Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Similar documents
Fundamentals and New Frontiers of Bose Einstein Condensation

Many-Body Problems and Quantum Field Theory

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Preface Introduction to the electron liquid

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

The Role Of Magnetic Monopoles In Quark Confinement (Field Decomposition Approach)

Low dimensional quantum gases, rotation and vortices

Quarks, Leptons and Gauge Fields Downloaded from by on 03/13/18. For personal use only.

Evaluating the Phase Diagram at finite Isospin and Baryon Chemical Potentials in NJL model

The Phases of QCD. Thomas Schaefer. North Carolina State University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

On the Higgs mechanism in the theory of

Equation of state of the unitary Fermi gas

Contents. Preface to the First Edition Preface to the Second Edition

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

The Superfluid Phase s of Helium 3

The Phases of QCD. Thomas Schaefer. North Carolina State University

Strongly correlated Cooper pair insulators and superfluids

Statistical Mechanics

A Superfluid Universe

Contents. Appendix A Strong limit and weak limit 35. Appendix B Glauber coherent states 37. Appendix C Generalized coherent states 41

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

The Electro-Strong Interaction

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

Supersymmetric Gauge Theories in 3d

The BCS-BEC Crossover and the Unitary Fermi Gas

The Superfluid-Insulator transition

Transport coefficients from Kinetic Theory: Bulk viscosity, Diffusion, Thermal conductivity. Debarati Chatterjee

Critical lines and points. in the. QCD phase diagram

Vortices and other topological defects in ultracold atomic gases

Field Theories in Condensed Matter Physics. Edited by. Sumathi Rao. Harish-Chandra Research Institute Allahabad. lop

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

Lecture Overview... Modern Problems in Nuclear Physics I

Finite-Temperature Field Theory Principles and Applications

Vortices and vortex states of Rashba spin-orbit coupled condensates

Gauge Theories of the Standard Model

Quantum Field Theory 2 nd Edition

INTRODUCTION TO NUCLEAR AND PARTICLE PHYSICS

Symmetries Then and Now

DEPARTMENT OF PHYSICS

The mass of the Higgs boson

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

g abφ b = g ab However, this is not true for a local, or space-time dependant, transformations + g ab

Field Theory: The Past 25 Years

The holographic approach to critical points. Johannes Oberreuter (University of Amsterdam)

Theoretical outlook. D. Kharzeev

Landau Theory of Fermi Liquids : Equilibrium Properties

The Turbulent Universe

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

MASTER OF SCIENCE IN PHYSICS

Fundamentals and New Frontiers of Bose Einstein Condensation

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

Quantum phase transitions in condensed matter

Superfluidity and superconductivity. IHP, Paris, May 7 and 9, 2007

Contents Preface Physical Constants, Units, Mathematical Signs and Symbols Introduction Kinetic Theory and the Boltzmann Equation

String Theory in a Nutshell. Elias Kiritsis

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

Probing Holographic Superfluids with Solitons

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Confined chirally symmetric dense matter

Helium-3, Phase diagram High temperatures the polycritical point. Logarithmic temperature scale

An Introduction to the Standard Model of Particle Physics

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

Beyond Standard Models Higgsless Models. Zahra Sheikhbahaee

Quantum Phase Transitions

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

Polyakov Loop in a Magnetic Field

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Neutron vs. Quark Stars. Igor Shovkovy

Acknowledgements An introduction to unitary symmetry The search for higher symmetries p. 1 The eight-baryon puzzle p. 1 The elimination of

The Proton Radius Puzzle and the Electro-Strong Interaction

Lecture 4: Superfluidity

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The Big Picture. Thomas Schaefer. North Carolina State University

Chiral magnetic effect and anomalous transport from real-time lattice simulations

Spontaneous symmetry breaking in particle physics: a case of cross fertilization. Giovanni Jona-Lasinio

The instanton and the phases of QCD

Strongly Correlated Physics With Ultra-Cold Atoms

Holographic model of dense matter in neutron stars

Deconfined Quantum Critical Points

The Standard Model and Beyond

Black holes in D>4 dimensional space-times

Quantum Theory of Matter

FYS 3510 Subatomic physics with applications in astrophysics. Nuclear and Particle Physics: An Introduction

