Problem Set 8: Solutions

Similar documents
Problem Set 7: Solutions

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 11 Solutions by P. Pebler

Physics 102 Spring 2006: Final Exam Multiple-Choice Questions

Chapter 30 Inductance

PHY 131 Review Session Fall 2015 PART 1:

Physics Jonathan Dowling. Final Exam Review

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

/20 /20 /20 /60. Dr. Galeazzi PHY207 Test #3 November 20, I.D. number:

AP Physics C. Magnetism - Term 4

Physics 208, Spring 2016 Exam #3

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Slide 1 / 26. Inductance by Bryan Pflueger

AP Physics C Mechanics Objectives

Quiz 4 (Discussion Session) Phys 1302W.400 Spring 2018

Lecture 39. PHYC 161 Fall 2016

Physics Will Farmer. May 5, Physics 1120 Contents 2

PHYS 212 Final Exam (Old Material) Solutions - Practice Test

Physics 7B, Speliotopoulos Final Exam, Fall 2014 Berkeley, CA

Handout 10: Inductance. Self-Inductance and inductors

University of California, Berkeley Physics H7B Spring 1999 (Strovink) SOLUTION TO PROBLEM SET 12 Solutions by P. Pebler. ( 5 gauss) ẑ 1+[k(x + ct)] 2

Yell if you have any questions

CHAPTER 7 ELECTRODYNAMICS

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Louisiana State University Physics 2102, Exam 2, March 5th, 2009.

Physics 112. Study Notes for Exam II

Final Exam: Physics Spring, 2017 May 8, 2017 Version 01

Exam 3 Topics. Displacement Current Poynting Vector. Faraday s Law Self Inductance. Circuits. Energy Stored in Inductor/Magnetic Field

AP Physics C. Electricity - Term 3

Problem Set 5: Solutions. UNIVERSITY OF ALABAMA Department of Physics and Astronomy. PH 102 / LeClair Summer II Ω 3 Ω 1 Ω 18 V 15 V

Phys 2025, First Test. September 20, minutes Name:

Problem Set 6: Magnetism

Exam 2 Solutions. Note that there are several variations of some problems, indicated by choices in parentheses.

SUMMARY Phys 2523 (University Physics II) Compiled by Prof. Erickson. F e (r )=q E(r ) dq r 2 ˆr = k e E = V. V (r )=k e r = k q i. r i r.

Physics 1308 Exam 2 Summer 2015

Exam 3 November 19, 2012 Instructor: Timothy Martin

Physics 2B Winter 2012 Final Exam Practice

University of the Philippines College of Science PHYSICS 72. Summer Second Long Problem Set

Evaluating this approximately uniform field at the little loop s center which happens to lie on the big loop s axis we find

Chapter 30 Examples : Inductance (sections 1 through 6) Key concepts: (See chapter 29 also.)

Solutions to PHY2049 Exam 2 (Nov. 3, 2017)

Electromagnetic Induction (Chapters 31-32)

Lecture 27: FRI 20 MAR

PHYS General Physics for Engineering II FIRST MIDTERM

PHYSICS 7B, Section 1 Fall 2013 Midterm 2, C. Bordel Monday, November 4, pm-9pm. Make sure you show your work!

Inductance, RL Circuits, LC Circuits, RLC Circuits

Inductance. thevectorpotentialforthemagneticfield, B 1. ] d l 2. 4π I 1. φ 12 M 12 I 1. 1 Definition of Inductance. r 12

PHYS 202 Notes, Week 6

Physics 1308 Exam 2 Summer Instructions

Version 001 CIRCUITS holland (1290) 1

we can said that matter can be regarded as composed of three kinds of elementary particles; proton, neutron (no charge), and electron.

Active Figure 32.3 (SLIDESHOW MODE ONLY)

Calculus Relationships in AP Physics C: Electricity and Magnetism

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Make sure you show all your work and justify your answers in order to get full credit.

Physics 227 Final Exam Wednesday, May 9, Code: 000

Do not fill out the information below until instructed to do so! Name: Signature: Section Number:

Physics 6B Summer 2007 Final

Chapter 32. Inductance

1 2 U CV. K dq I dt J nqv d J V IR P VI

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

What happens when things change. Transient current and voltage relationships in a simple resistive circuit.

