ISOMORPHISM OF GENERALIZED TRIANGULAR MATRIX-RINGS AND RECOVERY OF TILES

Similar documents
DO ISOMORPHIC STRUCTURAL MATRIX RINGS HAVE ISOMORPHIC GRAPHS?

ON IDEALS OF TRIANGULAR MATRIX RINGS

Chapter 3. Rings. The basic commutative rings in mathematics are the integers Z, the. Examples

Ring Theory Problems. A σ

Ring Theory Problem Set 2 Solutions

Math 210B: Algebra, Homework 4

11. Finitely-generated modules

Math 581 Problem Set 3 Solutions

RINGS ISOMORPHIC TO THEIR NONTRIVIAL SUBRINGS

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Problem 1. Let I and J be ideals in a ring commutative ring R with 1 R. Recall

TEST CODE: PMB SYLLABUS

IDEAL CLASSES AND RELATIVE INTEGERS

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

1.5 The Nil and Jacobson Radicals

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

Decompositions Of Modules And Matrices

STATE OF THE ART OF THE OPEN PROBLEMS IN: MODULE THEORY. ENDOMORPHISM RINGS AND DIRECT SUM DECOMPOSITIONS IN SOME CLASSES OF MODULES


Review Article Some Notes on Semiabelian Rings

4.4 Noetherian Rings

Noetherian property of infinite EI categories

DIFFERENTIAL POSETS SIMON RUBINSTEIN-SALZEDO

A NOTE ON ALMOST INJECTIVE MODULES

NONCOMMUTATIVE GRADED GORENSTEIN ISOLATED SINGULARITIES

2 (17) Find non-trivial left and right ideals of the ring of 22 matrices over R. Show that there are no nontrivial two sided ideals. (18) State and pr

ON STRONGLY PRIME IDEALS AND STRONGLY ZERO-DIMENSIONAL RINGS. Christian Gottlieb

RIGHT SELF-INJECTIVE RINGS IN WHICH EVERY ELEMENT IS A SUM OF TWO UNITS

Primitive Ideals of Semigroup Graded Rings

COMPRESSIBLE MODULES. Abhay K. Singh Department of Applied Mathematics, Indian School of Mines Dhanbad India. Abstract

THE STRUCTURE OF A RING OF FORMAL SERIES AMS Subject Classification : 13J05, 13J10.

PUBLICAŢII. 3. C. Băeţica, S. Dăscălescu, Probleme de algebră, Editura Universităţii

Ph.D. Qualifying Examination in Algebra Department of Mathematics University of Louisville January 2018

A GENERAL THEORY OF ZERO-DIVISOR GRAPHS OVER A COMMUTATIVE RING. David F. Anderson and Elizabeth F. Lewis

ADVANCED COMMUTATIVE ALGEBRA: PROBLEM SETS

Honors Algebra 4, MATH 371 Winter 2010 Assignment 3 Due Friday, February 5 at 08:35

Irreducible subgroups of algebraic groups

THE CLOSED-POINT ZARISKI TOPOLOGY FOR IRREDUCIBLE REPRESENTATIONS. K. R. Goodearl and E. S. Letzter

TIGHT CLOSURE IN NON EQUIDIMENSIONAL RINGS ANURAG K. SINGH

Solutions for Practice Problems for the Math 403 Midterm

SUMMARY ALGEBRA I LOUIS-PHILIPPE THIBAULT

RINGS: SUMMARY OF MATERIAL

Zero-Divisor Graph with Respect to an Ideal *

Chapter 5. Linear Algebra

Azumaya Algebras. Dennis Presotto. November 4, Introduction: Central Simple Algebras

Piecewise Noetherian Rings

Math 121 Homework 5: Notes on Selected Problems

HIGHER CLASS GROUPS OF GENERALIZED EICHLER ORDERS

Sequences of height 1 primes in Z[X]

Algebra Exam Syllabus

NONCOMMUTATIVE POLYNOMIAL EQUATIONS. Edward S. Letzter. Introduction

Rings and groups. Ya. Sysak

LECTURE 4: GOING-DOWN THEOREM AND NORMAL RINGS

NOTES ON CONGRUENCE n-permutability AND SEMIDISTRIBUTIVITY

REMARKS ON REFLEXIVE MODULES, COVERS, AND ENVELOPES

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z).

