LIMITS AND DERIVATIVES

Similar documents
MATH 1910 Limits Numerically and Graphically Introduction to Limits does not exist DNE DOES does not Finding Limits Numerically

Section 11.1: Sequences

This Week. Professor Christopher Hoffman Math 124

Advanced Mathematics Unit 2 Limits and Continuity

Advanced Mathematics Unit 2 Limits and Continuity

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

Topic 3 Outline. What is a Limit? Calculating Limits Infinite Limits Limits at Infinity Continuity. 1 Limits and Continuity

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

Infinite Limits. By Tuesday J. Johnson

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

Review: Limits of Functions - 10/7/16

arb where a A, b B and we say a is related to b. Howdowewritea is not related to b? 2Rw 1Ro A B = {(a, b) a A, b B}

DIFFERENTIATION RULES

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

2.1 The Tangent and Velocity Problems

6.1 Polynomial Functions

MATH 114 Calculus Notes on Chapter 2 (Limits) (pages 60-? in Stewart)

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude.

10.7 Trigonometric Equations and Inequalities

SESSION 6 Trig. Equations and Identities. Math 30-1 R 3. (Revisit, Review and Revive)

Math Practice Exam 3 - solutions

10.7 Trigonometric Equations and Inequalities

DIFFERENTIATION RULES

10.7 Trigonometric Equations and Inequalities

L Hopital s Rule. We will use our knowledge of derivatives in order to evaluate limits that produce indeterminate forms.

2.2 The derivative as a Function

f(x) = lim x 0 + x = lim f(x) =

Where Is Newton Taking Us? And How Fast?

1 Lecture 25: Extreme values

(c) Find the equation of the degree 3 polynomial that has the same y-value, slope, curvature, and third derivative as ln(x + 1) at x = 0.

MATH 113: ELEMENTARY CALCULUS

3 Polynomial and Rational Functions

Chapter 1 Limits and Their Properties

Limits for parametric and polar curves

Course. Print and use this sheet in conjunction with MathinSite s Maclaurin Series applet and worksheet.

SECTION A. f(x) = ln(x). Sketch the graph of y = f(x), indicating the coordinates of any points where the graph crosses the axes.

Solutions to Math 41 First Exam October 18, 2012

Aim: How do we prepare for AP Problems on limits, continuity and differentiability? f (x)

1.5 Inverse Trigonometric Functions

2.2. Limits Involving Infinity. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

Chapter 2: Functions, Limits and Continuity

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Chapter 2. Limits and Continuity 2.6 Limits Involving Infinity; Asymptotes of Graphs

5.5. The Substitution Rule

Limits, Continuity, and the Derivative

AP Calculus Summer Packet

Replacing the a in the definition of the derivative of the function f at a with a variable x, gives the derivative function f (x).

Section 1.x: The Variety of Asymptotic Experiences

Absolute and Local Extrema. Critical Points In the proof of Rolle s Theorem, we actually demonstrated the following

One-to-one functions and onto functions

APPLICATIONS OF DIFFERENTIATION

An Intro to Limits Sketch to graph of 3

Indeterminate Forms and L Hospital s Rule

Limits and Infinite Series Lecture Notes for Math 226. Department of Mathematics Western Washington University

L Hopital s Rule. We will use our knowledge of derivatives in order to evaluate limits that produce indeterminate forms.

MTH4100 Calculus I. Lecture notes for Week 4. Thomas Calculus, Sections 2.4 to 2.6. Rainer Klages

M155 Exam 2 Concept Review

Limits at Infinity. Horizontal Asymptotes. Definition (Limits at Infinity) Horizontal Asymptotes

Calculus 221 worksheet

Chapter 1- Polynomial Functions

Announcements. Topics: Homework:

FUNCTIONS AND MODELS

MAT137 Calculus! Lecture 9

Learning Objectives for Math 165

5. Introduction to limit

Let s Get Series(ous)

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

Definition (The carefully thought-out calculus version based on limits).