= e = e 3 = = 4.98%

Physics 9 Spring 2012 Midterm 1 Solutions

(a) What is the direction of the magnetic field at point P (i.e., into or out of the page), and why?

Self-inductance A time-varying current in a circuit produces an induced emf opposing the emf that initially set up the time-varying current.

Inductance. Slide 2 / 26. Slide 1 / 26. Slide 4 / 26. Slide 3 / 26. Slide 6 / 26. Slide 5 / 26. Mutual Inductance. Mutual Inductance.

r where the electric constant

Circuits Capacitance of a parallel-plate capacitor : C = κ ε o A / d. (ρ = resistivity, L = length, A = cross-sectional area) Resistance : R = ρ L / A

University of Alabama Department of Physics and Astronomy. Problem Set 6

The next two questions pertain to the situation described below. Consider a parallel plate capacitor with separation d:

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

Chapter 32. Inductance

Last time. Ampere's Law Faraday s law

Quick Questions. 1. Two charges of +1 µc each are separated by 1 cm. What is the force between them?

Describe the forces and torques exerted on an electric dipole in a field.

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.

INDUCTANCE Self Inductance

Exam 2, Phy 2049, Spring Solutions:

Make sure you show all your work and justify your answers in order to get full credit.

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Solutions to PS 6 Physics 401a

Capacitors. Chapter How capacitors work Inside a capacitor

PHYS 272 (Spring 2018): Introductory Physics: Fields Homeworks

Physics 220: Worksheet 7

Inductance, RL and RLC Circuits

CHAPTER 29: ELECTROMAGNETIC INDUCTION

PH 102 Exam II. 1. Solve 8 problems out of the 12 below. All problems have equal weight.

= 8.89x10 9 N m 2 /C 2

Exam II. Solutions. Part A. Multiple choice questions. Check the best answer. Each question carries a value of 4 points. The wires repel each other.

Chapter 30 INDUCTANCE. Copyright 2012 Pearson Education Inc.

Chapter 31. Faraday s Law

Problems in Magnetostatics

Physics 2020 Exam 2 Constants and Formulae

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics: Final Exam Review Session Problems Solutions

Physics 208: Electricity and Magnetism Final Exam, Secs May 2003 IMPORTANT. Read these directions carefully:

2. Waves with higher frequencies travel faster than waves with lower frequencies (True/False)

PHYS 241/spring2014: Assignment EXAM02SP11

PHYS 272 (Spring 2018): Introductory Physics: Fields Problem-solving sessions

r where the electric constant

Transcription:

UNIVRSITY OF ALABAMA Department of Physics and Astronomy PH 106-4 / LeClair Fall 2008 Problem Set 8: Solutions 1. (Purcell 7.22 A thin ring of radius a carries a static charge q. This ring is in a magnetic field of strength B o, parallel to the ring s axis, and is supported so that it is free to rotate about that axis. If the field is switched off, how much angular momentum will be added to the ring? If the ring has mass m, show that it will acquire an angular velocity ω =qb o /2m. It is not so clear, right off the bat, why the ring should start to rotate in the first place. Where can the angular momentum come from? The key is to recognize that time-varying magnetic field will give rise to a circulating electric field, which will cause a torque on the ring. One step at a time though! At the instant the field is switched off, the magnetic flux through the loop changes from Φ B =B o πa 2 to zero. The fact that the flux changes in time leads to an induced voltage around the ring, by Faraday s law: Φ B t = V = ring d l If there is an induced voltage around the ring, then there must be an electric field as well, since the integral of d l around the loop is nonzero. What is the direction of the electric field? If the original B field was constant along the ring s axis, then the electric field resulting from its disappearance must be circulating. If the ring were conducting - and we did not say that it is - the change in magnetic flux would create induced currents circulating in such a way to stop the decrease in flux. A circulating current in the ring could only be caused by an electric field varying tangentially along the ring, i.e., a circulating electric field. The situation is the same whether the ring is conducting or not, in that the electric field will circulate around the axis of the ring. z a r Bo Bo r Figure 1: Problem 1: If one field is straight, the other circulates. The change in magnetic flux produces an electric field tangent to the ring everywhere. This tangential electric field is what will give rise to a torque. ach tiny element of the ring dl will feel an electric field

