Asymmetry dependence of Gogny-based optical potential

Similar documents
RPA CORRECTION TO THE OPTICAL POTENTIAL

Coupled-channels Neutron Reactions on Nuclei

Microscopic cross sections : an utopia? S. Hilaire 1, A.J. Koning 2 & S. Goriely 3.

Microscopic Approach to Alpha-Nucleus Optical Potentials for Nucleosynthesis

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Connecting fundamental models with nuclear reaction evaluations

4 November Master 2 APIM. Le problème à N corps nucléaire: structure nucléaire

RPA and QRPA calculations with Gaussian expansion method

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

Functional Orsay

Probing Nuclear Structure of Medium and Heavy Unstable Nuclei and Processes with Helium Isotopes

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Recent applications of Green s function methods to link structure and reactions

The Nuclear Many-Body Problem

Understanding/calculating the nucleon self-energy at positive and negative energy

Microscopic approach to NA and AA scattering in the framework of Chiral EFT and BHF theory

Giant resonances in exotic nuclei & astrophysics

THE SPY MODEL: HOW A MICROSCOPIC DESCRIPTION OF THE NUCLEUS CAN SHED SOME LIGHT ON FISSION

Correlations in isospin asymmetric matter and nuclei

Mean-field concept. (Ref: Isotope Science Facility at Michigan State University, MSUCL-1345, p. 41, Nov. 2006) 1/5/16 Volker Oberacker, Vanderbilt 1

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n

Some results obtained with Gogny force included in HFB, QRPA as well as in configuration mixing GCM like approach

Beyond mean-field study on collective vibrations and beta-decay

Repulsive aspects of pairing correlation in nuclear fusion reaction

Towards microscopic predictions of cross sections with TALYS

Medium polarization effects and pairing interaction in finite nuclei

MICROSCOPIC OPTICAL POTENTIAL FROM NN CHIRAL POTENTIALS. Carlotta Giusti Università and INFN, Pavia. Matteo Vorabbi (TRIUMF) Paolo Finelli (Bologna)

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Strong interaction in the nuclear medium: new trends Effective interactions and energy functionals: applications to nuclear systems I

Microscopic (TDHF and DC-TDHF) study of heavy-ion fusion and capture reactions with neutron-rich nuclei

Two-particle transfer and pairing correlations (for both T-0 and T=1): interplay of reaction mechanism and structure properties

Parity-Violating Asymmetry for 208 Pb

Particle-number projection in finite-temperature mean-field approximations to level densities

Nuclear symmetry energy deduced from dipole excitations: comparison with other constraints

The many facets of breakup reactions with exotic beams

Quantitative understanding nuclear structure and scattering processes, based on underlying NN interactions.

Nuclear structure: spectroscopic factors; correlations (short and long-range); high momentum components Nuclear structure: a wide angle view

[SPY: a microscopic statistical scission point model] model to predict fission fragment distributions

Connecting structure and direct reaction modeling

Microscopic Fusion Dynamics Based on TDHF

in covariant density functional theory.

Dispersive-optical-model analysis of the asymmetry dependence of correlations in Ca isotopes

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

Theory Challenges for describing Nuclear Reactions

The Nuclear Equation of State

Reactions, Channel Widths

Modern nuclear mass models

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Low-lying dipole response in stable and unstable nuclei

PARTICLE-NUMBER CONSERVING

Neutron Halo in Deformed Nuclei

Statistical Model Calculations for Neutron Radiative Capture Process

Symmetry Energy. in Structure and in Central and Direct Reactions

Observables predicted by HF theory

Status of the Density Functional Theory in nuclei

arxiv: v1 [nucl-th] 17 Jan 2019

Deuteron induced reactions

The shell model Monte Carlo approach to level densities: recent developments and perspectives

Deliverables, Highlights, and Reports. status and plans news and one-pagers annual and exit reports points of emphasis

Schiff Moments. J. Engel. May 9, 2017

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Excitations in light deformed nuclei investigated by self consistent quasiparticle random phase approximation

Statistical properties of nuclei by the shell model Monte Carlo method

Nuclear Matter Incompressibility and Giant Monopole Resonances

Nuclear structure Anatoli Afanasjev Mississippi State University

Impact of fission on r-process nucleosynthesis within the energy density functional theory

Pion photoproduction in a gauge invariant approach

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

Nuclear Structure V: Application to Time-Reversal Violation (and Atomic Electric Dipole Moments)

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Intro to Nuclear and Particle Physics (5110)

