Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

Similar documents
The Study of Structure Design for Dividing Wall Distillation Column

Temperature Control in Autothermal Reforming Reactor

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Reconstruction-based Contribution for Process Monitoring with Kernel Principal Component Analysis.

Effect of Precipitation on Operation Range of the CO 2

Surface Reaction Modeling for Plasma Etching of SiO 2

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

History and Status of the Chum Salmon Enhancement Program in Korea

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

Fault Detection Approach Based on Weighted Principal Component Analysis Applied to Continuous Stirred Tank Reactor

A Tuning of the Nonlinear PI Controller and Its Experimental Application

Nonlinear process monitoring using kernel principal component analysis

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

Optimal Design of Generalized Process-storage Network Applicable To Polymer Processes

Keywords: Multimode process monitoring, Joint probability, Weighted probabilistic PCA, Coefficient of variation.

Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant

A Coupled Helmholtz Machine for PCA

Purification of Fructooligosaccharides Using Simulated Moving Bed Chromatography

Optimal Hydrogen Recycling Network Design of Petrochemical Complex

한외여과막시스템을이용한금속가공폐수의실험실적처리및현장적용연구

A MULTIVARIABLE STATISTICAL PROCESS MONITORING METHOD BASED ON MULTISCALE ANALYSIS AND PRINCIPAL CURVES. Received January 2012; revised June 2012

Multivariate Analysis for Fault Diagnosis System

Comparison of statistical process monitoring methods: application to the Eastman challenge problem

BATCH PROCESS MONITORING THROUGH THE INTEGRATION OF SPECTRAL AND PROCESS DATA. Julian Morris, Elaine Martin and David Stewart

The Computer Simulation and Estimation of Membrane Mass Transfer Coefficients of Hollow Fiber Membrane G-L Contactors for SO 2

DYNAMIC PRINCIPAL COMPONENT ANALYSIS USING INTEGRAL TRANSFORMS

Model Based Fault Detection and Diagnosis Using Structured Residual Approach in a Multi-Input Multi-Output System

MYT decomposition and its invariant attribute

Concurrent Canonical Correlation Analysis Modeling for Quality-Relevant Monitoring

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

n

Benefits of Using the MEGA Statistical Process Control

EE392m Fault Diagnostics Systems Introduction

Dynamic time warping based causality analysis for root-cause diagnosis of nonstationary fault processes

CONTROLLER PERFORMANCE ASSESSMENT IN SET POINT TRACKING AND REGULATORY CONTROL

UPSET AND SENSOR FAILURE DETECTION IN MULTIVARIATE PROCESSES

Using Principal Component Analysis Modeling to Monitor Temperature Sensors in a Nuclear Research Reactor

Improved multi-scale kernel principal component analysis and its application for fault detection

State Estimation of Linear and Nonlinear Dynamic Systems

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

Advanced Methods for Fault Detection

Advanced Monitoring and Soft Sensor Development with Application to Industrial Processes. Hector Joaquin Galicia Escobar

Plant-wide Root Cause Identification of Transient Disturbances with Application to a Board Machine

Dynamic-Inner Partial Least Squares for Dynamic Data Modeling

Just-In-Time Statistical Process Control: Adaptive Monitoring of Vinyl Acetate Monomer Process

Process Identification for an SOPDT Model Using Rectangular Pulse Input

Emerging trends in Statistical Process Control of Industrial Processes. Marco S. Reis

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

A L A BA M A L A W R E V IE W

Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-gaussian information

Research Article Monitoring of Distillation Column Based on Indiscernibility Dynamic Kernel PCA

Building knowledge from plant operating data for process improvement. applications

Nonlinear Stochastic Modeling and State Estimation of Weakly Observable Systems: Application to Industrial Polymerization Processes

Thank You! $20,000+ Anonymous

PCA Based Data Reconciliation in Soft Sensor Development Application for Melt Flow Index Estimation

r*tt7v Progress, Ibe Ur)ft>ersal LaWof J^atare; Th>oagbt, fbe 3olA>er)t of Jier Problems. CHICAGO, SEPTEMBER MRS. ADA FOYE.

