Supporting Information. Ruthenium Catalyzed Oxidative Homocoupling of Arylboronic Acids in Water:

Similar documents
Supporting Information

Supporting Information. Sandmeyer Cyanation of Arenediazonium Tetrafluoroborate Using Acetonitrile as Cyanide Source

Palladium-Catalyzed Oxidative Cyclization of Tertiary Enamines for Synthesis of 1,3,4-Trisubstituted Pyrroles and 1,3-Disubstituted Indoles

Supporting Information

Supporting Information

Supporting Information. A turn-on fluorescent probe for detection of Cu 2+ in living cells based on signaling mechanism of N=N isomerization

Supporting Information. Table S General information General procedure for synthesis of compounds 4 and

Carbonylative Coupling of Allylic Acetates with. Arylboronic Acids

Regioselective Synthesis of 1,5-Disubstituted 1,2,3-Triazoles by reusable

Supporting Information

Supporting Information

Hualong Ding, Songlin Bai, Ping Lu,* Yanguang Wang*

Arylhalide-Tolerated Electrophilic Amination of Arylboronic Acids with N-Chloroamides Catalyzed by CuCl at Room Temperature

Supplementary Information

Supporting Information

Supporting Information

Supplementary Figures

Supplementary Information

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

Silver-catalyzed decarboxylative acylfluorination of styrenes in aqueous media

Pd(II) Catalyzed C3-selective arylation of pyridine with (hetero)arenes SUPPORTING INFORMATION

Organoselenium-Catalyzed Mild Dehydration of Aldoximes: An Unexpected Practical Method for Organonitrile Synthesis

Supporting Information

SUPPORTING INFORMATION FOR

Supporting information. A Brønsted Acid-Catalyzed Generation of Palladium Complexes: Efficient Head-to-Tail Dimerization of Alkynes.

C(sp)-C(sp 3 ) Bond Formation through Cu-Catalyzed Cross-Coupling of N-Tosylhydrazones and Trialkylsilylethyne

Supporting Information for

Palladium-Catalyzed Alkylarylation of Acrylamides with

Supporting Information

Magnetic nanoparticle-supported proline as a recyclable and recoverable ligand for the CuI catalyzed arylation of nitrogen nucleophiles

PTSA-Catalyzed Green Synthesis of 1,3,5-Triarylbenzene under Solvent-Free Conditions

Trisulfur Radical Anion as the Key Intermediate for the. Synthesis of Thiophene via the Interaction between Elemental.

Supporting Information

Supporting Information

Supporting Information. For. Organic Semiconducting Materials from Sulfur-Hetero. Benzo[k]fluoranthene Derivatives: Synthesis, Photophysical

Aluminum Foil: A Highly Efficient and Environment- Friendly Tea Bag Style Catalyst with High TON

Ruthenium-catalyzed aerobic oxidative cyclization of aromatic and heteroaromatic nitriles with alkynes: a new route to isoquinolones

Supporting Information

Activation of a hydroamination gold catalyst by oxidation of a redox non-innocent chlorostibine Z-ligand

TEM image of derivative 1 and fluorescence spectra of derivative 1 upon addition of

Supporting Information

Supporting Information

Electronic Supplementary Information. ligands for efficient organic light-emitting diodes (OLEDs)

Heterogeneously catalyzed selective aerobic oxidative cross-coupling of terminal alkynes and amides with simple copper(ii) hydroxide

Oxindoles: Formal Total Syntheses of Bis-Cyclotryptamine. Alkaloids, (±)-Chimonanthine and (±)-Folicanthine

Supporting information. Enantioselective synthesis of 2-methyl indoline by palladium catalysed asymmetric C(sp 3 )-H activation/cyclisation.