, and thus an electric force F e in the tangential direction. Over the whole ring, adding up many tiny segments, there will be no net force, but there will be a net torque about the z axis. r dθ dl dfe Figure 2: Problem 1: a tiny segment of the ring. The ring of radius a has a total charge q spread out uniformly. Let us define a linear charge density λ = q/2πa. Any tiny element dl of the ring then has a charge dq = λdl. The electric field will give rise to an electric force on each segment, also in the tangential direction: d F e = dq = λ dl ˆθ On any little segment, we can now readily find the torque, since the electric force acts at a right angle to the radial direction. Remember that the ring is supported at its center point, which means the electric force acts over a distance a from the center of the circle to its rim. ( d τ = a d F e = aˆr dl ˆθ = λa dl ˆr ˆθ = λa dl ẑ The torque is in the z direction, consistent with the right-hand rule. Once we know the torque on a small element dl, we can easily integrate to find the torque on the whole ring: τ = ring d τ = λa dl ẑ Now we should notice two things: first, that the radius r is constant, and can be taken out of the integral. Second, since and d l are parallel everywhere, the integral of dl around the loop is nothing more than the potential difference around the ring V! τ = λa dlẑ = λa V ẑ = ( q ( q V a V ẑ = ẑ 2πa 2π The torque on the ring is simply proportional to the induced voltage, which is in turn proportional to the change in magnetic flux. We will drop the vector notation now, since we have the directions of everything straight at this point. τ = ( q V 2π ( q dφb = 2π Of course, what is torque but the time rate of change of angular momentum...

dl ( q = dφb 2π Now integrate both sides. Let the limits of integration be the state i, just before the field B o is switched off, and the state f just after the field has been switched off. f i dl = q 2π f i dφ B = L f L i = q 2π (Φ B,i Φ B,f Just before the field is switched off, we have no net angular moment, so L i =0, and just after the field is switched off, we have Φ B,f =0. Since we know the initial magnetic flux as well, L f = q ( Bo πa 2 = 1 2π 2 qa2 B o So there is an angular momentum after the field is switched off, and its magnitude scales with the size of the initial field. In another way, we can say that the electric and magnetic fields also have angular momentum, just as they have an energy density. In fact, the fields carry energy, momentum, and angular momentum, a fact which is most easily seen from their effect on simple charge distributions like this one. What about the rate of rotation? The net angular momentum for an object must equate to its moment of inertia I and rate of angular rotation ω: L=Iω. For a thin circular ring of mass m and radius a, we know that I =ma 2. i This is the final thing we need: L f = Iω = ωma 2 = 1 2 qa2 B o = ω = qb o 2m In the end, ω depends only on the initial field strength, and the charge/mass ratio of the ring not at all on the size of the ring. 2. (Purcell 7.23 There is evidence that a magnetic field exists in most of the interstellar space with a strength between 10 9 and 10 10 T. Adopting 3 10 10 T as a typical value, find the total energy stored in the magnetic field of the galaxy. Assume the galaxy is a disk roughly 10 21 m in diameter and 10 19 m thick. Assuming stars radiate about 10 37 W, how many years of starlight is the magnetic energy worth? Don t over-think this one. It is easier than it sounds. The energy per unit volume contained in the magnetic field is B 2 /2µ o. The total energy contained in the magnetic field over some volume is: U = 1 B 2 dv 2µ o If we assume that the interstellar magnetic field has a constant value B o, the volume integral is trivial, and the total energy contained in the field in a volume V is just B 2 ov/2µ o. All we need to do is find the volume of the galaxy! If we model the galaxy as a disk of diameter 10 21 m and thickness 10 19 m, then i Of course by know" we mean you can look these things up."