Nature of low-energy dipole states in exotic nuclei

Role of the Nucleus-Nucleus Potential in Sub-barrier Fusion

Received 16 June 2015; accepted 30 July 2015

Stylianos Nikas Central Michigan University

arxiv: v1 [nucl-th] 24 May 2011

Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process

Symmetry energy, masses and T=0 np-pairing

SPY: a microscopic statistical scission-point model to predict fission fragment distributions

Quantum Theory of Many-Particle Systems, Phys. 540

Brief introduction Motivation and present situation: example GTR Propose new fitting protocols

Evaluation of inclusive breakup cross sections in reactions induced by weakly-bound nuclei within a three-body model

Introduc7on: heavy- ion poten7al model for sub- barrier fusion calcula7ons

Theoretical study of fission barriers in odd-a nuclei using the Gogny force

Nilsson Model. Anisotropic Harmonic Oscillator. Spherical Shell Model Deformed Shell Model. Nilsson Model. o Matrix Elements and Diagonalization

Deuteron induced reactions, spin distributions and the surrogate method

Shell model Monte Carlo level density calculations in the rare-earth region

Nuclear Landscape not fully known

Self-consistent study of spin-isospin resonances and its application in astrophysics

Nuclear Symmetry Energy Constrained by Cluster Radioactivity. Chang Xu ( 许昌 ) Department of Physics, Nanjing University

arxiv: v2 [nucl-th] 28 Aug 2014

Nuclear Science Seminar (NSS)

Symmetry breaking and symmetry restoration in mean-field based approaches

Fusion and other applications of density-constrained TDDFT

Superfluidity in the inner crust of neutron stars

Quantum Theory of Many-Particle Systems, Phys. 540

c E If photon Mass particle 8-1

Probing the Nuclear Symmetry Energy and Neutron Skin from Collective Excitations. N. Paar

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

Pairing in Nuclear and Neutron Matter Screening effects

Transcription:

Asymmetry dependence of Gogny-based optical potential G. Blanchon, R. Bernard, M. Dupuis, H. F. Arellano CEA,DAM,DIF F-9297 Arpajon, France March 3-6 27, INT, Seattle, USA / 32

Microscopic ingredients for nuclear reaction codes (TALYS): Nuclear level densities γ-ray strength functions Preequilibrium Density and transition density Optical Potential S. Hilaire S. Péru M. Dupuis S. Péru, N. Pillet G. Blanchon TALYS: A.J. Koning, S. Hilaire, M. Duijvestijn, in Proceeding of the International Conference on Nuclear Data for Science and Technology-ND27 (EDP Sciences, Paris, France, 28), pp. 2 24 2 / 32

Ab-initio from bare NN interaction (Beyond) Mean-Field from effective NN interaction Optical Potential Cross Section Phenomenological potentials from data fitting Nuclear Structure Method for scattering N. Vinh Mau, Theory of nuclear structure (IAEA, Vienna) p. 93 (97) 3 / 32

NSM & EDF extended reach Spherical HF ( nuclei) HF+RPA Potential + Integrodifferential Schrödinger G. Blanchon, M. Dupuis, H. Arellano, N. Vinh Mau, Phys. Rev. C (25) G. Blanchon, M. Dupuis, H. Arellano, Eur. Phys J. A, 5 2 (25) 65 Reaction Observables 4 / 32

NSM & EDF extended reach Spherical HFB ( 3 nuclei) HFB+QRPA Potential + Nonlocal Coupled channels Collaboration with R. Bernard and S. Péru (CEA,DAM,DIF) Reaction Observables 4 / 32

NSM & EDF extended reach Deformed HFB ( 6 nuclei) HFB+QRPA deformed potential + Nonlocal Coupled channels Amine Nasri PhD CEA,DAM,DIF Non-local microscopic potentials for calculation of scattering observables of nucleons on deformed nuclei Reaction Observables Collaboration with H. Arellano 4 / 32

NUCLEAR STRUCTURE METHOD FOR SCATTERING 5 / 32

Nuclear Structure Method V = V HF + V RPA Mean Field Target s excitations Limitation: No two-fold charge exchange (n, p, n) and (p, n, p) in the present version of NSM 6 / 32

From NN interaction to the optical potential Field s operator dynamical equation Green s function dynamical equation link between G n, G n and G n+ Dyson equation and Self-energy Optical Potential Hartree-Fock Approximation Hartree-Fock & Random-Phase Approximation 7 / 32