Supporting Information

Effect of Conjugation and Aromaticity of 3,6 Di-substituted Carbazole On Triplet Energy

Supporting Information. High-Throughput Screening Protocol for the Coupling Reactions of Aryl Halides Using a Colorimetric Chemosensor for Halide Ions

Supporting Information

Supporting Information. Two Catalytic Methods of an Asymmetric Wittig [2,3]-Rearrangement

Solvent-controlled selective synthesis of biphenols and quinones via oxidative coupling of phenols

SUPPORTING INFORMATION

Supporting Information

An Efficient Total Synthesis and Absolute Configuration. Determination of Varitriol

Supporting Information

Synthesis of two novel indolo[3,2-b]carbazole derivatives with aggregation-enhanced emission property

Supporting Information

1G (bottom) with the phase-transition temperatures in C and associated enthalpy changes (in

Supporting Information

Electronic Supplementary Information. Selective Sorption of Light Hydrocarbons on a Family of

The version of SI posted May 6, 2004 contained errors. The correct version was posted October 21, 2004.

Palladium-catalyzed direct arylation and cyclization of o-iodobiaryls. to a library of tetraphenylenes

Supporting Information. Cu(I)-Catalyzed Three-Component Reaction of Diazo. Compound with Terminal Alkyne and Nitrosobenzene for

Organocatalytic Doubly Annulative Approach to 3,4-Dihydrocoumarins Bearing a Fused Pyrrolidine Scaffold. Dorota Kowalczyk, and Łukasz Albrecht*

Supporting Information for

Photocatalytic Dehydrogenative Lactonization of 2- Arylbenzoic Acids

Significant improvement of dye-sensitized solar cell. performance by a slim phenothiazine based dyes

Enantioselectivity switch in copper-catalyzed conjugate addition. reaction under influence of a chiral N-heterocyclic carbene-silver complex

Supporting Information

Supplementary Information

Supporting Information

Supporting Information for. A Fluorescence Ratiometric Sensor for Trace Vapor Detection of. Hydrogen Peroxide

Anion recognition in water by a rotaxane containing a secondary rim functionalised cyclodextrin stoppered axle

Supporting Information

Palladium-Catalyzed Aerobic Intramolecular Aminoacetoxylation of Alkenes Enabled by Catalytic Nitrate

Palladium(0)-Catalyzed C(sp 3 )-Si Bond Formation via Formal Carbene Insertion into Si-H Bond

Supporting Information. A Structure-Activity Study of Nickel NNN Pincer Complexes for Alkyl-Alkyl Kumada and Suzuki-Miyaura Coupling Reactions

Supporting information. An improved photo-induced fluorogenic alkene-tetrazole reaction for protein labeling

Carbene) Catalyzed Alcohol Oxidation Using. Molecular Oxygen

Transition-Metal-Free Esterification of Amides via Selective N C Cleavage under Mild Conditions. Supporting Information

Supporting Information

Supporting information. Ni-catalyzed the efficient conversion of phenols protected with 2, 4, 6-trichloro-1, 3, 5- triazine (TCT) to olefins

Supporting Text Synthesis of (2 S ,3 S )-2,3-bis(3-bromophenoxy)butane (3). Synthesis of (2 S ,3 S

Novel Process for Preparation of Tetrabenazine and Deutetrabenazine. Purna Chandra Ray*, Yogesh Dadaji Pawar, Dnyaneshwar Tukaram Singare, Tushar

Supporting Online Material

Supporting Information

Aminoacid Based Chiral N-Amidothioureas. Acetate Anion. Binding Induced Chirality Transfer

Halogen halogen interactions in diiodo-xylenes

Supporting Information. Enantioselective Organocatalyzed Henry Reaction with Fluoromethyl Ketones

Supporting Information

Alkali α-mno 2 /Na x MnO 2 collaboratively catalyzed ammoxidation-pinner tandem reaction of aldehydes

Supporting Information

Supplementary Information

Supporting Information. DBU-Mediated Metal-Free Oxidative Cyanation of α-amino. Carbonyl Compounds: Using Molecular Oxygen as the Oxidant

Supporting Information

Tsuji Trost N-Allylation with Allylic Acetates by Using a Cellulose Palladium Catalyst

Efficient Synthesis of Macrocyclic Ketones Via Palladium-Catalyzed Activation of Carboxylic Acids

Supporting information for A simple copper-catalyzed two-step one-pot synthesis of indolo[1,2-a]quinazoline

Supporting Information for Exploration of C H and N H-bond functionalization towards 1-(1,2-diarylindol-3-yl)- tetrahydroisoquinolines

Transcription:

