Dr. Kasra Etemadi February 20, 2007

Similar documents
PHY305F Electronics Laboratory I. Section 2. AC Circuit Basics: Passive and Linear Components and Circuits. Basic Concepts

Chapter 9 Sinusoidal Steady State Analysis

CHAPTER 5. Solutions for Exercises

ELEG 205 Fall Lecture #10. Mark Mirotznik, Ph.D. Professor The University of Delaware Tel: (302)

First Order RC and RL Transient Circuits

21.9 Magnetic Materials

Dr. Kasra Etemadi February 27, 2007

ECE 2100 Circuit Analysis

( ) For more files visit

The 37th International Physics Olympiad Singapore. Experimental Competition. Wednesday, 12 July, Sample Solution

Chapter 4 AC Network Analysis

The Buck Resonant Converter

3 ) = 10(1-3t)e -3t A

The Components of Vector B. The Components of Vector B. Vector Components. Component Method of Vector Addition. Vector Components

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

CHAPTER 5. Exercises. the coefficient of t so we have ω = 200π

Physics 111. Exam #1. September 28, 2018

Coherent PSK. The functional model of passband data transmission system is. Signal transmission encoder. x Signal. decoder.

Lecture 3: Resistive forces, and Energy

SINUSOIDAL WAVEFORMS

Unit-I (Feedback amplifiers) Features of feedback amplifiers. Presentation by: S.Karthie, Lecturer/ECE SSN College of Engineering

AC Circuits AC Circuit with only R AC circuit with only L AC circuit with only C AC circuit with LRC phasors Resonance Transformers

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Chapter 28: Alternating Current

Lecture 13 RC/RL Circuits, Time Dependent Op Amp Circuits

CHAPTER 6: FIRST-ORDER CIRCUITS

10.7 Temperature-dependent Viscoelastic Materials

2.9 Modeling: Electric Circuits

ECE 2100 Circuit Analysis

AP Physics 1 MC Practice Kinematics 1D

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 10 Objectives

a. (1) Assume T = 20 ºC = 293 K. Apply Equation 2.22 to find the resistivity of the brass in the disk with

Introduction to AC Power, RMS RMS. ECE 2210 AC Power p1. Use RMS in power calculations. AC Power P =? DC Power P =. V I = R =. I 2 R. V p.

5.1 Angles and Their Measure

Impact Switch Study Modeling & Implications

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure.

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

3. Alternating Current

Motion Along a Straight Line

The ZCS Boost Converter

Energy Storage Devices

CHAPTER 2 Signals And Spectra

INDIAN ASSOCIATION OF PHYSICS TEACHERS NATIONAL STANDARD EXAMINATION IN PHYSICS

Brace-Gatarek-Musiela model

Physics for Scientists & Engineers 2

Coupled Inductors and Transformers

Tom BLASINGAME Texas A&M U. Slide 1

DISTANCE PROTECTION OF HVDC TRANSMISSION LINE WITH NOVEL FAULT LOCATION TECHNIQUE

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Voltage/current relationship Stored Energy. RL / RC circuits Steady State / Transient response Natural / Step response

Basic Circuit Elements Professor J R Lucas November 2001

EECE 301 Signals & Systems Prof. Mark Fowler

EE202 Circuit Theory II

Chapter 3. DC to DC CONVERTER (CHOPPER)

EE100 Lab 3 Experiment Guide: RC Circuits

the Crustal Magnetic Field for and Any Drilling Time Xiong Li and Benny Poedjono in Paris on March 8, 2013

51. Elektrijada, Kopaonik

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

Kinematics Review Outline

Lecture II Simple One-Dimensional Vibrating Systems

i sw + v sw + v o 100V Ideal switch characteristics

EE40 Summer 2005: Lecture 2 Instructor: Octavian Florescu 1. Measuring Voltages and Currents

( ) ( ) ( ) () () Signals And Systems Exam#1. 1. Given x(t) and y(t) below: x(t) y(t) (A) Give the expression of x(t) in terms of step functions.

( ) ( ) if t = t. It must satisfy the identity. So, bulkiness of the unit impulse (hyper)function is equal to 1. The defining characteristic is

EE 224 Signals and Systems I Complex numbers sinusodal signals Complex exponentials e jωt phasor addition

3. No. The relationship between the parts of a non-rigid object can change. Different parts of the object may have different values of ω.

University of Cyprus Biomedical Imaging and Applied Optics. Appendix. DC Circuits Capacitors and Inductors AC Circuits Operational Amplifiers

2/20/2013. EE 101 Midterm 2 Review

R th is the Thevenin equivalent at the capacitor terminals.

Maxwell s Equations and Electromagnetic Waves

EE292: Fundamentals of ECE

ECE 2100 Circuit Analysis

BEng (Hons) Telecommunications. Examinations for / Semester 2

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS

Corrections for the textbook answers: Sec 6.1 #8h)covert angle to a positive by adding period #9b) # rad/sec

On the Resistance of an Infinite Square Network of Identical Resistors (Theoretical and Experimental Comparison)

SMKA NAIM LILBANAT KOTA BHARU KELANTAN. SEKOLAH BERPRESTASI TINGGI. Kertas soalan ini mengandungi 7 halaman bercetak.

