Experiment 4 Radiation in the Visible Spectrum

Similar documents
Physics 197 Lab 11: Spectrometer

Experiment 9. Emission Spectra. measure the emission spectrum of a source of light using the digital spectrometer.

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

Physics 476LW Advanced Physics Laboratory Atomic Spectroscopy

Physics 1CL OPTICAL SPECTROSCOPY Spring 2010

Fingerprinting the Stars Lab

The Emission Spectra of Light

Physics 1C OPTICAL SPECTROSCOPY Rev. 2-AH. Introduction

DAY LABORATORY EXERCISE: SPECTROSCOPY

Experiment 24: Spectroscopy

ASTRO Fall 2012 LAB #7: The Electromagnetic Spectrum

Atomic Emission Spectra

where c m s (1)

Observation of Atomic Spectra

How Do We Get Light from Matter: The Origin of Emission

In this lab you will measure and quantify emission spectra from several different visible light sources.

Laboratory Exercise. Quantum Mechanics

Physics 1CL OPTICAL SPECTROSCOPY Spring 2009

Student Exploration: Bohr Model: Introduction

ACTIVITY 1. Exploring Light from Gases

Visible spectrum 1. Spectroscope. Name:

Lab VI Light Emitting Diodes ECE 476

high energy state for the electron in the atom low energy state for the electron in the atom

Atomic Theory C &03

Emission Spectrum of Atomic Gases. Prelab Questions

EXPERIMENT 17: Atomic Emission

ATOMIC SPECTRA. To identify elements through their emission spectra. Apparatus: spectrometer, spectral tubes, power supply, incandescent lamp.

Instructor Resources

AS 101: Day Lab #2 Summer Spectroscopy

CSUS Department of Chemistry Experiment 9 Chem. 1A

PHYS General Physics II Lab The Balmer Series for Hydrogen Source. c = speed of light = 3 x 10 8 m/s

Spectrum of Hydrogen. Physics 227 Lab

Atomic Spectroscopy. Objectives

Note: Common units for visible light wavelengths are the Angstrom (Å) and the nanometer (nm).

The Spectrophotometer and Atomic Spectra of Hydrogen Physics 246

High Resolution Optical Spectroscopy

Atomic Spectra. d sin θ = mλ (1)

Analyzing Line Emission Spectra viewed through a Spectroscope using a Smartphone

Measuring Planck s Constant By Martin Hackworth

Quantum States and Spectra of Gases

Exercise 5: The electromagnetic spectrum and spectroscopy

ACTIVITY 2 Exploring Light Patterns

Complete all the identification fields below or 10% of the lab value will be deduced from your final mark for this lab.

Emission and Absorption Spectroscopy Background

Student Lab Investigation

Chemistry 212 ATOMIC SPECTROSCOPY

Spectroscopy of Various Light Sources: The Interactions between Light and Matter ASTR 170B1, Spring 2017, Lab #2. 1 Introduction.

Lab 5: Spectroscopy & the Hydrogen Atom Phy248 Spring 2009

( J s)( m/s)

Pizza Box Spectrometer Data & Report

PHYSICS 122/124 Lab EXPERIMENT NO. 9 ATOMIC SPECTRA

ATOMIC SPECTRA. Objective:

APAS Laboratory { PAGE } Spectroscopy SPECTROSCOPY

Practical 1P4 Energy Levels and Band Gaps

THERMAL RADIATION. The electromagnetic radiation emitted by a hot tungsten filament will be studied.

Rydberg constant from atomic spectra of gases

Lab 11: Must what goes in be the same as what comes out? Spectroscopy & Fluorescence in Chlorophyll.

Experiment 12: SPECTROSCOPY: EMISSION & ABSORPTION

Practical 1P4 Energy Levels and Band Gaps

Spectroscopy Minneapolis Community and Technical College v.10.17

Chapter 8. Spectroscopy. 8.1 Purpose. 8.2 Introduction

Physics P202, Lab #12. Rydberg s Constant

Laboratory Atomic Emission Spectrum

Homework on spectroscopy, colors, and light. Answers should be entered on a Scantron form given out in class. This exercise is worth 20 points.