Supporting Information Ruthenium Catalyzed Oxidative Homocoupling of Arylboronic Acids in Water: Ligand Tuned Reactivity and Mechanistic Study Deepika Tyagi, Chinky Binnani, Rohit K. Rai, Ambikesh D. Dwivedi, Kavita Gupta, Pei- Zhou Li, Yanli Zhao and Sanjay K. Singh*,, Discipline of Chemistry, School of Basic Sciences, and Centre of Material Science and Engineering, Indian Institute of Technology (IIT) Indore, Indore, 452020, Madhya Pradesh, India Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

Table S1. Comparative table for the homocoupling reactions of phenylboronic acid. entry substrate catalyst additive/ base 1 Sodium p- toluenesulfinate PdCl2 O2/ Cu(OAc)2 (20 mol%) solvent temp / time Water 100 C/ 24h yield ref. % (2a) 85 S1 2 Aryliodine diacetates Pd(OAc)2 Cu(OAc)2 (1 equiv.)/ K2CO3 (1.5equiv.) DMF 110 C/ 20 h 52 S2 3 Phenylboronic acid [Pd(phbz) (OAc)(PPh3)] Air THF rt/ 30 min 70 S3 4 Phenylboronic acid Au(III) schiff base complex Air xylene 130 C/ 24 h 99 S4 5 Phenylboronic acid [Rh(PPh3)3Cl] Air / TEMPO Dioxane / water 130 C/ 1 h 53 S5 6 4-Bromophenyl boronic acid [TeFe3(CO)9 Cu2(Me2Im)2] complex Cu loading (0.5 1 mol%) MeOH rt/ 2 h 88 S6 7 4-Methylphenyl boronic acid 8 Phenylboronic acid 9 Phenylboronic acid [Cu(BDC)] (100 mg) [Cu2 β- CD/Fe3O4] (10 mol%) [Cu2 β- Cyclodextrin] complex (0.1 equiv.) Air THF rt/ 16 h 93 S7 Air DMF rt/ 3 h 90 S8 Air DMF rt/ 14 h 83 S9

Table S2. Selected bond lengths [Å] for [Ru]-3 Ru1 C1 2.162(4) Ru1 C2 2.164(5) Ru1 C6 2.176(4) Ru1 C3 2.178(5) Ru1 C5 2.179(4) Ru1 N1 2.181(3) Ru1 C4 2.188(5) Ru1 Cl1 2.4022(11) Ru1 Cl2 2.4217(10) N1 C7 1.438(5) N1 H1B 0.8900 N1 H1A 0.8900 C7 C12 1.392(6) C7 C8 1.395(5) C8 C9 1.403(7) C8 C14 1.503(7) C12 C11 1.388(6) C12 C13 1.504(6) C6 C1 1.399(8) C6 C5 1.410(8) C1 C2 1.390(8) C9 C10 1.363(9) C2 C3 1.424(9) C11 C10 1.375(8) C5 C4 1.409(8) C4 C3 1.393(9)