( 1 (10 V = π 2 1021 m 19 m 8 10 60 m 3 The total energy stored in the magnetic field is then U = µ obo 2 V 3 10 47 J 2 If all stars radiate about 10 37 W, since P = du/, the time t it takes to radiate away all the energy is about t = U P 1047 J 10 37 J/s = 3 1010 s 900 yrs 3. Purcell 9.10 Find the magnetic field at a point P midway between the plates of capacitor a distance r from the axis of symmetry. A current I is flowing through the capacitor. We assume that the magnetic field circles the capacitor axis, consistent with the magnetic field flowing through the wires leading to the capacitor. If the capacitor spacing s is small, the electric field will be fairly uniform. Let the plates be squares of side b to be concrete. = V s = Q sc = Qs sɛ o b 2 = Q ɛ o b 2 The electric flux through a circle of radius r, through the point of interest, is Φ = πr 2 = πr2 Q b 2, The time rate of change of the electric flux gives us the magnetic field: B d l = 2πrB = 1 c 2 dφ Rearranging, and noting 1 c 2 =ɛ o µ o, = 1 c 2 πr 2 ɛ o b 2 dq, B = r dq 2c 2 ɛ o b 2 = µ or dq 2b 2 Finally, conservation of charge dictates that the time rate of change of charge going to or from the capacitor must be the same as the current flowing: I =dq/: B = µ oir 2b 2 At the edge of the capacitor (r =b, this is the same as the magnetic field around a long wire.

4. Serway 32.69 At t = 0, the open switch in the figure below is closed. By using Kirchhoff s rules for the instantaneous currents and voltages in this two-loop circuit, show that the current in the inductor at time t>0 is I(t = V [ 1 e (R /Lt ] where R = R 2 / ( S V R 2 L Figure 3: Problem 4: an RL circuit. We should note that this circuit looks a lot like a realistic" version of our ideal RL circuit - the battery has some internal resistance, and the inductor has some finite resistance R 2. This may not be such a silly problem. Let a current I 2 flow through resistor R 2, a current I through the inductor. Conservation of charge means that a current I 2 + I must flow through resistor (and through the battery V. First, apply conservation of energy to the loop containing and R 2 : V (I + I 2 I 2 R 2 = 0 Next, apply conservation of energy to the loop containing R 2 and L: V (I + I 2 L di = 0 We can solve the first equation for I 2, the current in resistor 2, and plug that into the second equation. Step one: V (I + I 2 I 2 R 2 = 0 I 2 ( = V I Step two, substitute and rearrange: I 2 = V I

V (I + I 2 L di = 0 V I I 2 L di = 0 ( V IR1 V I L di = 0 ( R1 V V I + IR2 1 L di = 0 ( ( V 1 I 1 L di = 0 ( ( R2 R2 V I L di = 0 How do we proceed from here? We want to make this equation look like one we ve already solved, namely, the equation for a simple LR circuit. First, define a quantity V, which is just the first term in our equation above: R 2 V = V This term is just the potential difference we would have across R 2 if the inductor were not present. Next, define a quantity R, which is most of the second term in our main equation: R = R 2 This is the same as a parallel combination of and R 2. Now rewrite our main equation: V ( R2 I ( R2 L di = 0 V IR L di = 0 Aha! This is the same differential equation for an LR circuit we already solved. We never solve equations more than once... the same equations have the same solutions, so we can just write down the result: I(t = V R ( 1 e R t/l Now notice that V /R = V/, something you can easily verify, and we have our final answer: I(t = V ( 1 e R t/l 5. Purcell 10.7 A cell membrane typically has a capacitance around 1 µf/cm 2. It is believed the membrane