Math 12 Final Exam Review 1

Final Exam Review Exercise Set A, Math 1551, Fall 2017

Induction, sequences, limits and continuity

Math 5a Reading Assignments for Sections

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes

Sec 2.2: Infinite Limits / Vertical Asymptotes Sec 2.6: Limits At Infinity / Horizontal Asymptotes

Introduction to Series and Sequences Math 121 Calculus II Spring 2015

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

Math 2 Variable Manipulation Part 7 Absolute Value & Inequalities

1 Limits and continuity

The Growth of Functions. A Practical Introduction with as Little Theory as possible

Secondary Math 3 Honors Unit 10: Functions Name:

Investigating Limits in MATLAB

Chapter 8 Indeterminate Forms and Improper Integrals Math Class Notes

Chapter 1: Limits and Continuity

DIFFERENTIATION RULES

= lim. (1 + h) 1 = lim. = lim. = lim = 1 2. lim

INFINITE SEQUENCES AND SERIES

GUIDED NOTES 5.6 RATIONAL FUNCTIONS

Limits at Infinity. Use algebraic techniques to help with indeterminate forms of ± Use substitutions to evaluate limits of compositions of functions.

Limits and Continuity

MATH 1040 Test 2 Spring 2016 Version A QP 16, 17, 20, 25, Calc 1.5, 1.6, , App D. Student s Printed Name:

Math 1b Sequences and series summary

Skill 6 Exponential and Logarithmic Functions

Calculus I Homework: Linear Approximation and Differentials Page 1

MATH 151 Engineering Mathematics I

APPLICATIONS OF DIFFERENTIATION

function independent dependent domain range graph of the function The Vertical Line Test

UNIT 3. Rational Functions Limits at Infinity (Horizontal and Slant Asymptotes) Infinite Limits (Vertical Asymptotes) Graphing Rational Functions

Section 3.2 Working with Derivatives

Transcription:

2 LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES 2.2 The Limit of a Function In this section, we will learn: About limits in general and about numerical and graphical methods for computing them.

THE LIMIT OF A FUNCTION Let s investigate the behavior of the function f defined by f(x) = x 2 x + 2 for values of x near 2. The following table gives values of f(x) for values of x close to 2, but not equal to 2.

THE LIMIT OF A FUNCTION From the table and the graph of f (a parabola) shown in the figure, we see that, when x is close to 2 (on either side of 2), f(x) is close to 4.

THE LIMIT OF A FUNCTION In fact, it appears that we can make the values of f(x) as close as we like to 4 by taking x sufficiently close to 2.

THE LIMIT OF A FUNCTION We express this by saying the limit of the function f(x) = x 2 x + 2 as x approaches 2 is equal to 4. The notation for this is: x2 2 lim x x 2 4

THE LIMIT OF A FUNCTION Definition 1 In general, we use the following notation. We write lim xa f x L and say the limit of f(x), as x approaches a, equals L if we can make the values of f(x) arbitrarily close to L (as close to L as we like) by taking x to be sufficiently close to a (on either side of a) but not equal to a.

THE LIMIT OF A FUNCTION Roughly speaking, this says that the values of f(x) tend to get closer and closer to the number L as x gets closer and closer to the number a (from either side of a) but x a. A more precise definition will be given in Section 2.4.

THE LIMIT OF A FUNCTION An alternative notation for lim xa f x L is f ( x) L as x a which is usually read f(x) approaches L as x approaches a.

THE LIMIT OF A FUNCTION Notice the phrase but x a in the definition of limit. This means that, in finding the limit of f(x) as x approaches a, we never consider x = a. In fact, f(x) need not even be defined when x = a. The only thing that matters is how f is defined near a.