Table S3. Selected bond angles [ ] for [Ru]-3 C1 Ru1 C2 37.5(2) C7 N1 Ru1 120.3(2) C1 Ru1 C6 37.6(2) C7 N1 H1B 107.3 C2 Ru1 C6 67.9(2) Ru1 N1 H1B 107.3 C1 Ru1 C3 68.1(2) C7 N1 H1A 107.3 C2 Ru1 C3 38.3(2) Ru1 N1 H1A 107.3 C6 Ru1 C3 80.14(19) H1B N1 H1A 106.9 C1 Ru1 C5 68.2(2) C12 C7 C8 121.6(4) C2 Ru1 C5 80.7(2) C12 C7 N1 118.9(3) C6 Ru1 C5 37.8(2) C8 C7 N1 119.5(4) C3 Ru1 C5 67.6(2) C7 C8 C9 117.5(5) C1 Ru1 N1 96.31(16) C7 C8 C14 122.1(4) C2 Ru1 N1 120.62(19) C9 C8 C14 120.4(4) C6 Ru1 N1 96.91(15) C11 C12 C7 118.5(4) C3 Ru1 N1 158.2(2) C11 C12 C13 119.9(4) C5 Ru1 N1 122.12(17) C7 C12 C13 121.6(4) C1 Ru1 C4 80.5(2) C1 C6 C5 120.0(5) C2 Ru1 C4 68.3(2) C1 C6 Ru1 70.6(3) C6 Ru1 C4 68.0(2) C5 C6 Ru1 71.2(3) C3 Ru1 C4 37.2(2) C2 C1 C6 120.6(5) C5 Ru1 C4 37.6(2) C2 C1 Ru1 71.3(3) N1 Ru1 C4 159.2(2) C6 C1 Ru1 71.7(3) C1 Ru1 Cl1 154.10(16) C10 C9 C8 121.3(5) C2 Ru1 Cl1 157.08(18) C1 C2 C3 119.5(5) C6 Ru1 Cl1 116.66(17) C1 C2 Ru1 71.2(3) C3 Ru1 Cl1 118.82(19) C3 C2 Ru1 71.4(3) C5 Ru1 Cl1 90.76(15) C10 C11 C12 120.8(5) N1 Ru1 Cl1 81.93(9) C4 C5 C6 119.9(5) C4 Ru1 Cl1 91.95(18) C4 C5 Ru1 71.5(3) C1 Ru1 Cl2 116.56(16) C6 C5 Ru1 71.0(3) C2 Ru1 Cl2 90.31(15) C3 C4 C5 119.7(5) C6 Ru1 Cl2 154.12(17) C3 C4 Ru1 71.0(3) C3 Ru1 Cl2 91.29(15) C5 C4 Ru1 70.8(3) C5 Ru1 Cl2 155.53(16) C4 C3 C2 120.3(5) N1 Ru1 Cl2 82.03(8) C4 C3 Ru1 71.8(3) C4 Ru1 Cl2 117.92(17) C2 C3 Ru1 70.3(3) Cl1 Ru1 Cl2 88.91(4) C9 C10 C11 120.3(5)

Table S4. Effect of bases on the ruthenium catalyzed aqueous-aerobic homocoupling of phenylboronic acid a entry base temp / time conv. (%) b sel. (%) b ( o C/ h ) 2a 3a 1 K3PO4 70/4 9 13 87 2 KOH 70/4 10 14 86 3 Na3PO4 70/4 10 20 80 4 NaOH 70/4 88 34 66 5 NaHCO3 70/4 99 18 82 6 K2CO3 70/4 99 37 63 7 Na2CO3 70/4 99 47 53 8 without base 70/4 16 traces - c a Reaction conditions: 1a (1.0 mmol), base (2.0 mmol), cat. [Ru]-1 (2.5 mol%), water (5mL), b conversion of phenylboronic acid (1a) and selectivity for biphenyl (2a) and phenol (2b) respectively determined by 1 H NMR, c not detected.

Table S5. Effect of additive and reaction atmosphere on the ruthenium catalyzed aqueous-aerobic homocoupling of phenylboronic acid a entry base additive (equiv.) oxidant temp / time ( o C/ h) isolated yield of biphenyl (2a) (%) b 1 Na2CO3 Cu(OAc)2 air 70/4 67 (1.5 equiv.) 2 -- Cu(OAc)2 air 70/4 10 (1.5 equiv.) 3 Na2CO3 -- air 70/4 20 4 Na2CO3 Cu(OAc)2 air 70/4 43 (0.8 equiv.) 5 Na2CO3 Cu(OAc)2 air 70/4 30 (0.1 equiv.) 6 c Na2CO3 Cu(OAc)2 -- 70/4 no reaction (1.5 equiv.) 7 c Na2CO3 -- -- 70/4 no reaction a Reaction conditions: 1 (1.0 mmol), [Ru]-1 (5 mol%), water (4.7 ml) with added methanol (0.3 ml), base Na2CO3 (2.0 mmol), T = 70 ºC, b isolated yield of 2a in parentheses, c N2 atmosphere.