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

Process Monitoring Based on Recursive Probabilistic PCA for Multi-mode Process

Identification of a Chemical Process for Fault Detection Application

CONTROLLER PERFORMANCE ASSESSMENT IN SET POINT TRACKING AND REGULATORY CONTROL

Resampling techniques for statistical modeling

Chapter 2 Examples of Applications for Connectivity and Causality Analysis

Supply chain monitoring: a statistical approach

Advances in Military Technology Vol. 8, No. 2, December Fault Detection and Diagnosis Based on Extensions of PCA

Mutlivariate Statistical Process Performance Monitoring. Jie Zhang

Yangdong Pan, Jay H. Lee' School of Chemical Engineering, Purdue University, West Lafayette, IN

Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis

FAIR FOOD GRADE 7 STEM SUGAR RUSH! HOW YOUR BODY WILL PROCESS THAT FRIED TWINKIE

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL

Online monitoring of MPC disturbance models using closed-loop data

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

Uncertainty Evaluation of the Analysis of 11-Nor-9-carboxy- 9 -tetrahydrocannabinol in Human Urine by GC/MS

Reading Assignment. Serial Correlation and Heteroskedasticity. Chapters 12 and 11. Kennedy: Chapter 8. AREC-ECON 535 Lec F1 1

NonlinearControlofpHSystemforChangeOverTitrationCurve

Bearing fault diagnosis based on EMD-KPCA and ELM

T h e C S E T I P r o j e c t

Multiscale SPC Using Wavelets - Theoretical Analysis and Properties

Multivariate control charts with a bayesian network

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

Whitney Grummon. She kick started a fire in my soul Teaching me a tool to cleanse my mind That ll last a life time. That s how I will remember

Combination of analytical and statistical models for dynamic systems fault diagnosis

Sensors & Transducers 2015 by IFSA Publishing, S. L.

Conditional Simulation of Random Fields by Successive Residuals 1

New Adaptive Kernel Principal Component Analysis for Nonlinear Dynamic Process Monitoring

Instrumentation Design and Upgrade for Principal Components Analysis Monitoring

Book of Plans. Application for Development Consent. Thames Tideway Tunnel Thames Water Utilities Limited. Application Reference Number: WWO10001

Improved Anomaly Detection Using Multi-scale PLS and Generalized Likelihood Ratio Test

Process-Quality Monitoring Using Semi-supervised Probability Latent Variable Regression Models

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

How do I join? . Insurance is available for $10.00 for Night Club Cards and $25 for Night Season Passes.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

On the Definition of Software Accuracy in Redundant Measurement Systems


Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007, pp. 87-92 l mk ~ m m i~ m m my Çmm 794-784 e q 31 (2006 10o 31p r, 2007 1o 9p }ˆ) Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis Changkyu LeeGand In-Beum Lee Department of Chemical Engineering, POSTECH, San 31, Hyoja-dong, Nam-gu, Pohang 790-784, Korea (Received 31 October 2006; accepted 9 January 2007) k rp p p v v o r edšp p r edš kl p t p p. rp llv p rp l on r r p rp rll n. p rp orp p m r p v pl r p rp p dv k. p r p o p edš lv lm l q p t (principal component analysis, PCA) qd (partial least squares, PLS) p p r r l rp p., p p v rl rn o p p m l. l l r t (dynamic PCA) ƒ (canonical variate analysis)p pn p p m r p op mq p Ž l l q. h Abstract Recently, developments of process monitoring system in order to detect and diagnose process abnormalities has got the spotlight in process systems engineering. Normal data obtained from processes provide available information of process characteristics to be used for modeling, monitoring, and control. Since modern chemical and environmental processes have high dimensionality, strong correlation, severe dynamics and nonlinearity, it is not easy to analyze a process through model-based approach. To overcome limitations of model-based approach, lots of system engineers and academic researchers have focused on statistical approach combined with multivariable analysis such as principal component analysis (PCA), partial least squares (PLS), and so on. Several multivariate analysis methods have been modified to apply it to a chemical process with specific characteristics such as dynamics, nonlinearity, and so on. This paper discusses about missing value estimation and sensor fault identification based on process variable reconstruction using dynamic PCA and canonical variate analysis. Key words: Process Monitoring, Multivariate Analysis, Missing Value Estimation, Sensor Fault Identification 1. rp p o rp s p p lv q lp, rp nr l pl o, m, k, s p p r p p r rp v p. p orp o l sp r pep p v To whom correspondence should be addressed. E-mail: iblee@postech.ac.kr l v v pn l r v p e. p r o r p ee p pn l rp op p r l rp p o Ž v r edšp rk l. p edšp p r p op p r ee p r op p l n rp p Ž edšp n m. p edšp rp r r ppp 87