LEARNING : At the end of the lesson, students should be able to: OUTCOMES a) state trigonometric ratios of sin,cos, tan, cosec, sec and cot

Physics Courseware Physics I Constant Acceleration

Chapter 1 Fundamental Concepts

Visco-elastic Layers

Chapter 10 ACSS Power

SYNTHESIS OF MATHEMATICAL MODEL FOR DIAGNOSTICS OF PNEUMATIC BRAKE SYSTEM OF ELECTRIC TRAIN

copper ring magnetic field

Lecture 2: Single-particle Motion

Lecture Outline. Introduction Transmission Line Equations Transmission Line Wave Equations 8/10/2018. EE 4347 Applied Electromagnetics.

Electrical Circuits. 1. Circuit Laws. Tools Used in Lab 13 Series Circuits Damped Vibrations: Energy Van der Pol Circuit

Answers to Exercises in Chapter 7 - Correlation Functions

Elementary Differential Equations and Boundary Value Problems

Chapter 7 Response of First-order RL and RC Circuits

CHAPTER 53 METHODS OF DIFFERENTIATION

Chapter 5 Steady-State Sinusoidal Analysis

Notes 04 largely plagiarized by %khc

Single Degree of Freedom System Forced Vibration

Lecture 4 ( ) Some points of vertical motion: Here we assumed t 0 =0 and the y axis to be vertical.

Microwave Engineering

Structural Dynamics and Earthquake Engineering

Transcription:

Dr. Kasra Eeadi February, 7

Seady-Sae Sinusidal Analysis Sinusidal Surces: Elecric pwer disribued fr residences and businesses Radi cunicain All signal f pracical ineres are cpsed f sinusidal cpnens Furier Analysis Seady-Sae: Respnse f a newrk has w pars haper 4: he frced respnse and naural respnse. When he frced respnse fr sinusidal surces persis indefiniely, i is called he seady-sae respnse.

Sinusidal Wave hree ways lk a he wave: r A a fixed lcain r Snapsh X perid u Phase Phase velciy Wavelengh

Sinusidal Wave Wavelengh and frequency f λ u p secnd Wavelengh, [] r 6 3/4 Frequency, f [/s]

Sinusidal currens and vlages angular frequency v v cs θ Peak value Phase angle csθ πf

unis v cs 6 [Rad/s] r [degrees]? [degrees] sin z cs z 9 v sin 3 cs 6

Perid, v cs θ πf π [s] f

Pwer and Energy fr Resisances wih D Surces - R Pwer delivered a resisr: p R Energy delivered a resisr: E pd p

R R p Pwer delivered a resisr: Energy delivered a resisr: d p E d p E Energy delivered a resisr in ne perid: Average Pwer: d p E f E P avg Pwer and Energy fr Resisances wih A Surces

Average Pwer: R d d R d p P avg R P rs avg R P D r-ean-square rs d

P avg R rs rs d P avg rs R rs d

RMS alue f a Sinusid rs d cs θ rs cs θ d cs z csz rs [ cs θ ] d

[ ] rs d cs θ sin sin θ θ rs rs sin θ ake inegral

sin sin θ θ rs sin sin4 θ θ π π π rs 7. sin θ

rs. 7 v v cs θ P avg R rs

& 6 Hz 6. s f 6 67 ax 7 rs ax

Many engineering prbles are cas in he fr f linear inegrdifferenial equain, in which exciain frcing funcin varies sinusidally wih ie. negr-differenial equain plex slve sluin Phasr nain back ie dain Linear equain wih n sinusidal funcin; i is sipler slve

plex nuber R ez z z x y Real par aginary par

hree frs f represenains fr a cplex nuber -Recangular fr z x y -Plar fr phasr nain: z z e θ 3-Graphic Fr z z Rez

Relain ang recangular, plar and graphic represenain -Recangular fr x y xy z z csθ sinθ -Plar fr phasr nain: z z e x θ y θ an y / x 3-Graphic Fr Uni ecr θ e csθ sinθ sinθ csθ

L.H S sin - R - F Z L L 9 S - R - Z Ω

3-Graphic Fr Uni ecr θ z e z csθ z sinθ θ e csθ sinθ csθ sinθ θ x Re z e θ Re e csθ θ e cs θ Re θ Re e Re e Re e cs θ Re e

3-Graphic Fr Uni ecr θ z e z csθ z sinθ θ e csθ sinθ csθ sinθ θ x Re z e θ Re e csθ cs θ Re e e θ θ e csθ Re θ e csθ x y sinθ e θ θ Re

x cs x Ree cs θ Ree [ ] [ ] [ ] θ Re e θ e Re e e θ θ

3-Graphic Fr Uni ecr z e θ z csθ z sinθ θ e csθ sinθ csθ sinθ θ x Re z e θ Re e csθ Real Nuber: 5 5 5 e 5 Re 5 [ cs sin ] 5