Table S6. Catalytic conversion of phenylboronic acid to biphenyl in the presence of different arene-ruthenium(ii) complexes a entry catalyst conv. (%) b sel. (%) b,c 2a 3a 1. [Ru]-1 99 80 (67) 20 2. [Ru]-2 99 57 (46) 43 3. [Ru]-3 99 53 (42) 47 4. [Ru]-4 99 60 (49) 40 5. [Ru]-5 99 47 (35) 53 a Reaction conditions: 1a (1.0 mmol), [Ru]-catalyst (5 mol%), Na2CO3 (2.0 mmol), Cu(OAc)2 (1.5 mmol), water (4.7 ml) with added methanol (0.3 ml), b conversion of phenylboronic acid (1a) and selectivity for biphenyl (2a) and phenol (2b) respectively determined by 1 H NMR, c isolated yield of purified product (2a) obtained from column chromatography is given in parentheses.

Table S7. Influence of catalyst on the catalytic conversion of different arylboronic acids to biaryls in the presence of different arene-ru(ii) complexes a entry R time biaryls conv./ sel. of 2a-2e/ sel. of 3a-3e (%) b,c (1a-1e) (h) (2a-2e) [Ru]-1 [Ru]-2 [Ru]-3 [Ru]-4 [Ru]-5 1 H 4 99/80/20 99/57/43 99/53/47 99/60/40 99/47/53 (1a) (2a) (67) (46) (42) (49) (35) 2 p-me 10 99/84/16 99/66/34 99/54/46 99/75/25 99/70/30 (1b) (2b) (55) (44) (36) (49) (46) 3 p-ome 10 99/99 99/90/10 99/79/21 99/91/9 99/88/12 (1c) (2c) (68) (66) (57) (66) (60) 4 p-cl 12 99/92/8 99/80/20 99/64/36 99/76/24 99/54/46 (1d) (2d) (54) (47) (37) (43) (25) 5 p-f 8 99/83/17 99/80/20 99/72/28 99/74/26 99/65/35 (1e) (2e) (36) (33) (30) (31) (27) a Reaction conditions: 1a-1e (1.0 mmol), Na2CO3 (2.0 mmol), [Ru]-catalyst (5 mol%), additive Cu(OAc)2 (1.5 mmol), water (4.7 ml) with added methanol (0.3 ml), T = 70 ºC, b conversion of arylboronic acid (1a-1e) and selectivity for 2a-2e and 3a-3e respectively, determined by 1 H NMR, c isolated yields of purified products (2a-2e) obtained from column chromatography are given in parentheses.

Table S8. Role of aniline ligand in the ruthenium catalyzed homocoupling reactions of phenylboronic acid a entry catalyst base conv./ sel. of 2a / sel. of 3a (%) b 1 [(η 6 benzene)rucl2]2 (1.25 mol%) Na2CO3 99/35/65 2 [(η 6 benzene)rucl2]2 (1.25 mol%) + aniline Na2CO3 99/42/58 (2.5 mol%) 3 [(η 6 benzene)ru(aniline)cl2] ([Ru]-1) (2.5 Na2CO3 99/63/37 mol%) 4 [(η 6 benzene)ru(aniline)cl2] ([Ru]-1) (2.5 no base 16/99/0 mol%) 5 without catalyst Na2CO3 no reaction 6 [(η 6 benzene)rucl2]2 (1.25 mol%) + Na2CO3 99/25/75 p-methylaniline (2.5 mol%) 7 [(η 6 benzene)rucl2]2 (1.25 mol%) Na2CO3 99/28/72 + p-chloroaniline (2.5 mol%) 8 [(η 6 benzene)ru(pph3)cl2] (2.5 mol%) Na2CO3 3/trace/0 a Reaction conditions: 1a (1.0 mmol), Na2CO3 (2.0 mmol), [Ru]-catalyst, water (4.7 ml) withadded methanol (0.3 ml), b conversion of phenylboronic acid (1a) and selectivity for biphenyl (2a) and phenol (3a) respectively determined by 1 H NMR.

Figure S1. Crystal structure of the complex [Ru-4]. Ellipsoids are set at 30% probability. All hydrogen atoms, except those on nitrogen, are omitted for clarity.

Figure S2. GC-MS spectra of the competitive reaction of 4-methylphenylboronic acid (1b) with 4-methoxyphenylboronic acid (1c).