THE LIMIT OF A FUNCTION The figure shows the graphs of three functions. Note that, in the third graph, f(a) is not defined and, in the second graph, f ( x) L. However, in each case, regardless of what happens at a, it is true that lim f ( x ) L. xa

THE LIMIT OF A FUNCTION Example 1 lim x1 x x 2 1 Guess the value of. 1 Notice that the function f(x) = (x 1)/(x 2 1) is not defined when x = 1. However, that doesn t matter because the definition of lim f( x) says that we consider values xa of x that are close to a but not equal to a.

THE LIMIT OF A FUNCTION Example 1 The tables give values of f(x) (correct to six decimal places) for values of x that approach 1 (but are not equal to 1). On the basis of the values, we make the guess that x 1 lim 0.5 x 1 2 x 1

THE LIMIT OF A FUNCTION Example 1 Example 1 is illustrated by the graph of f in the figure.

THE LIMIT OF A FUNCTION Example 1 Now, let s change f slightly by giving it the value 2 when x = 1 and calling the resulting function g: x 1 if x 1 2 g x x 1 2 if x 1

THE LIMIT OF A FUNCTION Example 1 This new function g still has the same limit as x approaches 1.

THE LIMIT OF A FUNCTION Example 2 Estimate the value of lim. t 0 t 2 93 2 t The table lists values of the function for several values of t near 0. As t approaches 0, the values of the function seem to approach 0.16666666 So, we guess that: lim t0 t 2 9 3 1 2 t 6

THE LIMIT OF A FUNCTION Example 2 What would have happened if we had taken even smaller values of t? The table shows the results from one calculator. You can see that something strange seems to be happening. If you try these calculations on your own calculator, you might get different values but, eventually, you will get the value 0 if you make t sufficiently small.

THE LIMIT OF A FUNCTION Example 2 Does this mean that the answer is really 0 instead of 1/6? No, the value of the limit is 1/6, as we will show in the next section.

THE LIMIT OF A FUNCTION Example 2 The problem is that the calculator gave false values because 2 t 9 very close to 3 when t is small. In fact, when t is sufficiently small, a calculator s 2 value for t 9 is 3.000 to as many digits as the calculator is capable of carrying. is

THE LIMIT OF A FUNCTION Example 2 Something very similar happens when we try to graph the function f t t 2 93 2 t of the example on a graphing calculator or computer.

THE LIMIT OF A FUNCTION Example 2 These figures show quite accurate graphs of f and, when we use the trace mode (if available), we can estimate easily that the limit is about 1/6.

THE LIMIT OF A FUNCTION Example 2 However, if we zoom in too much, then we get inaccurate graphs again because of problems with subtraction.

THE LIMIT OF A FUNCTION Example 3 Guess the value of lim. x0 sin x x The function f(x) = (sin x)/x is not defined when x = 0. x Using a calculator (and remembering that, if, sin x means the sine of the angle whose radian measure is x), we construct a table of values correct to eight decimal places.

THE LIMIT OF A FUNCTION Example 3 From the table and the graph, we guess that sin x lim 1 x0 x This guess is, in fact, correct as will be proved later, using a geometric argument.

THE LIMIT OF A FUNCTION Example 4 Investigate limsin. x0 x Again, the function of f(x) = sin ( /x) is undefined at 0.

THE LIMIT OF A FUNCTION Example 4 Evaluating the function for some small values of x, we get: f f f 1 sin 0 1 f sin 2 0 2 1 1 sin 3 0 f sin 4 0 3 4 0.1 sin10 0 f 0.01 sin100 0 Similarly, f(0.001) = f(0.0001) = 0.

THE LIMIT OF A FUNCTION Example 4 On the basis of this information, we might be tempted to guess that limsin 0. x0 x This time, however, our guess is wrong. Although f(1/n) = sin n = 0 for any integer n, it is also true that f(x) = 1 for infinitely many values of x that approach 0.

THE LIMIT OF A FUNCTION Example 4 The graph of f is given in the figure. The dashed lines near the y-axis indicate that the values of sin( /x) oscillate between 1 and 1 infinitely as x approaches 0.

THE LIMIT OF A FUNCTION Example 4 Since the values of f(x) do not approach a fixed number as approaches 0, lim sin x0 x does not exist.