Nuclear Structure Method Optical potential V = V HF + V PP + V RPA 2V (2) Bare Interaction + pp + ph 2 8 / 32

Nuclear Structure Method Optical potential V = V HF + V PP + V RPA 2V (2) Bare Interaction + pp + ph kopkdpzeokdok }{{} 2 Effective Interaction + Im[ ] + ph 2 8 / 32

Nuclear Structure Method Optical potential V = V HF + V PP + V RPA 2V (2) Bare Interaction + pp + ph kopkdpzeokdok }{{} 2 Gogny Interaction + Im[ ] + ph 2 Gogny DS interaction has been designed anticipating the inclusion of particle-vibration couplings 8 / 32

Self-consistency NN interaction NN interaction ρ V HF (ρ) ρ V HF (ρ) + V (ρ) Schrödinger equation Schrödinger equation HF Coordinate representation Treatment of the continuum (SP resonances) RPA Oscillator basis including 5 major shells Excited states up to J = 8 with both parities The resulting potential is nonlocal, complex and energy dependent 9 / 32

Coupling to a single target excited state p+ 4 Ca scattering Coupling to the first state of 4 Ca with E = 9.7 MeV σ R (mb),7,6,5,4,3,2, j=3/2 l= E λ = 2.5 MeV j=5/2 l=3 E λ = 5.65 MeV j=/2 l= E λ = 3.7 MeV DW Coul j=9/2 l=4 E λ = 9.55 MeV 2 4 E inc 6 (MeV) 8 2 Importance of the intermediate single particle resonances Strong impact on reaction cross section Intermediate HF propagator HF + RPA excitation HF phaseshift δ (rad/π) 5/2 2 3/2 j=/2 l= j=/2 l= 4 j=3/2 l= Ca(p,p) Phaseshift j=3/2 l=2 j=5/2 l=2 j=5/2 l=3 j=7/2 l=3 j=7/2 l=4 j=9/2 l=4 j=9/2 l=5 HF unocc occ /2 E (MeV) / 32

NUCLEON SCATTERING OFF N=Z TARGET NUCLEUS / 32

Elastic scattering n/p + 4 Ca Experimental Cross sections Microscopic potential Phenomenological potential Structure Experimental spectroscopy Effective interaction 2 / 32

Integral cross sections p + 4 Ca σ R (mb) n + 4 Ca 8 6 4 2 Exp. KD V HF + V (a) 5 5 2 25 3 35 4 E (MeV) n/p + 4 Ca Compound elastic from Haüser-Feshbach with Koning-Delaroche potential Use of phenomenological width for the excited states of the target. 4 35 Exp. KD V HF + V σ Tot (mb) 3 25 2 (b) 5 2 3 4 E (MeV) 3 / 32

Integral cross sections p + 4 Ca σ R (mb) 8 6 4 2 Exp. KD V HF + V (a) 5 5 2 25 3 35 4 E (MeV) n/p + 4 Ca Compound elastic from Haüser-Feshbach with Koning-Delaroche potential Use of phenomenological width for the excited states of the target. dσ/dω (mb/sr) 4 3 2 σ Tot (.6 Γ) = 247 mb σ Tot (Γ) = 295 mb σ Tot (.4 Γ) = 223 mb Exp. Γ x.6 Γ Γ x.4 n + 4 Ca 4 35 Exp. KD V HF + V 2 4 6 8 2 4 6 8 θ c.m (deg.) Width sensitivity (n+ 4 Ca @ 25 MeV) σ Tot (mb) 3 25 2 (b) 5 2 3 4 E (MeV) 3 / 32

Integral cross sections p + 4 Ca σ R (mb) 8 6 4 2 Exp. KD V HF + V (a) 5 5 2 25 3 35 4 E (MeV) n/p + 4 Ca Compound elastic from Haüser-Feshbach with Koning-Delaroche potential Use of phenomenological width for the excited states of the target. dσ/dω (mb/sr) 4 3 2 σ Tot (.6 Γ) = 247 mb σ Tot (Γ) = 295 mb σ Tot (.4 Γ) = 223 mb Exp. Γ x.6 Γ Γ x.4 n + 4 Ca σ Tot (mb) 4 35 3 25 Exp. KD V HF + V 2 4 6 8 2 4 6 8 θ c.m (deg.) Width sensitivity (n+ 4 Ca @ 25 MeV) Perspective: microscopic determination of energy widths and shifts: 2p-2h coupling (N. Pillet) 2 (b) 5 2 3 4 E (MeV) 3 / 32