Figure S3. GC-MS spectra of the competitive reaction of 4-methylphenylboronic acid (1b) with 4-chlorophenylboronic acid (1d).

Figure S4. GC-MS spectra of the competitive reaction of 4-methylphenylboronic acid (1b) with 4-trifluoromethylphenylboronic acid (1g).

Weight (%) 100 90 80 [Ru]-1 [Ru]-2 [Ru]-3 [Ru]-4 [Ru]-5 70 60 50 40 30 20 200 300 400 Temperature ( C) Figure S5. Thermal gravimetric analysis (TGA) graph of complexes [Ru]-1 to [Ru]-5.

7.39 5.00 7.47 7.41 7.43 7.45 7.26 5.36 7.39 7.41 7.43 7.44 4.97 7.26 5.35 7.38 7.40 7.43 7.44 4.87 7.26 5.35 Cl Cl Ru NH 2 b a a b t = 24 h 5.20 6.00 1.80 a b t = 12 h 5.02 6.00 1.98 a Chloroform-d b t = 4 h 5.00 6.60 2.13 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 Figure S6. 1 H NMR spectra for the thermal stability of [Ru]-1 catalyst at 70 C.

(a) Observed m/z Simulated m/z (b) Observed m/z Simulated m/z Figure S7. Observed and simulated mass patterns of aryl-ru intermediate species of the [Ru]-catalyzed homocoupling reaction of (a) p-methylphenylboronic acid (1b), and (b) p-chlorophenylboronic acid (1d).

(a) (b) Observed m/z Simulated m/z Figure S8. Observed and simulated mass patterns of di(σ aryl)-ru species, key intermediates in the catalytic homocoupling of arylboronic acids, with the [Ru]-2 catalyst, obtained in the presence of 2.0 equivalent excess of (a) p- methylphenylboronic acid (1b), and (b) p-chlorophenylboronic acid (1d) in acetonitrile.

Observed m/z Simulated m/z Figure S9. Observed and simulated mass patterns of aryl-ru intermediate species of the transmetallation step of the homocoupling reaction of phenylboronic acid (1a) and p-methylphenylboronic acid (1b) with complex [Ru]-1 in water.

335.04 Observed m/z Simulated m/z Figure S10. Observed and simulated mass patterns of aryl-ru intermediate species of the transmetallation step of the homocoupling reaction of phenylboronic acid (1a) and p-methylphenylboronic acid (1b) with complex [Ru]-4 in water with observed and simulated mass patterns.

335.04 Observed m/z Simulated m/z Figure S11. Observed and simulated mass patterns of aryl-ru intermediate species of the transmetallation step of homocoupling reaction of phenylboronic acid (1a) and p-methylphenylboronic acid (1b) with complex [Ru]-5 in water.

ppm Figure S12. 19 F NMR for the 4,4 -difluorobiphenyl (2e) and of 4-fluorophenol (3e) species, along with the aryl-ru species, generated during the homocoupling reaction of p-fluorophenylboronic acid (1e) in the presence of [Ru]-2 catalyst.

Figure S13. 19 F NMR for the 4,4 -trifluoromethylbiphenyl (2g) and of 4- trifluoromethylphenyl species, along with the aryl-ru species, generated during the homocoupling reaction of p-trifluoromethylphenylboronic acid (1g) in the presence of [Ru]-2 catalyst.

Scheme S1. Possible role of aerial O2 and Cu(OAc)2 additives in the ruthenium catalyzed homocoupling of arylboronic acids. Scheme S2. Proposed mechanism for the ruthenium catalyzed homocoupling of arylboronic acid as established by ESI-MS, 1 HNMR and 19 F NMR spectral studies.