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

Math 120 HW 9 Solutions

Vladimir Kirichenko and Makar Plakhotnyk

On Unit-Central Rings

RIGHT-LEFT SYMMETRY OF RIGHT NONSINGULAR RIGHT MAX-MIN CS PRIME RINGS

On the vanishing of Tor of the absolute integral closure

COHEN-MACAULAY RINGS SELECTED EXERCISES. 1. Problem 1.1.9

Hong Kee Kim, Nam Kyun Kim, and Yang Lee

ON MAXIMAL RADICALS AND PRIME M-IDEALS

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA

4.1. Paths. For definitions see section 2.1 (In particular: path; head, tail, length of a path; concatenation;

Proceedings of the Twelfth Hudson Symposium, Lecture Notes in Math. No. 951, Springer-Verlag (1982), 4l 46.

Projective and Injective Modules

Decompositions of Modules and Comodules

REPRESENTATION THEORY WEEK 9

MATH 326: RINGS AND MODULES STEFAN GILLE

ON HOCHSCHILD EXTENSIONS OF REDUCED AND CLEAN RINGS

REVERSALS ON SFT S. 1. Introduction and preliminaries

BRUNO L. M. FERREIRA AND HENRIQUE GUZZO JR.

D-MATH Algebra I HS 2013 Prof. Brent Doran. Exercise 11. Rings: definitions, units, zero divisors, polynomial rings

COARSENINGS, INJECTIVES AND HOM FUNCTORS

Math 4400, Spring 08, Sample problems Final Exam.

ABSORBING MULTIPLICATION MODULES OVER PULLBACK RINGS. S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari

RINGS HAVING ZERO-DIVISOR GRAPHS OF SMALL DIAMETER OR LARGE GIRTH. S.B. Mulay

Tripotents: a class of strongly clean elements in rings

Strongly Nil -Clean Rings

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

COMMUNICATIONS IN ALGEBRA, 15(3), (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY. John A. Beachy and William D.

Solutions to odd-numbered exercises Peter J. Cameron, Introduction to Algebra, Chapter 2

Graded modules over generalized Weyl algebras

Representations of quivers

NESTED SYMMETRIC REPRESENTATION OF ELEMENTS OF THE SUZUKI CHAIN GROUPS

LOCAL COHOMOLOGY MODULES WITH INFINITE DIMENSIONAL SOCLES

TROPICAL SCHEME THEORY

arxiv: v1 [math.ra] 6 Sep 2018

SUMS OF UNITS IN SELF-INJECTIVE RINGS

Correct classes of modules

Generalized Boolean and Boolean-Like Rings

One-sided clean rings.

Modules Over Principal Ideal Domains

Lecture 2. (1) Every P L A (M) has a maximal element, (2) Every ascending chain of submodules stabilizes (ACC).

Chan Huh, Sung Hee Jang, Chol On Kim, and Yang Lee

Math 547, Exam 1 Information.

Transcription:

IJMMS 2003:9, 533 538 PII. S0161171203205251 http://ijmms.hindawi.com Hindawi Publishing Corp. ISOMORPHISM OF GENERALIZED TRIANGULAR MATRIX-RINGS AND RECOVERY OF TILES R. KHAZAL, S. DĂSCĂLESCU, and L. VAN WYK Received 5 May 2002 We prove an isomorphism theorem for generalized triangular matrix-rings, over rings having only the idempotents 0 and 1, in particular, over indecomposable commutative rings or over local rings not necessarily commutative. As a consequence, we obtain a recovery result for the tile in a tiled matrix-ring. 2000 Mathematics Subject Classification: 16S50, 15A33, 16D20. Matrix-rings play a fundamental role in mathematics and its applications. A difficult question is to decide whether a given ring is isomorphic to a matrixring or one of its variants. Several hidden matrix-rings have been shown in the literature see [5]. These rings did not appear as being matrix-rings at the first sight, nevertheless they proved out to be isomorphic to matrix-rings. Another type of problem concerned to matrices is to decide whether two rings of matrices are isomorphic or not. For instance, it is known that for commutative rings R and S, the matrix-rings M 2 R and M 2 S are isomorphic if and only if the rings R and S are isomorphic, for the simple reason that R is isomorphic to the center of M 2 R. However, if R and S are not commutative, this is not true anymore. Examples have been given in [7], also in [6] for simple Noetherian integral domains R,S, orin[2] for prime Noetherian R,S. A different but related problem is the recovery of the tile in a triangular matrix-ring. More precisely, if R is a ring and I, J are two-sided ideals of R such that the rings R I 0 R and R J 0 R are isomorphic, what can we say about I and J? Are they isomorphic as R-bimodules? If we do not impose any condition to the ring, then there is no hope to recover the tile. For instance, in [3] aringr was constructed such that R R R 0. 1 0 R 0 R It was proved in [1] that if R satisfies a certain finiteness condition in particular in the case where R is a left Noetherian, the above isomorphism cannot hold. For the situation where the tile is not necessarily 0 or the whole ring R, the situation behaves worse. Even when the ring is finite, the tile cannot be