Cross section and Analyzing powers n/p+ 4 Ca dσ/dω (mb/sr) σ(θ)/σ Ruth 4 2 8 6 4 2-2 -4 4 2-2 -4-6 -8-2.6 3.29 5.3 5.88 6.5 7.9 9.9 3.9 6.9 9. 2.7 25.5 3.3 4. 2 4 6 8 2 4 6 8 θ c.m. (deg.) 9.86.37 3.49 4.5 5.97 8.57 9.57 2. 23.5 25. 26.3 27.5 3.3 4. 2 4 6 8 2 4 6 8 θ c.m. (deg.) A y (θ) A y (θ).5 -.5 -.5 -.5 -.5 -.5 -.5 9.9. 3.9 6.9 -.5 (a) - 2 4 6 8 2 4 6 8 θ c.m. (deg).5 -.5 -.5 -.5 -.5 -.5 -.5 4.5 5.97 8.57 4. -.5 (b) - 2 4 6 8 2 4 6 8 θ c.m. (deg) NSM (full line) Koning-Delaroche (dashed line) Good agreement with cross section data below 3 MeV. In terms of energy regime, NSM is complementary to g-matrix approaches. Good agreement with analyzing powers data: correct behaviour of the spin-orbit term of the potential. Effective interaction fitted from structure data + fission barriers 4 / 32

Microscopic and phenomenological potentials Experimental Cross sections Microscopic potential Phenomenological potential Structure Experimental spectroscopy Effective interaction 5 / 32

Potential for n + 4 Ca @ MeV NSM potential Non Local Dispersive (NLD) potential fitted on all the available data for 4 Ca ν lj (r, r ) = dˆrdˆr Y m jl (ˆr)V (r, r )Y m jl (ˆr ) NLD V HF + V r 2 Im[ν(r,r)] (MeV/fm) 6 5 4 3 2 2 Im[r r ν(s)] (MeV/fm) 6 4 2-2 6 4 2-2 6 4 l= j=/2 l= j=/2 l= j=3/2 l=2 j=3/2 l=2 j=5/2 l=3 j=5/2 PW 3 4 5 6 7 8 7 6 5 4 2 3 r (fm) 2-2 l=3 j=7/2-3 -2-2 3 l=4 j=7/2-3 -2-2 3 s (fm) l=4 j=9/2-3 -2-2 3 Figure : s = r r NLD: M.H. Mahzoon et al., Phys. Rev. Lett. 2, 6253 (24) 6 / 32

Phenomenological potential and effective interaction Experimental Cross sections Microscopic potential Phenomenological potential Structure Experimental spectroscopy Effective interaction 7 / 32

Phenomenological potential and Gogny interaction Volume integral: J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 8 7 6 V HF Hartree PB J V (MeV fm 3 ) 5 4 3.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. 8 / 32

Phenomenological potential and Gogny interaction Volume integral: Total cross section J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 4 2 n+ 4 Ca.5 MeV 8 7 6 V HF Hartree PB σ T 8 6 4 J V (MeV fm 3 ) 5 4 3 2 5 5 2 25 PW.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. 8 / 32

Phenomenological potential and Gogny interaction Volume integral: Total cross section J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 4 2 n+ 4 Ca 5.3 MeV 8 7 6 V HF Hartree PB σ T 8 6 4 J V (MeV fm 3 ) 5 4 3 2 5 5 2 25 PW.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. 8 / 32

Phenomenological potential and Gogny interaction Volume integral: Total cross section J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 4 2 n+ 4 Ca 9.9 MeV 8 7 6 V HF Hartree PB σ T 8 6 4 J V (MeV fm 3 ) 5 4 3 2 5 5 2 25 PW.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. 8 / 32

Phenomenological potential and Gogny interaction Volume integral: Total cross section J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 4 2 n+ 4 Ca 6.9 MeV 8 7 6 V HF Hartree PB σ T 8 6 4 J V (MeV fm 3 ) 5 4 3 2 5 5 2 25 PW.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. 8 / 32

Phenomenological potential and Gogny interaction Volume integral: Total cross section J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 4 2 n+ 4 Ca 3.3 MeV 8 7 6 V HF Hartree PB σ T 8 6 4 J V (MeV fm 3 ) 5 4 3 2 5 5 2 25 PW.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. 8 / 32

