EXERCISE - 01 CHECK YOUR GRASP

Similar documents
Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Elementary Differential Equations and Boundary Value Problems

5. An object moving along an x-coordinate axis with its scale measured in meters has a velocity of 6t

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Charging of capacitor through inductor and resistor

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Differential Equations

Lecture 2: Current in RC circuit D.K.Pandey

CSE 245: Computer Aided Circuit Simulation and Verification

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

Midterm exam 2, April 7, 2009 (solutions)

Wave Equation (2 Week)

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

Institute of Actuaries of India

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

Things I Should Know Before I Get to Calculus Class

t + t sin t t cos t sin t. t cos t sin t dt t 2 = exp 2 log t log(t cos t sin t) = Multiplying by this factor and then integrating, we conclude that

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

MA 214 Calculus IV (Spring 2016) Section 2. Homework Assignment 1 Solutions

Ch.1. Group Work Units. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

XV Exponential and Logarithmic Functions

DIFFERENTIAL EQUATION

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

1973 AP Calculus AB: Section I

Calculus II (MAC )

Control System Engineering (EE301T) Assignment: 2

SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

10. If p and q are the lengths of the perpendiculars from the origin on the tangent and the normal to the curve

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

46. Let y = ln r. Then dy = dr, and so. = [ sin (ln r) cos (ln r)

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Phys463.nb Conductivity. Another equivalent definition of the Fermi velocity is

1997 AP Calculus AB: Section I, Part A

DE Dr. M. Sakalli

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

2008 AP Calculus BC Multiple Choice Exam

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

A THREE COMPARTMENT MATHEMATICAL MODEL OF LIVER

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

nd the particular orthogonal trajectory from the family of orthogonal trajectories passing through point (0; 1).

On General Solutions of First-Order Nonlinear Matrix and Scalar Ordinary Differential Equations

METHOD OF DIFFERENTIATION

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

Differential Equations

Math 2214 Solution Test 1B Fall 2017

Southern Taiwan University

u(x) = e x 2 y + 2 ) Integrate and solve for x (1 + x)y + y = cos x Answer: Divide both sides by 1 + x and solve for y. y = x y + cos x

Solutionbank Edexcel AS and A Level Modular Mathematics

Transfer function and the Laplace transformation

( ) = 0.43 kj = 430 J. Solutions 9 1. Solutions to Miscellaneous Exercise 9 1. Let W = work done then 0.

DIFFERENTIAL EQUATIONS

Mathematics Paper- II

15. Vector Valued Functions

On the Speed of Heat Wave. Mihály Makai

1997 AP Calculus AB: Section I, Part A

Chapter 7: Solving Trig Equations

Solutions to Assignment 1

(HELD ON 21st MAY SUNDAY 2017) MATHEMATICS CODE - 1 [PAPER-1]

EXERCISES FOR SECTION 1.5

EXERCISE - 01 CHECK YOUR GRASP

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 6 Differential Equations and Mathematical Modeling

ACCUMULATION. Section 7.5 Calculus AP/Dual, Revised /26/2018 7:27 PM 7.5A: Accumulation 1

Solutions to FINAL JEE MAINS/IITJEE

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

3+<6,&6([DP. September 29, SID (last 5 digits): --

Math 1b. Calculus, Series, and Differential Equations. Final Exam Solutions

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

H is equal to the surface current J S

1973 AP Calculus BC: Section I

3, so θ = arccos

Exercise 1. Sketch the graph of the following function. (x 2

Chapter 1 Fundamental Concepts

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

ME 391 Mechanical Engineering Analysis

MATHEMATICS (B) 2 log (D) ( 1) = where z =

Lecture 4: Laplace Transforms

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

MEI Mechanics 1 General motion. Section 1: Using calculus

3.4 Repeated Roots; Reduction of Order

CHAPTER 9. Compressible Flow. Btu ft-lb lbm ft-lb c p = = ft-lb slug- R. slug- R. 1 k. p p. p v p v. = ρ ρ

PhysicsAndMathsTutor.com

Challenge Problems. DIS 203 and 210. March 6, (e 2) k. k(k + 2). k=1. f(x) = k(k + 2) = 1 x k

Some Basic Information about M-S-D Systems

ln 2 1 ln y x c y C x

Chapter 8 The Complete Response of RL and RC Circuits

Midterm Examination (100 pts)

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

Math 333 Problem Set #2 Solution 14 February 2003

Y 0.4Y 0.45Y Y to a proper ARMA specification.

