Q LQ iq Stator self-inductance L d or L q can be split into two parts: Leakage inductance due to flux that does not link any rotor circuit utual inductance due to flux that links the rotor circuits Stator leakage inductances in d and q axes are nearly equal. Then L d L l + L aa L q L l + L aa Assume that all the per unit mutual inductances between the stator and rotor circuits in each axis are equal F D L aa Q L aa Some references suggest rotor mutual inductance R L aa to further simplify equivalent circuits 35

L aa L s bbbb L aa F D F i F bbbb D i D bbbb L s bbbb i s bbbb L s bbbb i s bbbb i F bbbb L aa F i S bbbb, A e F base S 3φ base / i F base, V Z F base e F base / i F base S 3φ base / i 2 F base, Ω L F base Z F base / ω base, H ψ F base L F base i F base, Wb turns F base L S base i S base / i F base L aa Q L aa Q i Q bbbb L s bbbb L s bbbb i s bbbb i Q bbbb L aa Q i S bbbb, A e Q base S 3φ base / i Q base, V Z Q base e Q base / i Q base S 3φ base / i 2 Q base, Ω L Q base Z Q base / ω base, H ψ Q base L Q base i Q base, Wb turns Q base L S base i S base / i Q base i D bbbb L aa D i S bbbb, A e D base S 3φ base / i D base, V Z D base e D base / i D base S 3φ base / i 2 D base, Ω L D base Z D base / ω base, H ψ D base L D base i D base, Wb turns D base L S base i S base / i D base 36 L ad -L aq based per unit system

Per Unit Voltage Equations e ddd Ri ddd + ψ ddd + S + n ddd e FFF R R i FFF + ψ FFF e d eq e R a R a R a i d iq i + pψ d pψ q pψ + ω r ψ q ω r ψ d 3R n i 3L n pi e F R F R D R Q i F i D iq + pψ F pψ D pψ Q pd/dt differential operator Divide both sides of each equation by one of the following: e S base ω base ψ S base ω base L S base i S base Z S base i S base e F base ω base ψ F base ω base L F base i F base Z F base i F base e D base ω base ψ D base ω base L D base i D base Z D base i D base e Q base ω base ψ Q base ω base L Q base i Q base Z Q base i Q base 37

For example: e d e s bbbb R a i d Z s bbbb i s bbbb + pψ d ω bbbb ψ s bbbb ω r ψ q ω bbbb ψ s bbbb Note: p ω bbbb d ω bbbb dd t bbbbd dd d dt p Per unit differential operator e d R a i d +pψ d ω r ψ q e F e F bbbb R F i F Z F bbbb i F bbbb + pψ F ω bbbb ψ F bbbb e F R F i F +pψ F e d e q e R a R a R a i d i q + i pψ d pψ q + pψ ω r ψ q ω r ψ d 3R n i 3L n pi e F R F R D R Q i F i D + i Q pψ F pψ D pψ Q 38

Per Unit Power and Torque Instantaneous power at the machine terminal: P t e a i a +e b i b +e c i c [e a e b e c ] [i a i b i c ] T [e d e q e ] P -T P -1 [i d i q i ] T [e d e q e ] (P T P) -1 [i d i q i ] T P t 3 2 (e d i d + e q i q +2e i ) P T P 1 3 2 2 1, (P T P) -1 3 2 1 1 2 3 2 (e d i d + e q i q ) (under balanced conditions) Divided by S 3φ base 3 2 e s base i s base P t e d i d + e q i q P t 3 2 [ (i d pψ d + i q pψ q ) +(ψ d i q - ψ q i d ) ω r - (i 2 d+ i 2 q)r a ] Power transferred across the air-gap The air-gap torque (i.e. electrical torque): T e 3 2 (ψ d i q - ψ q i d ) ω r /ω mech 3 2 (ψ d i q - ψ q i d ) p f /2 Divided by T base 3 2 (p f 2 )ψ s base i s base T e ψ d i q ψ q i d 39

Per Unit Reactance X2π f L X Z bbbb 2πf 2πf bbbb L L bbbb If ff base X L The per unit reactance of a winding is numerically equal to the per unit inductance. 4