534 R. KHAZAL ET AL. A 0 A recovered. It was proved in [4] that if R = 0 AA A, A is a ring, and 0 A I = A, J = 0, 2 0 0 then the rings R I 0 R and RJ 0 R are isomorphic, while I and J are not isomorphic as R-bimodules. The aim of this paper is to obtain a recovery result for the tile in the case where the underlying ring R has only trivial idempotents, that is, R has only two idempotents, 0 and 1. Relevant examples of such rings are for instance: indecomposable commutative rings and local rings not necessarily commutative. In fact we can investigate the isomorphism among more general matrix-type rings. Recall that if R and S are two rings, and M is an R,S-bimodule this means left R and right S, we can define the generalized triangular matrix-ring 0 S, with multiplication induced by the bimodule actions and the usual rule for matrix multiplication. With this notation we can prove the following theorem. Theorem 1. M,N be two R,S-bimodules. Then a map : 0 S Let R and S be rings having only trivial idempotents, and let RN 0 S is a ring isomorphism if and only if there exist a N, f AutR, g AutS, and an isomorphism v : M N of additive groups satisfying vrx = frvx and vxs = vxgs for any x M, r R, s S, such that r x = fr fra ags+vx, 3 0 gs for any r R, x M, and s S. In particular, we obtain a recovery result for the tile. This is not exactly an isomorphism, but an isomorphism relative to some automorphisms of the ring. We recall that if f,g AutR, and X,Y are two R,R-bimodules, then an additive map v : X Y is called an f,g-morphism if vrxr = frvxgr, for any r,r R, x X. Corollary 2 recovery of the tile. potents, and I,J be ideals of R. Then the matrix-rings R I 0 R Let R be a ring having only trivial idem- and RJ 0 R are isomorphic if and only if I and J are f,g-isomorphic as the R,R-bimodules for some f,g AutR. A complete recovery of the tile up to isomorphism is obtained in some special cases when the ring has only the trivial automorphism.

ISOMORPHISM OF GENERALIZED TRIANGULAR MATRIX-RINGS... 535 Corollary 3. Let R be a ring having only trivial idempotents such that, the only automorphism of R is the identity. If I,J are ideals of R, then the matrixrings R I 0 R and RJ 0 R are isomorphic if and only if I and J are isomorphic as the R,R-bimodules. Proof of Theorem 1. An element r x 0 S is idempotent if and only if r 2 = r, s 2 = s, and rx+xs = x. Since the only idempotents of R and S are 0 and 1, we have that any of r and s is eithe or 1. If r = 0ands = 0, we find x = 0. If r = 1ands = 1, we find again x = 0. If r = 1 and s = 0, then x can be anything in M, and the same in the case where r = 0 and s = 1. Thus, apart from 0 and the identity element, the idempotents of 0 S are the elements of the form 1 x e x =, x M, f x =, 0 1 x M. It is easy to see that the following relations hold: +y e x e y = e y, f x f y = f x, e x f y =, f x e y = 0, 5 4 for any x,y M. Wedenotebye z,f z, z N, the similar idempotents of RN 0 S. Let : 0 S RN 0 S be a ring isomorphism. Then e0 must be a nontrivial idempotent of RN 0 S. We distinguish two cases. Case 1. We have e 0 = e a for some a N. Then if for some x M we have e x = f b for some b N, we see that e a = e 0 = ex e 0 = ex e0 = f b e a = 0, 6 a contradiction. Therefore, e x = e ux for some ux N for any x M. Then we have that f x = I2 e x = I2 e u x = f u x. 7 Thus, for any x M we have = e 0 f x = e0 fx = e 0 a u x a f u x =. 8 0 1 Denote v : M N, vx = a u x. Then clearly v is a morphism of additive groups. Moreover, v is an isomorphism. Indeed, if 1 e z = f h for some z N, h M,thenf h = e z, a contradiction. Thus {e x x M}={e z z N},