Transcription:

DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc () 5 n 5 c n( ) n 5 n 5. () (). Diffrniaing, w g + 5 + + + d() c sinc i passs hrough (,) c 6 Hnc 6. cos Pu v hn v + dv v cos v dv cos v v + dv an v n + c an n + c As i passs hrough h poin (, ) so c an (n ) 6. ( + ) + I.F. an an + an an an ( ) an an + c 9. + d() n + c. 5 +. 5 5 L I.F. + n 5 + n c so soluion is.. + c + 5 5 c an n + an n an + c an (c )

EXERCISE - BRAIN TEASERS. Givn k k + c Now a, so c. 5 + (as k 5 ) Whn, 6 min. 5. n c 6. + n c ( n c ) ( n c ) ( ) ( ) a + c( ) a a a n c + a c( a ) c k ( ) n + nc a (a ) a (a ) + (a + ) ( + a ) 7. f() nf() ( ) a a L u du f(u)du nf() f(u)du nf() f() n[f() + f'()] f() n f'() n n n n n n + nc n n n c c'. m + c n n I saisfis + m + m m c (m m) + (m c) This is an idni so m m m & c m So wo such sraigh lin ar possibl. EXERCISE - Tr u/ Fals :. d + + hn d and + Hnc is a soluion of h abov quaion. Now, hn d and + On puing his in quaion, also saisfis h quaion. 5. a + b + c d d a Hnc dr, dgr. a + b MISCELLANEOUS TYPE QUESTIONS Assrion & Rason :. A + n B Hnc dr is. So samn-i is fals & samn-ii is ru. Comprhnsion : # F rsrvoir A d A d A A k A A d A k A A A A k Similarl B B k so A B A B (k k ) log A, A B A A k

and a, A.5 B so (k k ) (k k ) log / and also log log. A, A k B so k k. L a boh h rsrvoirs hav sam quani of war, hn A B (k k ) / log /. Now A B (k k ) f() (k k ) f'() (k k ) (k k ) ln (k k ) f() is dcrasing. EXERCISE - [A] CONCEPTUAL SUBJECTIE EXERCISE. + + g + f + c Diffrniaion, w g, + ' + g + f' Again diffrniaing, + (') + '' + f''...(i) Again diffrniaing, (')'' + ''' + ''' + f''' ( ') ''' + ''' (from (i)) '' '' '( '') ''' ( ') 5. c + c + c... (). c + c + c... () d d 9c + c + c... () 7c + 8c + c... () Appl () 6 () + () 6 () d d 6 + 6 Pu r sc, r an r... () and sin... () On diffrniaing (), rdr... () On diffrniaing (), cos d r sc d... (). 6. rdr Now r sc d r r dr r n(r + r sc d ) n(sc + an) + nc r + r c (sc + an ) + c sin sin cos sin cosc cos n an sin c n an c sin dm m dm m n m + c m k (a, m m ) k m m m m (a, m m ) n

8. A n n f() (f()) n (n ) ' n (n ) (n ) n C n (,f()) n C, (f(), f() ) n n /n. Pu X + h Y + k 9. h k h k dy X Y dx X Y Pu Y vx Xdv v v dx v h, k v dx dv ( v)( v) X dv n X c v v v n v n n X c v / Y X n X Y n c X Y X Y n X Y X Y c X Y (X Y) k ( + ) k( ) + + k k k + k k k n c(k ) k k k. + + 5. Pu a. so Pu so da da a a da a a da a a a v v + dv v v dv v v da (a ) + + a da a a dv v v ( v)dv v + v an v n + v n + c an a n a n + c an a n + a c whr a + ( ) ( ) ( ) I.F. / an c 6. ' b + b ' b ( + b ) ( b) b b log b log c b log log( + b) log( b) + logc ( + b)( b) c

.. b + ( c + b ) ( + b) b + k ( + b) cos cos Pu cos I.F. / cos sin c sin c Pu I.F. is. ( + ) c c + I.F. + ( ) n ( ) ( ) ( ) n n 6. Equaion of angn 5. Y (X ) whn Y, X a ± a a c ± a n c k 5. O Y ( ) ( ) an () n c ann c 5 7. Equaion of angn Y HG ± c P(, ) K J, a a + c X an n + nc (X ) n n. + c ( + ) + ( n) c disanc from igin Equaion of nmal Y (X )