Theory of Nonequilibrium Superconductivity *

Lecture 2: Deconfined quantum criticality

Pions in the quark matter phase diagram

2D Bose and Non-Fermi Liquid Metals

Spontaneous electromagnetic superconductivity of QCD QED vacuum in (very) strong magnetic field

arxiv: v1 [hep-ph] 22 Aug 2011

QCD Phases with Functional Methods

A Review of Solitons in Gauge Theories. David Tong

QCD at finite density with Dyson-Schwinger equations

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

Introduction to Particle Physics. HST July 2016 Luis Alvarez Gaume 1

Condensation of nucleons and quarks: from nuclei to neutron stars and color superconductors

Sound modes and the two-stream instability in relativistic superfluids

Transcription:

Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals.............................. 9 1.4 Quantum statistical mechanics of a particle................ 13 1.5 Few Gaussian integrals............................ 19 1.6 Another take on the path integral for the harmonic oscillator...... 20 Chapter 2 Feynman diagrams in Quantum/Statistical mechanics 27 2.1 Anharmonic oscillators alaqmtextbooks................. 29 2.2 The first Feynman diagrams......................... 32 2.3 Disconnected diagrams............................ 37 2.4 Diagrams in! representation and their re-summation.......... 39 ix

x Chapter 3 Real scalar field and the renormalization group 43 3.1 Path integrals for a scalar field....................... 44 3.2 The Matsubara sums lead to particle/hole interpretation of the diagrams 51 3.3 Weakly interacting scalar field....................... 55 3.4 Symmetry breaking and the Landau theory of the second order phase transitions................................... 58 3.5 More on critical indices........................... 61 3.6 Renormalization group and Wilson s -expansion............ 63 Chapter 4 Complex scalar fields 71 4.1 Phase symmetry and its breaking...................... 72 4.2 The conserved charge and the chemical potential............. 73 4.3 The non-relativistic approximation and normalization.......... 79 4.4 Weakly coupled Bose gas and Bose-Einstein Condensation........ 81 4.5 Renormalized quasiparticles and condensates............... 87 4.6 Summary of the perturbation theory for weakly coupled Bose gas... 91 Chapter 5 Liquid 4 He 95 5.1 History.................................... 95 5.2 Superfluidity in experiments......................... 98 5.3 Elementary excitations............................ 102 5.4 Quasiparticle decays, in weakly coupled Bose gas and in the He-II... 106 5.5 Landau s criterium of superfluidity..................... 111

xi 5.6 Rotation and vortices............................ 113 Chapter 6 Bose-Einstein Condensation of trapped ultracold atoms121 6.1 The history of BEC............................. 122 6.2 Depletion of the condensate......................... 127 6.3 Gross-Pitaevsky equation and repulsive/attractive Bose gas....... 128 6.4 Rotation.................................... 134 Chapter 7 The electron gas 137 7.1 Fermi systems to be discussed....................... 138 7.2 Path integrals and Matsubara sums for fermions............. 140 7.3 Weakly interacting Fermi gas........................ 145 7.4 Cold electron gas............................... 148 7.5 The polarization diagram and the Lindhard function.......... 151 7.6 The strongly coupled electron fluid in graphene.............. 156 Chapter 8 The nuclear matter 159 8.1 The nuclear forces.............................. 160 8.2 The nuclear matter in the relativistic mean field model.......... 164 8.3 Nuclear forces and renormalization group................. 170 8.4 Nuclear matter and the renormalization group.............. 172 8.5 Relativistic mean field and the optical potential.............. 173 Chapter 9 Cooper Pairing and the BCS theory of superconductivity177

xii 9.1 Superconducting metals........................... 178 9.2 Cooper pairing................................ 181 9.3 A continuous renormalization group (RG)................. 184 9.4 Renormalization group and cold Fermi systems.............. 189 9.5 BCS Pairing and Gorkov s abnormal Green functions........... 194 Chapter 10 Pairing in liquid 3 He and in the nuclear matter 199 10.1 Liquid 3 He and Landau Fermi Liquids.................. 200 10.2 Zero sound and the Peierls instability from the re-summed Lindhard diagram.................................... 206 10.3 Superfluidity in 3 He............................. 209 10.4 Pairing in nuclei and nuclear matter.................... 211 Chapter 11 Vortices and the topological matter 219 11.1 The BKT phase transition of the vortex matter in two dimensions... 220 11.2 Vortices in superconductors......................... 227 11.3 Type I and II superconductors....................... 229 11.4 Phase transition in strongly rotating nuclei................ 234 11.5 Glitches of the pulsars........................... 238 Chapter 12 Strongly coupled fermionic gases 243 12.1 Weak and strong coupling regimes in trapped fermionic gases...... 244 12.2 Global phase diagram............................ 246