143.82 131.57 127.56 125.98 120.22 17.79 83.11 77.36 77.05 76.73 7.19 7.17 4.79 7.36 7.30 7.28 7.26 2.45 7.36 7.34 7.30 7.28 7.19 7.17 7.26 5.31 NMR Spectra of arene-ru(ii) complexes 1 H and 13 C NMR spectra of complex [Ru]-2 3.82 1.00 7.50 7.25 7.00 Cl Cl Ru NH 2 3.82 6.04 1.77 3.26 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Cl Cl Ru NH 2 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8

120.52 115.78 17.77 127.71 30.68 87.64 40.13 39.92 39.71 39.50 39.08 6.40 6.38 6.36 4.44 6.76 2.49 5.95 3.33 2.05 1 H and 13 C NMR spectra of complex [Ru]-3 Cl Cl Ru NH 2 DMSO-d6 2.00 1.08 5.91 2.06 6.33 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 DMSO-d6 Cl Cl Ru NH 2 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16

143.10 135.46 20.91 130.19 119.90 83.14 76.69 77.00 77.32 7.35 7.33 7.19 7.17 4.95 2.36 7.35 7.33 7.26 7.19 7.17 5.35 1 H and 13 C NMR spectra of complex [Ru]-4 2.28 2.19 Cl Cl Ru NH 2 7.50 7.25 7.00 Chloroform-d 2.28 6.00 2.03 3.41 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chloroform-d Cl Cl Ru NH 2 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24

1 H NMR spectra of complex [Ru]-5 Chloroform-d Cl Cl Ru NH 2 Cl 7.40 7.38 4.83 7.40 7.38 7.36 7.34 7.32 7.26 5.38 7.26 Chloroform-d 4.39 7.45 7.40 7.35 7.30 7.25 7.20 7.15 4.39 6.00 1.56 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Spectral data of biaryl products obtained from ruthenium catalyzed homocoupling of arylboronic acids Biphenyl (2a) 1 H NMR (400 MHz, CDCl3): δ (ppm) = 7.61(d, 4H, J = 8 Hz), 7.45 (t, 4H, J = 8 Hz), 7.36 (t, 2H, J = 8 Hz). 13 C NMR (100 MHz, CDCl3): δ (ppm) = 141.23, 128.73, 127.23, 127.15. 4,4'-Dimethylbiphenyl(2b) 1 H NMR (400 MHz, CDCl3): δ (ppm) = 7.48 (d, 4H, J = 8 Hz), 7.24 (d, 4H, J = 8 Hz), 2.39 (s, 6H). 13 C NMR (100 MHz, CDCl3): δ (ppm) = 138.27, 136.67, 129.41, 126.79, 21.05. 4,4'-Dimethoxybiphenyl (2c) 1 H NMR (400 MHz, CDCl3): δ (ppm) = 7.48 (d, 4H, J = 8 Hz), 6.96 (d, 4H, J = 8 Hz), 3.85 (s, 6H). 13 C NMR (100 MHz, CDCl3): δ (ppm) = 158.69, 133.49, 127.73, 114.18, 55.32. 4,4'-Dichlorobiphenyl(2d) 1 H NMR (400 MHz, CDCl3): δ (ppm) = 7.47 (d, 4H, J = 8 Hz), 7.40 (d, 4H, J = 8 Hz). 13 C NMR (100 MHz, CDCl3): δ (ppm) = 138.42, 133.74, 129.03, 128.21.

4,4'-Difluorobiphenyl (2e) 1 H NMR (400 MHz, CDCl3): δ (ppm) = 7.51-7.47 (m, 4H), 7.12 (d, 4H, J = 8 Hz). 13 C NMR (100 MHz, CDCl3): δ (ppm) = 162.42 (J = 45 Hz), 136.39 (J = 3 Hz), 128.5 (J = 8 Hz), 115.67 (J = 21 Hz). 19 F NMR (376.5 MHz, CDCl3): δ (ppm) = 123.430. 4,4 -Bis(trifluoromethoxy)biphenyl (2f) 1 H NMR (400 MHz, CDCl3): δ (ppm) = 7.55 (d, 4H, J = 8 Hz), 7.30 (d, 4H, J = 8 Hz). 19 F NMR (376.5 MHz, CDCl3): δ (ppm) = 57.95. 4,4 -Bis(trifluoromethyl)biphenyl (2g) 1 H NMR (400 MHz, CDCl3): δ (ppm) = 7.75-7.69 (m, 8H). 19 F NMR (376.5 MHz, CDCl3): δ (ppm) = 62.59.