536 R. KHAZAL ET AL. showing that u is surjective, so then v is also surjective. Obviously, v is injective. Now = e 0 = e a R N 9 thus 00 = fr hr for some additive maps f : R R, h : R N. Since is a ring morphism, we obtain that f r 1 r 2 = f r1 f r2, f1 = 1, h r 1 r 2 = f r1 h r2, h1 = a, 10 for any r 1,r 2 R. Similarly, one gets 0 ps = 0 gs for some additive maps g : S S, p : S N satisfying g s 1 s 2 = g s1 g s2, g1 = 1, p s 1 s 2 = p s1 g s2, p1 = a. 11 Then hr = hr 1 = frh1 = fra for any r R, and similarly ps = ags for any s S. We obtain that r x = + + fr fra 0 vx 0 ags = + + 0 gs fr fra ags+vx =, 0 gs 12 for any r R, s S, and x M. By using the relation r x r x r x r x =, 13 we obtain, by computing the 1,2-slots in the two sides, that frvx + vxgs = vrx + vxs for any r R, x,x M, s S. Fors = 0, we find vrx = frvx, and for r = 0, we obtain v xs = vxg s. It remains to show that f and g are bijective. Clearly, kerf = 0sincefr= 0implies 00 = 00, and then r must be 0. Also f is surjective since for any

ISOMORPHISM OF GENERALIZED TRIANGULAR MATRIX-RINGS... 537 b R, there exists r x 0 S with r x = b 0 00, in particular, fr= b. Thus f is a ring isomorphism, and so is g. Case 2. We have e 0 = f a for some a N. Then for any x M, we have that f a = e 0 = ex e 0 = ex e0 = ex f a. 14 If e x = e z for some x M, z N, we obtain that 0 z +a f a = e zf a =, 15 a contradiction. Thus, e x = f ux for any x M, where u : M N is a map. Hence f x = I 2 e x = I 2 f u x = e u x, and then = e 0 f x = e0 fx = f u0 e u x = 0, 16 a contradiction, for x 0. Therefore this case cannot occur. For the other way around, it is straightforward to check that any map of the given form is an isomorphism of rings. Examples. 1 Let m and n be two nonnegative integers, and let Z be the ring of integers which has only 0 and 1 as idempotents. Then by Corollary 3 the rings Z mz 0 Z and Z nz 0 Z are isomorphic if and only if m = n. 2 Let Z[i] be the ring of Gauss integers which is a principal ideal domain PID, in particular, it also has only trivial idempotents. If x,y Z[i], then the rings and are isomorphic if and only if either x = uy or Z[i] xz[i] 0 Z[i] Z[i] yz[i] 0 Z[i] x = uy for some u {1, 1,i, i}, where y denotes the complex conjugate of y. Indeed, this follows from Corollary 2 and the fact that the only automorphisms of Z[i] are the identity and the complex conjugation. Acknowledgment. The second author was supported by grant SM 10/01 of the Research Administration of Kuwait University. References [1] G. Abrams, J. Haefner, and A. del Río, The isomorphism problem for incidence rings, Pacific J. Math. 187 1999, no. 2, 201 214. [2] A. W. Chatters, Nonisomorphic rings with isomorphic matrix rings, Proc. Edinburgh Math. Soc. 2 36 1993, no. 2, 339 348. [3] S. Dăscălescu and L. van Wyk, Do isomorphic structural matrix rings have isomorphic graphs?, Proc. Amer. Math. Soc. 124 1996, no. 5, 1385 1391. [4], The recovery of the non-diagonal tile in a tiled triangular matrix ring, Indian J. Math. 42 2000, no. 2, 167 173. [5] L. S. Levy, J. C. Robson, and J. T. Stafford, Hidden matrices, Proc. London Math. Soc. 3 69 1994, no. 2, 277 308.

538 R. KHAZAL ET AL. [6] S. P. Smith, An example of a ring Morita equivalent to the Weyl algebra A 1,J. Algebra 73 1981, no. 2, 552 555. [7] R.G.Swan,Projective modules over group rings and maximal orders, Ann. of Math. 2 76 1962, 55 61. R. Khazal: Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait E-mail address: khazal@mcs.sci.kuniv.edu.kw S. Dăscălescu: Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait E-mail address: sdascal@mcs.sci.kuniv.edu.kw L. Van Wyk: Department of Mathematics, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa E-mail address: lvw@land.sun.ac.za

Advances in Operations Research Advances in Decision Sciences Applied Mathematics Algebra Probability and Statistics The Scientific World Journal International Differential Equations Submit your manuscripts at International Advances in Combinatorics Mathematical Physics Complex Analysis International Mathematics and Mathematical Sciences Mathematical Problems in Engineering Mathematics Discrete Mathematics Discrete Dynamics in Nature and Society Function Spaces Abstract and Applied Analysis International Stochastic Analysis Optimization