88 p} Ëpp e k r r p v p p r edšp p l [1]. o r p p o t (principal component analysis, PCA)p qd (partial least squares, PLS) p p p eq m p p r rp p v l v rl rn o p p p l m [2-4]. p p p rp p p v v k rp p p p r p p v rl p p l r o p r m. l l PCAm CVA p l p sq r p l } l r edšl on p }k vm ee rp r p o p l rp r q p p o p l l q. 2. ~ m z o l m p p p l r edš p l q tn r r r p p p. v er r p v rl o kp n p p p p p pl n. r p p } o l p r p nl v l v v p r p pn r p rk l. v rl m p l r p rl p q l e p po p p p } p l t v l m. pr l [5]l, p p r r~ p p 20Í p p on rn. p rp p p } rp, o EM(expectation-maximization) k vp Fig. 1. PCA and CVA based EM algorithm to deal with incomplete data. o45 o1 2007 2k vp ~ p f p p }k. E (m )l p p p, M ( )l r p pn l r e dš l n p p. Fig. 1p PCAm CVA l EM k vp pn mr p p m p p. rp l l p rneˆ l l m p }ˆ l mr p }ˆ l v p lv. r edšp p rp p PCA, PLS, ƒ (canonical variate analysis, CVA)[6, 7] p pp, p p ˆp EM k vp r t M m l. p p m l p ˆl vv, p rp rp eˆ p q sp p k rp. p p p p l pl s(rank deficiency)p p l r(inversion problem) p l r n l rp v p [8]. p l rn q (residual space)p rp qpp p p eˆp f l r p p m p p. pnl l r p pv, l l p vp p tp mr p p m p q. 2-1. PCA mk jn m m z rp p o p PCA ˆ m, rl m p p p m p v p. ~ w r p p s (conditional expectation)p p p m p [5]. s p p m p n l s (conditional mean replacement, CMR)p p p pn l PCA pn l p p rn v p s p p m. m p e PCA p l Fig. 1l rp l p l p }. p p k p p pn l p PCAl KDR(known data regression)p [8]. k p p p r pn m p l qrp pv, k p p p p m p r p kt nl l m p l r p rp v p. w p p rn q p l l r p }k p. p q p r p p sq r l p p. p p m l CMR lvv, CMRl l r p qrp v p. q p l llv er p l Œm(projection) l llv p l p p Œm (projection to the model plane, PMP) p [8].