Y X + disanc from igin Now ihr ( + ) ( ) + + + + n + v an v nc n Hnc soluion will b n + v + n ± an v + nc v k ± an v c ± an / 5 8. Inpu ra gm/min Afr im volum of ank 5 + ( ) Concnraion of sal in im Oupu ra m. gm/min. 5 m 5 gm/li 5 li. a Pu v v + dv v v v + dv v v dm m + 5 li/min m(5 + ) (5 + ) m(5 + ) 5 + 5 + c li/min v v dv v dv v n +v + an v n + nc ( a, m c ) m(5 + ) 5 ( + ) m 5 5 gm EXERCISE - [B] BRAIN STORMING SUBJECTIE EXERCISE. ( a ) du + Pu Q; dv + Pv Q d (u v) P(u v) d(u v) P u v n (u v) P P Q I.F. u v Q. + c u v u v u Q + c' [u saisfis i] u v u v u + k u v u v u + k (u v)... () ( b ) If u + v is a paricular soluion hn compar wih () k +, k + ( c ) If is a paricular soluion hn i saisfis () u + k (u v) u v u. Y ' A ais, X +. ' consan (X )

mid poin of PQ ', 8. f() F() + c f() F '() mid poin lis on l F() ' sin + cos. ( sin ) Pu I.F. sin (,)P. sin sin.sin cos ( sin ) + c + ( ). + c ( + ) + c, c + Q sin [Pu sin ] ( ) sin ( ) + c sin + c sin sin + c 6. f() > d I.F. ( f()) k f() + k [f() ] (k + ) (k ) + k k n k k +. + (k + ). k d (.k + ) g(). k + dcrass g() f(). k + f(). k + f(). k + f() A. k. sin + c. sin f() cos (sin ) Pu + P Q, z c. sin cos + P Q dz + z dz + z dz + z Q P + P z Q dz + z Q Q dz dz z Q Q n z + z + a Q Q( z)

EXERCISE - 5 [A] JEE-[MAIN] : PREIOUS YEAR QUESTIONS. v + dv v.v dv dv v v Pu v + dv v v log( + v ) log + c v log + log( + v ) logc log.. c log c v v v dv v logc c c + c ' c ' c c '... (i) pu in quaion (i) log '. Givn ( ) log( ) log + logc c log '.... (i) Equaion (i) passs hrough (, ) C ( ) C Pu in (i) ( ) ( + ) + ( ). Equaion of givn parabola is A + B whr A and B ar paramrs A d + This is h quaion of givn parabola dr, dgr 5. ( + ) ( an ) (+ ) + + an + Now I.F. soluion an an an ( ) an an ( ) an an + C + K 6. Givn famil of curvs is an an + C + a... () + ' a'... () Now pu h valu of a from () o in () + '.' + ( )' ( )' 7. + ( + ) + d ( ) ( ) log + c + log c 8. c( + c )... () 9. c + c c c ( + ) C Pu in quaion() ( ) Dgr dr Pu v, v + dv dv dv v log v log which is homognous qu. v v + dv v log v(logv + ) v vlogv + v v log c log(logv) log + logc

. Givn A + B Divid b B A B + B Diffrnia w.r. A +... (i) B Again Diffrnia w.r.. A B + d Pu A B d d d +... (ii) + in quaion (i) I hav scond dr and firs dgr.. L h cnr of circl is (h, ) and radius will b also h. quaion of circl ( h) + ( ) h h + h + h h +... (i) Equaion (i) passs hrough igin diffrniaing i w.r.. h+ h + pu in quaion (i) + + + pu v, v + dv + v dv v + dv dv v log + c log+c... (i) Givn () log + c c pu (i) n +. Equaion of circl ( h) + ( ) 5...(i) Diffrnia w.r.. ( h) + ( ) ( h) ( ) pu in (i) ( ) + ( ) 5 ( ) (') + ( ) 5 c X. c...() c ' c c...() " c c c " c '...() Now () () ' c Pu in () ' ". ' " (') 5. cos (sin ) sin cos an sc an sc an sc an sc... () Pu in quaion () From quaion () & (), w g, +. an sc an I.F. log sc sc soluion of diffrnial quaion is :. sc sc. sc. + c sc an + c sc (an + c) 6. log + + c (), (log )?... ()

() log + + c c log 5..(log )? log + log + log 5 log + log + 7 d 7. k(t ) d K (T ) K T C A I C I K T I (T) KT T KT T I 8. Equaion of angn a (, ) is inrcp Accding o qusion n n + nc c Now a, c 6 6 6 9. + c Ingraing fac (I.F.) Gnral soluion is. / / c I / L I / pu I ( ) ( ) Gnral soluion is / / C + + C/ Pu, + + C/ C / + / dp(). P() 5 ingra dp P 9 n (P 9) C...() givn P 85 C n 5 from () ln (P 9) + n5 n P 9 5 P 9 n 5 a P n 9 5 n8. P. C /, P C p ( 5) 5 + 5