Phenomenological potential and Gogny interaction Volume integral: Total cross section J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 4 2 n+ 4 Ca 4. MeV 8 7 6 V HF Hartree PB σ T 8 6 4 J V (MeV fm 3 ) 5 4 3 2 5 5 2 25 PW.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. 8 / 32

Phenomenological potential and Gogny interaction Volume integral: J lj V = 4π A dr r 2 dr r 2 ν lj (r, r ) Volume integral 8 7 6 V HF Hartree PB J V (MeV fm 3 ) 5 4 3.5 MeV 2 5 MeV MeV 7 MeV 4 MeV 5 5 2 25 PW PB: Perey Buck optical potential with gaussian non locality and energy independent. NSM limited to incident energies below about 3 MeV 8 / 32

NUCLEON SCATTERING OFF N>Z TARGET NUCLEUS 9 / 32

σ(θ)/σ Ruth dσ/dω (mb/sr) Cross section and Analyzing powers n/p+ 48 Ca 7 6 5 4 3 2 - -2-3 -4 7 6 5 4 3 2 - -2 (a) n + 48 Ca 2.35 3.5 3.55 4.7 2 4 6 8 2 4 6 8 θ c.m. (deg.) 8.. 2. 4.3 2. 3. p + 48 Ca 6. (b) 7.97.9 6.8-3 2 4 6 8 2 4 6 8 θ c.m. (deg.) A y (θ) A y (θ).5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 -.5 n + 48 Ca - 2 4 6 8 2 4 6 8 θ c. m. (deg).5 -.5 -.5 -.5 -.5 -.5 - -.5 -.5 8.. 2. 4.3 5.5 p + 48 Ca (d) 2 4 6 8 2 4 6 8 θ c. m. (deg) NSM (full line) Koning-Delaroche (dashed line) Good agreement with cross section data for n + 48 Ca Lack of absorption for p + 48 Ca 2 / 32

TALYS σ Inel (mb) 2 5 5 8 4 5 5 5 n + 4 Ca p + 4 Ca n + 48 Ca p + 48 Ca 2 3 Tot (n,n ) (n,p) (n,np) (n,α) Tot (p,p ) (p,2p) (p,3p) Tot (n,n ) (n,2n) (n,3n) Tot (p,n) (p,2n) (p,3n) (n,p) (n,n ) (n,α) (p,p ) (p,2p) (n,n ) (n,2n) 2 3 2 3 2 3 4 E (MeV) Direct + Pre-equilibrium (p,3p) (n,3n) (p,n) (p,2n) (p,3n) Compound 3 2 3 2 3 2 3 2 NSM potential describes direct components Need for two-fold charge exchange (p, n, p) 2 / 32

3 25 2 5 5 3 25 2 5 5 2 4 6 8-5 -.5 - -.5.5.5 3 25 2 5 5 3 25 2 5 5 2 4 6 8-5 -.5 - -.5.5.5 3 25 2 5 5 3 25 2 5 5 2 4 6 8-5 -.5 - -.5.5.5 3 25 2 5 5 3 25 2 5 5 2 4 6 8-5 -.5 - -.5.5.5 PB-like equivalent of the imaginary NSM potential p + 48 Ca : (, /2) (, /2) (, 3/2) (2, 3/2) Im[V RPA /2] www(x) Im[V RPA /2 ] wwwun(x) Im[V RPA /2 2] wwwdeux(x) Im[V RPA /2 3] wwwtrois(x) Im[V RPA /2 nl.5 ] wwwnl(x) Im[V RPA /2 nl.5 ] wwwnlun(x) Im[V RPA /2 nl.5 ] 2 wwwnldeux(x) Im[V RPA /2 nl.5 ] 3 wwwnltrois(x) Im[V RPA /2 nl 4.5] wwwnl2(x) Im[V RPA /2 nl 4.5] wwwnl2un(x) Im[V RPA /2 nl 4.5] 2 wwwnl2deux(x) Im[V RPA /2 nl 4.5] 3 wwwnl2trois(x) Perey-Buck ansatz : W n/p (r, r ; E) = H(s, β v )Wv n/p (E)f (R, r v, a v ) + 4H(s, β s)ws n/p (E)a sf (R, r s, a s) [ ( )] r r A /3 f (r, r, a) = + exp WS form factor a ( ) H(s, β) = π 3/2 β 3 exp s β Gaussian nonlocality with R = (r + r )/2 and s = r r 22 / 32