p pn p p m p p 89 Table 1. Comparison of missing data treatment methods according to analysis strategy PCA CVA model projected vector and variance to principal components state space model reconstruction method KDR linear regression of score vector and measured data CMR linear regression of state and measured data PMP minimization in residual space NM minimization in noise space SRM minimization in state residual space NM : noise minimization, SRM: state residual minimization 2-2. CVA mk jn m m z p rp DPCA CVAp p }ˆ p ˆ. CVA edš p(system identification) p p l l p p r l pn l p p rk lp rp p v p l DPCA ˆo l l p [6, 7, 9]. DPCAm v CVA pn l p m p p. CVA pn p } le PCAm p v p. n ~w k p p p l ˆ (state space model)p (state)p m p [10]. p p PCA p CMR p o p r p, k p p p n l p l r p rp v p. wp r PCAp r o pv eˆ r PCAm v p. CVAl PCAl p q } (state)p ˆ v v ql ˆ (residual state space) k p m e p m l qp (noise space)p sq. v, PCA q p p p s q v, CVA ql ˆ k qp l p v p sq. p v p s p. Table 1p PCAm CVA p p p p l p. 3. o kl m m rp nr l p p opp q (actuator), p e p n l v p. r edšl rp p p v tn rpv p p p l v Ž r tn rp. sp rp l p p rk p l (contribution chart)p. p p rp p l r p l e p rp p p p p, rp p rž p p p r p pe l rp re v rp v. p o n rp k p rp p v p. rp p p l v l v [11]. ~ w p (simple fault) p. p p rp p o l ˆ o l rp p p r rž p lvv k ˆp rp p (sensor fault)p p. w l p p p rž ˆp p p (complex fault)p. m l q m p rp r~l m p n l p p m p n, rp p p q l v rp l n l m p. m p p rl m p r nr r l m p r m l p l p p p p p ˆ. p l o p rž p p Ž p q l š. p p p o p p rp rk p Ž (pattern classification) SDG(signed directed graph)m p p rk l. p p p l rž n l l p p pp r np. p p p p l o l e p p n tp (multiple fault). l r edšl q rp rk p rp r nr p p p, mq p pp p s p seˆ o l l rp pp p. l l l p p rp np mq l ee p p r ol mq p l l q. r op pn mq p pp k l p p m p p n. p } rl E m M p v, ˆ l rp l M. v, ee r p pn l l rp r l m p q r p l p p p p p. p rp p p ee p o r r p r pq(process monitoring indices) pn. o p p e p rp ep pn l o pv, r p v p p rp e (empirical reference distribution, ERD)[12]p pn p p p. Fig. 2 r p p op p v edšp s p. 4. o m kl m m io l l l r p op p p p p r e p p rn k. rn rp 1 pp p lv CSTR(continuous stirred tank reactor) r p o r 9 p n m. rp s m r p Fig. 3 Table 2 Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

90 p} Ëpp Fig. 2. Structure of sensor fault identification system based on process variable reconstruction. Table 2. Information of CSTR process process variable state variable : C, T control variable : C, T manipulating variable : F s, F c measured variable : T c, T i, C a, C s, F s, F a, F c, C, T CSTR model information V=1 m 3 ; ρ=106 g/m 3 ; ρ c =106 g/m 3 ; C p =1 cal/g/k; C pc =1 cal/g/k; k 0 = 1,010 min 1 ; a=1.678 106 cal/min; b=0.5; H r =-1.3 107 cal/kmol Fig. 3. The simulated CSTR process. l l p. r e p l q p l m [11, 13]. p p s p n r pv m r rp v n(completely broken), fouling l p qd rp r lv (precision degradation), e p v l rr er l lv p ˆ n(drifting), er l t p r (bias) 4 v o45 o1 2007 2k r p p p. mrl p CVA ˆ mp, p o vl e (lag time) 4, r r nr l v 1,000 p p p p l r~ p 90Í p p p p ˆ m [10]. p p e m r rp q r r p m. r p o p CMR ˆ mp, o p p e p v p tp 95Íp o r m. Fig. 4[9] r p m p pn l rp p p v p p p l t p. Fig. 4(a) e 200 p l o p r