3-Graphic Fr Uni ecr z e θ z csθ z sinθ θ e csθ sinθ csθ sinθ θ x Re z e θ Re e csθ plex Nuber: 3.868 3.86 8 3.86 Re 6 3 e 6 3 3.86 8 8 e [ cs3 sin3 ] 6

5 3 6 5e 3 e 6 5cs 3 5sin3 cs 6 sin 6 [ 5cs3 cs 6 ] [ 5sin3 sin 6 ] 9.33 6.6 9.33 6.6 5 3 7 5 9 [ 3 6 ].5 9.5e.5cs9.5sin9. 5 3 5e 7 e 3 3 5 3 7.5 e.5e 7 7 5 e e.5cs [ sin3 ].87.5.5 [ 7 sin 7 ].34. 94 5 cs3 cs.5sin.87.49

Exaple cs 5sin 6 5cs w way ake his cnversin - sandard rigneric calculain - Phasr calculain 9 cs θ

cs 5sin 6 5cs 9 cs 5cs 6 9 5cs 9 cs 5cs 3 5cs 9 Re 3 e 5Re e 9 5Re e Re 3 e Re 5e 9 Re 5e 3 9 Re e 5e 5e

3 9 Re e 5e 5e [ e e e ] 3 9 5 5 Re [ e ] 5 3 5 9 Re 5 3 5 9 4.33.5 5 4.33.5 4.54 9.9 4.54e 9.9 Re [ ] 9.9 e e 4.54

Re [ ] 9.9 e e 4.54 [ ] 9.9 Re4.54e 4.54 cs 9.9 cs 5sin 6 5cs 9

4.54 cs 9.9 aginary θ Real -

cs 5cs 3 5cs 9 4.54 cs 9.9 9.9 Real cs 5cs 3 5 cs 9 4.54 cs 9.9

L cs - cs θ Re θ θ [ e ] e[ e e ] e[ e ] R R θ

plex pedances L sin L L d L d L cs-9 L L cs θ 9 L θ L θ Z L L L θ L L 9 9 L L 9 L L L Z L L

cs θ Z L dl d sin θ cs θ 9 θ 9 9 θ 9 /Z

R R R R is a real nuber & are in phase.

urren lags lage θ L L θ θ 9 Re R θ urren in phase wih lage θ R θ Re θ 9 urren leads lage θ θ Re 9 9 9 L cs θ 9 L sin θ d L L L d cs θ θ 9 cs θ θ R R R cs θ cs θ cs θ θ d sin θ d cs θ 9 Pure nducance Pure Resisance Pure apaciance θ 9

ircui Analysis wih Phasrs and plex pedance n KL and KL currens,, and vlages,, are replaced by heir phasrs,, respecively. & Phasr currens and lages are relaed by cplex ipedances. Replace inducances and capaciances by heir cplex ipedances. Z L L & Z

Exaple 5.4 Series and Parallel binains f plex pedances Given: L.H S sin - R - F Find:.. Phasr curren hrugh each eleen 3. nsruc a phasr diagra shwing he currens and he surce vlage

L.H S sin - R - F Z L L 9 S - R - Z Ω

Z L L 9 S - R - Z Ω 9 S - Z R R Z -

9 S - Z R R Z - Z R R Z.. 7.7 45 5 5.44 45 S Z L Z R Z R 9 9 7.7 45 7.7 45 7.7 45 9 5 5 8 7.7 45 5 5 cs 8 cs

Z L L cs 8 8 9 S - R Z Ω R s 9 9 9 Z L Z R 5 5 5 5 7.7 45 8. 8 R 8 8. 9 Z 9.44 35 R Phasr Diagra S

Nde lage Analysis? F sin.h.5cs -5 9.5

-5 9.5 5 5 9.5......5 6.cs 9.7 6. 9. 7

Mesh-urren Analysis See exercise 5.9-5.

sin Φ Ri i d v s negrdifferenial Equain i?

Suary f he five seps Sep : Adp a csine reference Express he frcing funcin as a csine Sep : Express ie-dependen variables as phasrs Any csinusidally ie-varying funcin z can be expressed in he fr Sep 3: Recas he differenial/inegral equain in phasr fr Sep 4: Slve he phasr-dain equain Sep 5: Find he insananeus values

Sluin in five seps Sep : Adp a csine reference Express he frcing funcin as a csine Ri i d v s v s v s sin Φ cs Φ π π sin x cs x cs x π Ri i d cs Φ π

Re Re Re s e e e R Sep : Express ie-dependen variables as phasrs Any csinusidally ie-varying funcin z can be expressed in he fr Φ cs π d i i R ] Re[ e Z z ] Re[ ] Re[ e e e π π Φ Φ d e d e Re ] Re[ Re e i ie-independen funcin called Phasr nsananeus funcin

Sep 3: Recas he differenial/inegral equain in phasr fr Re Re Re s e e e R s R R & are real Re perain is disribuive Phasr Fr Re Re s e e e R

Sep 4: Slve he phasr-dain equain s R / R s Φ Φ e R / π Φ s e an R Φ

Sep 5: Find he insananeus values Φ Φ e R e i Re cs Φ Φ R i