PB-like equivalent of the imaginary NSM potential W n/p (r, r ; E) = H(s, β v )Wv n/p (E)f (R, r v, a v ) + 4H(s, β s)ws n/p (E)a sf (R, r s, a s) Fit parameters : r v r s a v a s β v β s.78.254.49 ( 4 Ca).78 ( 48 Ca).44.35. dσ/dω (mb/sr) Check of reliability of the fit : PB-like pot NSM p + 48 Ca @ 3 MeV. 2 4 6 8 2 4 6 8 θ (deg.) 23 / 32

PB-like equivalent of the imaginary NSM potential Magnitudes : 35 35 3 n W v n W s 4 Ca 3 n W v n W s 48 Ca 25 p W v p W s 25 p W v p W s W (MeV) 2 5 W (MeV) 2 5 5 5 5 2 25 3 35 4 45 5 55 6 E-E F (MeV) 5 2 25 3 35 4 45 5 55 6 E-E F (MeV) Lane consistency (already discussed by Osterfeld) Proton/neutron asymmetry of the target yields a bigger proton surface potential than the neutron one Volume imaginary potential decreases with asymmetry for protons and neutrons 24 / 32

NSM/Lane potential Approximate method to recover proton absorption Lane model assumes isospin symmetry in nuclei : V (n/p) = V ± (N Z) 2A V with V n/p (E E n/p F ) in reality, one gets V cc : isospin non-conserving Coulomb corrections in the second order term V cc in the case of 4 Ca V n V p = N Z A V V cc 6 5 data NSM KD NSM/Lane p + 48 Ca @ 2 MeV V n ( 4 Ca) V p ( 4 Ca) V FIT ( 4 Ca) and assuming NSM provides nice results for n+ 48 Ca scattering σ(θ)/σ Ruth 4 3 2 V p NSM/Lane (48 Ca) = 2V FIT ( 48 Ca) VNSM n (48 Ca) 2 4 6 8 2 4 6 8 θ c.m. (deg.) 25 / 32

NUCLEON SCATTERING OFF TARGET WITH PAIRING 26 / 32

NSM for spherical targets with pairing V = V HFB + V QRPA Mean Field Target s excitations 27 / 32

NSM & EDF extended reach Spherical HF ( nuclei) HF+RPA Potential + Integrodifferential Schrödinger G. Blanchon, M. Dupuis, H. Arellano, N. Vinh Mau, Phys. Rev. C (25) G. Blanchon, M. Dupuis, H. Arellano, Eur. Phys J. A, 5 2 (25) 65 Reaction Observables 28 / 32

NSM & EDF extended reach Spherical HFB ( 3 nuclei) HFB+QRPA Potential + Nonlocal Coupled channels Collaboration with R. Bernard and S. Péru (CEA,DAM,DIF) Reaction Observables 28 / 32

HFB equations in coordinate representation d 3 r ( h(rσ, r σ ) (rσ, r σ ) ( ) u(e, r σ ) ( ) ( ) ) E + λ u(e, rσ) σ (rσ, r σ ) h(rσ, r σ ) v(e, r σ = ) E λ v(e, rσ) HFB with DS Gogny interaction in coordinate representation in a box with treatment of the continuum.2.5 "fort.6789" u :2 "fort.679" u :2 "fort.6789" u :3 "fort.679" u :3..5 -.5 -. -.5 NEXT STEP: Dressed mean field & pairing field using QRPA Application to scattering... -.2 5 5 2 25 3 Effect of bound states on the cross section 29 / 32

CONCLUSION 3 / 32

Conclusions Gogny interaction is connected to reaction observables Need for double-charge-exchange component in NSM Results on asymmetry (submitted to EPJA) Study of all doubly-closed-shell target nuclei (in progress) Account of pairing (in progress) 3 / 32

Potential based on effective interaction Nuclear Structure Method N. Vinh Mau, Theory of nuclear structure (IAEA, Vienna 97) p. 93. N. Vinh Mau, A. Bouyssy, NPA 257(2), 89 (976). V. Bernard, N. Van Giai, NPA 327(2), 397 (979). F. Osterfeld, J. Wambach, V.A. Madsen, PRC 23(), 79 (98). K. Mizuyama et al., PRC 86, 463 (22). Y. Xu et al., JPG 4, 5 (24). G. Blanchon, M. Dupuis, H. Arellano and N. Vinh Mau, PRC 9, 466 (25). G. Blanchon, M. Dupuis, H. Arellano, Eur. Phys J. A, 5 2 (25) 65 T. V. Nhan Hao et al., PRC 92, 465 (25). 32 / 32