p pn p p m p p 91 Fig. 4. Results of sensor fault detection and identificationu r r v ppp l t p. Fig. 4(b) CVA l r p vp l t p. Fig. 4(b)p ~ w p l p r p v, w p qp l p rp p v p l e 200 p l ˆ rp p p v p. op p p v Fig. 4(d)l e l p. l p op p p p Fig. 4(d) p ~ w l l pp, r rp r p (e )m mq (r ) p. Fig. 4(d) p w l qp l p p v le r p p l v ppp l t p. sl rk CVAl l Fig. 4(c)l e m. p r p p p o (r ) l. op rp p v sp rk p p p spp p p. CVA r p l vp p l ˆo p v p p p pp pr l k p [9]. 5. r edšp l pl q t ne tp p rl p p o p o p pn l mq p p p l l l l p. rp p PCAm CVA p p } p EM k vl l rn vl l mp, p pn l v p p o l o l l m. p p o p m q pl pn o l l m. rp p l sl rk l l [15]p vl rp l p ˆ }ˆ p qr rp m p rl m rn š rp kr m k vp r p p r edšp pp p. Korean Chem. Eng. Res., Vol. 45, No. 1, February, 2007

92 p} Ëpp l Brain Korea 21 vop lp vol. y 1. MacGregor, J. F. and Kourti, T., Statistical Process Control of Multivariate Processes, Cont. Eng. Prac., 3(3), 403-414(1995). 2. Choi, S. W., Lee, C., Lee, J.-M., Park, J. H. and Lee, I.-B., Fault Detection and Identification of Nonlinear Processes Based on Kernel PCA, Chem. Int. Lab. Sys., 75, 55-67(2005). 3. Cho, J.-H., Choi, S. W., Lee, D. and Lee, I.-B., Fault Identification for Process Monitoring Using Kernel Principal Component Analysis, Chem. Eng. Sci., 60, 279-288(2005). 4. Ku, W., Storer, R. H. and Georgakis, C., Disturbance Detection and Isolation by Dynamic Principal Component Analysis, Chem. Int. Lab. Sys., 30, 179-196 (1995). 5. Nelson, P. R. C., Taylor, P. A. and MacGregor, J. F., Missing Data Methods in PCA and PLS; Score Calculations with Incomplete Observations, Chem. Int. Lab. Sys., 35, 45-65(1996). 6. Russell, E. L., Chiang, L. H. and Braatz, R. D., Fault Detection in Industrial Processes Using Canonical Variate Analysis and Dynamic Principal Component Analysis, Chem. Int. Lab. Sys., 51, 81-93 (2000). 7. Negiz, A. and Cinar, A., Statistical Monitoring of Multivariable Dynamic Processes with State Space Model, AIChE J., 43, 2002-2020(1997). 8. Arteaga, F. and Ferrer, A., Dealing with Missing Data in MSPC: Several Method, Different Interpretations, Some Examples, J. Chemometrics, 16, 408-418(2002). 9. Lee, C., Choi, S. W. and Lee, I.-B., Variable Reconstruction and Sensor Fault Identification Using Canonical Variate Analysis, J. Process Control, 16, 747-761(2006). 10. Larimore, W. E., Canonical Variate Analysis in Identification, Filtering, and Adaptive Control, Proceedings of IEEE Conference on Decision and Control, Honolulu, Hawaii, 596-604(1990). 11. Yoon, S. and MacGregor, J. F., Fault Diagnosis with Multivariate Statistical Models Part I: Using Steady State Fault Signatures, J. Process Control, 11, 387-400(2001). 12. Willemain, T. R. and Runger, G. C., Designing Control Charts Using an Empirical Reference Distribution, J. Quality Technology, 28, 31-38(1996). 13. Marlin, T. E., Process Control, McGraw-Hill, New York(1995). 14. Conference report, Abnormal Situation Detection and Projection Methods-industrial Applications, Chem. Int. Lab. Sys., 76, 215-220(2005). 15. Lee, C., Choi, S. W., Lee, J.-M. and Lee, I.-B., Sensor Fault Identification in MSPM Using Reconstructed Monitoring Statistics, Ind. Eng. Chem. Res., 43(15), 4293-4304(2004). o45 o1 2007 2k