EXERCISE - 5 [B] JEE-[ADANCED] : PREIOUS YEAR QUESTIONS. L X b iniial populaion of h counr and Y b is iniial food producion. L h avrag consumpion b a unis. Thrf, food rquird iniiall ax. I is givn Y ax 9.9 ax... () L X b h populaion of h counr in ar. Thn dx ra of chang of populaion X. X dx X. ( + ) and () 5. Givn : liquid vapas a a ra propional o is surfac ara. dv S... () W know, volum of liquid r h and surfac ara r (of liquid in conac wih air) r h and S r... (). Ingraing dx X. log X. + c X A.. whr A c A, X X, hus X A X X. L Y b h food producion in ar. Thn Y Y.9aX (.) ( Y.9aX from ()) Food consumpion in h ar is ax.. Again f no food dfici, Y X.9 X a (.) > a X. (.). >.9 9 Taking log on boh sids, [n (.).] n n 9 n n 9 n(.). Thus h las ingral valus of h ar n, whn h counr bcoms slf sufficin, is h smalls n n 9 ingr grar han qual o n(.). I.F. soluion is ( + ) ( + ) ( + ) ( + ) + c givn () c + C 6. Also, an R H From () and (), r h... () r co and S r... () Subsiuing () in (), w g co. r. dr co dr K R Kr T whr T is rquird im afr which h con is mp. co ( R) K(T ) R co KT H KT (using ()) T H K cos ( ) sin log( + ) log( + sin) + c log( + ) + log( + sin) c h cos sin Givn () mans whn, log + log c logc c + sin r sin H

8. (a) v, v + dv This is homognous so pu v + dv. v (v) dv v v ( v )dv v v pu v givn () v v v v v dv v logv log + c c c Now pu, +. (b) d log dv v + log + c log + c log + 6 + c Givn () + c c + Now ( ), + + ( ) ( + ) Bu >. (a) lim ƒ() ƒ() Appling L-hospial, w g ƒ '() ƒ() + ƒ '() ƒ() ( ) + ( b ) d ƒ() ƒ() c + Also ƒ() c ƒ() + + c ( + c) + Cnr ( c,); radius. sc sc + c () sc sc + 6 Now cos cos cos c 6 sc(sc 6 ) + 6 cos cos Hnc S(I) is ru and S(II) is fals.. (A) ( ) (B) 5 c,. ln I ( )( )( )( )( 5) Appling 6 5 + c I (5 )( )( )( )( ) I I.

(C) ƒ () cos + sin ƒ '() cos sin + cos cos ( sin + ) cos sin sign of ƒ ' () changs from v o +v whil ƒ () 5 passs hrough,. 6 6 (D) ƒ () an (sin + cos ) cos sin ƒ () > (sin cos) / / ( /, /) /. Givn ƒ() Tangn a poin P(, ) Y (X ) (, ) 5 / Now inrcp Y Givn ha, is a linar diffrnial quaion wih I.F. n n Hnc, soluion is. C C Givn ƒ() Subsiuing w g, C so 7 9 Now ƒ( ) 9 5. (a) (Bonus) (Commn : T h givn rla ion do s no hold f, hrf i is no an idn i. Hnc hr is a n r r i n givn qu s ion. T h c rc idn i mus b-) 6 ƒ() ƒ() 5, Now appling Nwon Libniz hm 6ƒ() ƒ'() + ƒ() ƒ() ƒ'() L ƒ() d C (whr C is consan) + C ƒ() + C Givn ƒ() C ƒ() + 6 (b) Givn (), g() g() L '() + (). g'() g() g'() '() + (() g()) g'() '() () g '() () () dg() I.F. g() g() d (g( )) g( ) g( ) g ( ) ( ). g( ).dg() g( ) g( ) g( ) (). g(). c pu + c c (). g() g() g() g() + () + () 6. an I.F. an sc cos Equaion rducs o.cos.sc.cos cos + C () + C cos () sc

6 8. 9 9 ( (A) is crc) ( (C) is wrong) Also '() sc + sc an and '. 6 '.... 9 ( (D) is crc) 7. ƒ'() ƒ() < Mulipl boh sid b ƒ '() ƒ() d ƒ() Now, g() ƒ() g() is a dcrasing funcion. g() g ƒ() ƒ() < ƒ() / / / / ƒ() obviousl ƒ() is posiiv / ƒ() 8. sc L v dv v dv v v sc v ( (B) is wrong) cos v dv sinv n+ c sin n c passing hrough sin c c 6 sin n, 6 Paragraph f Qusion 9 and 9. (ƒ''() ƒ'() + ƒ()) D((ƒ'() ƒ()) ) D((ƒ'() ƒ() ) (ƒ'() ƒ()) is an incrasing funcion. As w know ha ƒ() has local minima a (ƒ'() ƒ()) a L F() (ƒ'() ƒ()) F() < in, (ƒ'() ƒ() < in, ƒ'() < ƒ() in, opion C. D( (ƒ'() ƒ()) (, ) D(D( ƒ()) (, ) D ( ƒ()) L F() ƒ() F''() > mans i is concav upward. F() (,) (,) F() F() F() < (, ) ƒ() < (, ) ƒ() < Opion D is possibl