xiii 12.3 Thermodynamics and kinetics at strong coupling............. 250 Chapter 13 Numerical evaluation of the path integrals 255 13.1 Numerical evaluation of multi-dimensional integrals........... 256 13.2 The first steps: PIMC for few-body systems with distinguishable particles...................................... 260 13.3 Liquid 4 He PIMC simulations: Bose-clusters, condensation and the critical temperature............................... 261 13.4 Path integrals for fermions......................... 270 Chapter 14 Quantum field theories on the lattice and supercomputers 275 14.1 History.................................... 277 14.2 Gauge invariant Abelian theory on the lattice............... 280 14.3 The non-abelian gauge theory on the lattice............... 285 14.3.1 The confining potential....................... 293 Chapter 15 Theory of quark-gluonic plasma 297 15.1 Overview and scales of QGP........................ 298 15.2 The perturbative formalism of QCD.................... 302 15.3 The polarization operator.......................... 305 15.4 Cold quark matter and the perturbation theory.............. 309 15.5 Ring diagram re-summation......................... 311

xiv 15.6 IR divergences and magnetic sector..................... 313 15.7 Where do the perturbative series converge?................ 315 15.8 HTL re-summations and the quasiparticle gas............... 316 15.9 Lattice gauge theory simulations at finite T................ 322 Chapter 16 Quark-Gluon Plasma in experiment 327 16.1 Experimental quest for quark-gluon plasma................ 328 16.2 Mapping the phase diagram......................... 330 16.3 Collective flow and viscosity of QGP.................... 332 16.4 Relativistic Hydrodynamics......................... 335 16.5 The Little Bang versus the Big Bang : sound circles and fluctuations 340 16.6 Phase transitions in the Big Bang: sound cascades and gravity waves. 348 Chapter 17 The QCD vacuum I. Monopoles and confinement 355 17.1 Confinement and the flux tubes....................... 356 17.2 Monopoles in non-abelian theories..................... 361 17.3 Electric-magnetic duality and the RG flow................. 370 17.4 Strongly coupled QGP as a dual plasma................. 375 Chapter 18 The QCD vacuum II. The chiral symmetries and their breaking 385 18.1 Light quarks and the chiral symmetries.................. 387 18.2 The (non-existent) U a (1) chiral symmetry................. 394

xv 18.2.1 The chiral anomaly near the UV cuto.............. 394 18.2.2 Chiral anomalies, the IR approach................. 402 18.3 The Nambu-Iona-Lasinio model...................... 405 18.4 Gauge topology and the chiral symmetry breaking............ 416 Chapter 19 Chiral matter 429 19.1 Electrodynamics in a CP violating matter................. 431 19.2 Chiral magnetic e ect (CME) and the chiral anomaly.......... 435 19.3 Chiral vortical e ect............................. 439 19.4 The chiral waves............................... 440 Chapter 20 Cold quark matter and color superconductivity 443 20.1 Quark Cooper pairs............................. 446 20.2 Topology-induced color superconductivity: the 2SC phase........ 452 20.3 Three flavor QCD: the CFL phase..................... 457 20.4 Magnetic pairing in asymptotically dense matter............. 459 Chapter 21 The QCD vacuum III: Instanton-dyons 465 21.1 Non-zero holonomy and the finite-temperature Higgsing........ 467 21.2 Instanton-dyons and their ensembles.................... 471 21.3 Modifying quark periodicity properties in the Euclidean time...... 478

xvi Chapter 22 Parting comments 485 22.1 The Feynman diagrams and their re-summations............. 485 22.2 Bose-Einstein Condensation and reality of the Cooper pairs...... 490 22.3 Pairing can occur even without the Fermi surface!............ 492 22.4 The topological matter.......................... 493 22.5 Renormalization group flows and dualities................ 495 Bibliography 499