THE LIMIT OF A FUNCTION Example 5 lim x x0 Find 3. As before, we construct a table of values. From the table, it appears that: cos5x 10, 000 3 lim x 0 x0 cos5x 10, 000

THE LIMIT OF A FUNCTION Example 5 If, however, we persevere with smaller values of x, this table suggests that: 3 cos5x 1 lim x 0.000100 x0 10, 000 10, 000

THE LIMIT OF A FUNCTION Example 5 Later, we will see that: lim cos5x 1 x0 Then, it follows that the limit is 0.0001.

THE LIMIT OF A FUNCTION Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is easy to guess the wrong value if we use inappropriate values of x, but it is difficult to know when to stop calculating values. As the discussion after Example 2 shows, sometimes, calculators and computers give the wrong values. In the next section, however, we will develop foolproof methods for calculating limits.

THE LIMIT OF A FUNCTION Example 6 The Heaviside function H is defined by: H t 0 if t 1 1 if t 0 The function is named after the electrical engineer Oliver Heaviside (1850 1925). It can be used to describe an electric current that is switched on at time t = 0.

THE LIMIT OF A FUNCTION Example 6 The graph of the function is shown in the figure. As t approaches 0 from the left, H(t) approaches 0. As t approaches 0 from the right, H(t) approaches 1. There is no single number that H(t) approaches as t approaches 0. So, lim t 0 Htdoes not exist.

ONE-SIDED LIMITS We noticed in Example 6 that H(t) approaches 0 as t approaches 0 from the left and H(t) approaches 1 as t approaches 0 from the right. We indicate this situation symbolically by writing lim H t 0 and lim H t 1. t0 t0 The symbol t 0 indicates that we consider only values of t that are less than 0. Similarly, t 0 indicates that we consider only values of t that are greater than 0.

ONE-SIDED LIMITS Definition 2 We write lim xa f x L and say the left-hand limit of f(x) as x approaches a or the limit of f(x) as x approaches a from the left is equal to L if we can make the values of f(x) arbitrarily close to L by taking x to be sufficiently close to a and x less than a.

ONE-SIDED LIMITS Notice that Definition 2 differs from Definition 1 only in that we require x to be less than a. Similarly, if we require that x be greater than a, we get the right-hand limit of f(x) as x approaches a is equal to L and we write lim f x L. Thus, the symbol only x a. xa x a means that we consider

ONE-SIDED LIMITS The definitions are illustrated in the figures.

ONE-SIDED LIMITS By comparing Definition 1 with the definition of one-sided limits, we see that the following is true: lim f x L if and onlyif lim f x L and lim f x L xa xa xa

ONE-SIDED LIMITS Example 7 The graph of a function g is displayed. Use it to state the values (if they exist) of: lim x2 lim x2 lim x5 g x g x g x lim x2 x5 lim lim x5 g x g x g x

ONE-SIDED LIMITS Example 7 From the graph, we see that the values of g(x) approach 3 as x approaches 2 from the left, but they approach 1 as x approaches 2 from the right. Therefore, lim g x 1. x2 lim g x 3 x2 and

ONE-SIDED LIMITS Example 7 As the left and right limits are different, we conclude that exist. lim x2 g x does not

ONE-SIDED LIMITS Example 7 The graph also shows that x5 and lim g x 2. lim g x 2 x5

ONE-SIDED LIMITS Example 7 For lim g x x5 same., the left and right limits are the So, we have lim g x 2. x5 Despite this, notice that g 5 2.

INFINITE LIMITS Example 8 Find lim x0 1 x 2 if it exists. As x becomes close to 0, x 2 also becomes close to 0, and 1/x 2 becomes very large.