consists of material having a dielectric constant of κ 3. Find the thickness this implies. Other electrical measurements have indicated that the resistance of 1 cm 2 of cell membrane is around 1000 Ω. Show that the time constant of such a leaky capacitor is independent of the area of the capacitor. How large is it in this case? What is the resistivity? Our first key assumption is that we can model our cell membrane as a parallel plate capacitor. This seems outlandishly stupid on first sight, but in fact it is a reasonable starting point for modeling the phospholipid bilayer in a cell membrane. The polar head groups on the lipid molecules in the lipid bilayer do form an extended structure that resembles a capacitor, if we think about the charge transfer involved. Anyway: if you are not up on your microbiology (and it has been a while for me, just take this starting point for granted for now. This problem is a lot easier than it looks if we just write down the expression for capacitance per unit area. That is what we are given, and sometimes when you aren t quite sure what to do, just write down what you know. Let the interior of the cell membrane have a thickness d and a relative dielectric constant κ. Then, C A = κɛ o d = 1 µf/cm2 As it turns out, capacitance per unit area depends only on the spacing between charges, in this case the thickness of the cell membrane, so we can find d easily: d = κɛ o C/A = 2.7 10 9 m Be careful with the units! This is about 3 nm, which seems about the right order of magnitude for the length of a small lipid molecule. What about our leaky capacitor? All this means is that the capacitor lets some dc current through it, as if it had a resistor in parallel that let some current leak" around it. In other words, a leaky" capacitor is just a parallel RC circuit. The resistive part of the circuit we can model as a cylinder of area A and thickness d, which has a resistance of R = ρd/a. Notice that the resistance area product is just RA = ρd. Now, the time constant of a parallel RC circuit is just τ =RC. This is the same thing as multiplying the capacitance per unit area and the resistance area product: τ = RC = (RA(C/A. Basically: we can calculate the time constant of our leaky capacitor without knowing its area. τ = RC = (RA ( C = A ( ρd A ( κɛo A = ρκɛ o d Independent of area, as desired, and also independent of thickness! Given the value of the resistance R for a specific area A, we can find the area product RA and calculate the resistivity: ρ = RA d 4 107 Ω m Given a resistivity, we can get a number for the time constant, τ 10 3 s. 6. Serway 32.45 Two inductors having self-inductance L 1 and L 2 are connected in parallel to a time-

varying source of current I(t. The mutual inductance between the two inductors is M 12. Determine the equivalent self-inductance L eq for the system. Since our two inductors are in parallel, they must have the same voltage, but they will in general have different currents. We can write the voltage on either in a very general way as the sum of two terms: the self inductance, which for a given inductor gives a contribution proportional to the rate of change of its own current; and the mutual inductance, proportional to the current through the other inductor. Call the source voltage V, the inductance of the two inductors L 1 and L 2, the current in each I 1 and I 2, and their mutual inductance M. The general expression for the voltage on either inductor is: di 1 V = L 1 M di 2 di 2 V = L 2 M di 1 Since the two inductors are in parallel, we know that their individual currents must total the current I leaving the source: I = I 1 + I 2. What we would like to do is come up with an equation relating the time derivative of the total current, di/, to the source voltage, such that we can find an effective inductance: V = L eq di/. To start with, we can rearrange equations 1 and 2: (1 (2 di 1 = V + M di 2 L 1 L 1 di 2 = V + M di 1 L 2 L 2 (3 (4 Note the nice symmetry of our equations - we can basically just swap 1 and 2 to get from one to the other. We can use this later to save a bit of work. First, plug equation 3 into equation 2 and simplify: di 2 V = L 2 M di [ 1 = L di 2 V 2 + M + M ] di 2 L 1 L 1 [ ] [ ] M M 2 di2 V V = L 2 L 1 L 1 ] [ ] V [1 ML1 M 2 di2 = L 2 L 1 V [L 1 M] = [ M 2 ] di 2 L 1 L 2 = di [ ] 2 = V L1 M M 2 L 1 L 2 (5 Now we have an expression for di 2 / which does not involve I 1. We can follow exactly the same procedure, substituting equation 4 into equation 1. Since the equations are nicely symmetric, you should be able to write down the answer by inspection after completing the work above: [ ] di 1 = V L2 M M 2 L 1 L 2 (6 For the final step, add equations 5 and 6 together, and remember I =I 1 + I 2 :

di 1 + di [ ] [ 2 = V L1 M L2 M M 2 + V L 1 L 2 M 2 L 1 L 2 [ ] di = V L1 + L 2 2M M 2 L 1 L 2 [ L1 L 2 M 2 ] di V = L 1 + L 2 2M L di eq ] with L eq = L 1L 2 M 2 L 1 + L 2 2M It is interesting to notice that if the two inductors are well isolated, such that M = 0, the parallel inductors add just like parallel resistors. The same happens for series inductors - if they are decoupled (M =0, they add just like resistors.