141.23 127.15 128.73 77.00 7.33 7.35 7.43 7.62 7.45 7.37 7.36 7.34 7.43 7.62 7.60 7.60 1 H, 13 C and 19 F NMR Spectra of homocoupled products 7.47 7.45 Chloroform-d 2a 4.00 4.05 2.02 7.6 7.5 7.4 7.3 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0-0.5 Chloroform-d 2a 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16

138.27 136.67 21.05 77.31 77.00 76.68 129.41 126.79 0.00 7.39 7.41 7.14 7.16 7.39 7.41 7.14 7.16 2.31 2.31 Me Me 2b 4.00 4.04 7.25 7.00 6.25 2.40 2.35 2.30 2.25 2.20 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Me Me Chloroform-d 2b 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16

29.69 158.69 133.49 55.32 114.16 127.73 76.69 77.00 77.32 0.08 7.49 7.47 6.98 6.95 7.49 7.47 6.98 6.95 3.85 3.85 MeO OMe 2c Chloroform-d 4.00 7.50 7.25 7.00 4.16 6.09 4.0 3.9 3.8 Chloroform-d 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chloroform-d MeO OMe 2c 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

7.48 7.46 138.42 133.74 129.03 128.21 77.31 77.00 76.68 7.26 7.39 7.48 7.26 7.39 7.46 7.41 7.41 Cl Cl 4.13 4.00 2d 7.50 7.25 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chloroform-d Cl Cl 2d 136 128 120 112 104 96 88 80 72 64 56 48

163.65 161.20 136.38 136.41 128.53 128.61 115.57 115.78 0.07 7.14 7.10 7.47 7.49 7.49 7.51 7.26 7.47 7.49 7.49 7.51 7.14 7.10 7.12 7.12 Chloroform-d Chloroform-d F F 2e 4.00 3.98 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 Chloroform-d F F 2e 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75

-57.98-57.95 7.31 7.26 7.56 7.54 7.31 7.29 7.26 7.56 7.54 F 3 CO OCF 3 2f 4.10 4.00 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 F 3 CO OCF 3 2f -52-53 -54-55 -56-57 -58-59 -60 19 F NMR of compound 2f

-62.59 7.68 7.62 7.75 7.69 7.66 7.64 7.71 7.73 F 3 C CF 3 2g 8.00 7.9 7.8 7.7 7.6 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 F 3 C CF 3 2g -59.5-60.0-60.5-61.0-61.5-62.0-62.5-63.0-63.5-64.0-64.5-65.0-65.5-66.0 19 F NMR of compound 2g

GC-MS spectra of the biphenyl (2a).

GC-MS spectra of the 4,4 dimethylbiphenyl (2b).

GC-MS spectra of the 4,4 - dimethoxylbiphenyl (2c).

GC-MS spectra of the 4,4 -dichlorobiphenyl (2d).

GC-MS spectra of the 4,4 -difluorobiphenyl (2e).

REFERENCES S1 Rao, B.; Zhang, W.; Hua, L.; Luo, M. Green Chem. 2012, 14, 3436-3440. S2 Xiong, Q.; Fu, Z.; Li, Z.; Cai, H. Synlett. 2015, 26, 975-979. S3 Kapdi, A. R.; Dhangar, G.; Serrano, J. L.; Pѐrez, J.; García L.; Fairlamb, I. J. S. Chem. Commun. 2014, 50, 9859-9861. S4 González-Arellano, C.; Corma, A.; Iglesias, M.; Sánchez, F. Chem. Commun. 2005, 1990-1992. S5 Vogler, T.; Studer, A. Adv. Synth. Catal. 2008, 350, 1963-1967 S6 Lin, C.-N.; Huang, C.-Y.; Yu, C.-C.; Chen, Y.-M.; Ke, W.-M.; Wang, G.-J.; Lee, G.- A.; Shieh, M.; Dalton Trans. 2015, 44, 16675-16679. S7 Puthiaraj, P.; Suresh, P.; Pitchumani, K. Green Chem. 2014, 16, 2865-2875. S8 Kaboudin, B.; Mostafalu, R.; Yokomatsu, T. Green Chem. 2013, 15, 2266-2274. S9 Kaboudin, B.; Abedi, Y.; Yokomatsu, T. Eur. J. Org. Chem. 2011, 6656-6662.