INFINITE LIMITS Example 8 In fact, it appears from the graph of the function f(x) = 1/x 2 that the values of f(x) can be made arbitrarily large by taking x close enough to 0. Thus, the values of f(x) do not approach a number. 1 So, lim x 0 2 does not exist. x

INFINITE LIMITS Example 8 To indicate the kind of behavior exhibited in the example, we use the following notation: lim x 1 x 0 2 This does not mean that we are regarding as a number. Nor does it mean that the limit exists. It simply expresses the particular way in which the limit does not exist. 1/x 2 can be made as large as we like by taking x close enough to 0.

INFINITE LIMITS Example 8 In general, we write symbolically lim xa f x to indicate that the values of f(x) become larger and larger or increase without bound as x becomes closer and closer to a.

INFINITE LIMITS Definition 4 Let f be a function defined on both sides of a, except possibly at a itself. Then, lim xa f x means that the values of f(x) can be made arbitrarily large as large as we please by taking x sufficiently close to a, but not equal to a.

INFINITE LIMITS Another notation for lim xa f x is: f x as x a Again, the symbol is not a number. However, the expression lim f x is often read as xa the limit of f(x), as x approaches a, is infinity; or f(x) becomes infinite as x approaches a; or f(x) increases without bound as x approaches a.

INFINITE LIMITS This definition is illustrated graphically.

INFINITE LIMITS A similar type of limit for functions that become large negative as x gets close to a is illustrated.

INFINITE LIMITS Definition 5 Let f be defined on both sides of a, except possibly at a itself. Then, lim xa f x means that the values of f(x) can be made arbitrarily large negative by taking x sufficiently close to a, but not equal to a.

INFINITE LIMITS The symbol lim xa can be read as the limit of f(x), as x approaches a, is negative infinity or f(x) decreases without bound as x approaches a. As an example, we have: lim x0 f x 1 x 2

INFINITE LIMITS Similar definitions can be given for the one-sided limits: lim xa f x lim xa f x lim xa f x lim xa f x Remember, x a means that we consider only values of x that are less than a. Similarly, x a means that we consider only x a.

INFINITE LIMITS Those four cases are illustrated here.

INFINITE LIMITS Definition 6 The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following statements is true. lim xa f x lim xa f x lim xa f x lim xa f x lim xa f x lim xa f x For instance, the y-axis is a vertical asymptote of the curve y = 1/x 2 because 1. lim x 0 2 x

INFINITE LIMITS In the figures, the line x = a is a vertical asymptote in each of the four cases shown. In general, knowledge of vertical asymptotes is very useful in sketching graphs.

INFINITE LIMITS Example 9 2x Find lim and lim. x 3 x3 x3 2x If x is close to 3 but larger than 3, then the denominator x 3 is a small positive number and 2x is close to 6. So, the quotient 2x/(x 3) is a large positive number. 2x Thus, intuitively, we see that lim. x3 x 3 x 3

INFINITE LIMITS Example 9 Similarly, if x is close to 3 but smaller than 3, then x - 3 is a small negative number but 2x is still a positive number (close to 6). So, 2x/(x - 3) is a numerically large negative number. Thus, we see that. lim x3 2x x 3

INFINITE LIMITS Example 9 The graph of the curve y = 2x/(x - 3) is given in the figure. The line x 3 is a vertical asymptote.

INFINITE LIMITS Example 10 Find the vertical asymptotes of f(x) = tan x. tan x sin x As, there are potential vertical cos x asymptotes where cos x = 0. In fact, since cos x 0 as x /2 and cos x 0 as x /2, whereas sin x is positive when x is near /2, we have: lim x /2 tan x and lim x /2 tan x This shows that the line x = /2 is a vertical asymptote.

INFINITE LIMITS Example 10 Similar reasoning shows that the lines x = (2n + 1) /2, where n is an integer, are all vertical asymptotes of f(x) = tan x. The graph confirms this.

INFINITE LIMITS Example 10 Another example of a function whose graph has a vertical asymptote is the natural logarithmic function of y = ln x. From the figure, we see that lim ln x. So, the line x = 0 (the y-axis) is a vertical asymptote. The same is true for y = log a x, provided a > 1. x0