Bright line spectrum questions

Astronomy 101 Lab: Spectra

Pre-Lab Exercises Lab 2: Spectroscopy

The Quantum Model of the Hydrogen Atom

Using the spectrometer

Photoelectric effect

How to Make Photometric & Colorimetric Measurements of Light Sources using an Ocean Optics Spectrometer and SpectraSuite Software

Laboratory Exercise. Atomic Spectra A Kirchoff Potpourri

X-RAY SPECTRA. Theory:

What are the six common sources of light?

EXPERIMENT 12 THE GRATING SPECTROMETER AND ATOMIC SPECTRA

Name(s): Date: Course/Section: Spectroscopy

2. Discrete means unique, that other states don t overlap it. 3. Electrons in the outer electron shells have greater potential energy.

Experiment 3 Electromagnetic Radiation and Atom Interaction

Chapter 5 Light and Matter: Reading Messages from the Cosmos. What is light? Properties of Waves. Waves. The Electromagnetic Spectrum

OPAC 101 Introduction to Optics

The Spectroscopy of Stars

Photoelectric Effect

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

Physics 23 Fall 1998 Lab 4 - The Hydrogen Spectrum

PHY Atomic Spectra

Exp. P-6 Blackbody Radiation

Emission Spectroscopy

DIFFRACTION GRATING. OBJECTIVE: To use the diffraction grating in the formation of spectra and in the measurement of wavelengths.

THE DIFFRACTION GRATING SPECTROMETER

CHEMISTRY SEMESTER ONE

For instance, for a particular star cluster, these data were derived:

Lab 6: Spectroscopy Due Monday, April 10

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Chapter 1. Blackbody Radiation. Theory

The Hydrogen Spectrum

Physics Lab #2: Spectroscopy

THE ATOMIC SPECTRUM OF HYDROGEN

Obtain an optical "bench" setup (there should be three sliding mounts on the calibrated horizontal bar. The setup is shown in the diagram below.

Any first year text, sections on atomic structure, spectral lines and spectrometers

Transcription:

Experiment 4 Radiation in the Visible Spectrum Emission spectra can be a unique fingerprint of an atom or molecule. The photon energies and wavelengths are directly related to the allowed quantum energy states of the system. In the following experiments we will examine the radiation given off by sources radiating in the visible region. We will examine the spectra given off by the following sources incandescent light filament, hydrogen, helium, various light emitting diodes and a laser pointer. You will also be given an unknown gas discharge tube and will need to identify the gas via its spectral emissions Pre Lab 1) Obtain a spectrum for hydrogen, mercury, sodium and neon gas emissions. The spectrum must contain an accurate listing of major emission lines (in nm), not simply a color photo of the emission. 2) Make yourself familiar with the manual for the spectrometer and the software. These are available via the following links http//www.oceanoptics.com/technical/hr4000.pdf http//www.oceanoptics.com/technical/spectrasuite.pdf These documents are also available on Black Board. 3) How does the Ocean Optics spectrometer work? In your answer list its three main components and describe what each component does. 4) You will have to make sure the spectrometer is calibrated. Explain what calibrate means in this case and suggest how to test whether the spectrometer is calibrated. Note1 For each measurement, you must first take a dark spectrum scan. After you take a dark spectrum scan, you can take as many measurement scans as needed. However, if you change any sampling variable (integration time, averaging, smoothing, angle, temperature, fiber size, etc.), you must store new dark spectrum scan. Note 2 All data obtained should be saved in excel form and submitted as part of the lab report Note 3 The questions posed in the lab description are to be answered in the lab report (see lab report instructions below)

Part A Line Spectra Of Gases I) Mercury/Argon spectrum (calibration) 1. Data collection Record and save the spectra for the mercury/ Argon lamp. Using the Ocean Optics spectrometer observe the spectra of your lamp. To operate the Ocean Optics software, double click the icon Ocean Optics Spectrometer on the desktop. In the menu displayed, click Go to start data acquisition. You may start with the initial parameters of integrating time (100ms) and Average (1). Read the manual and find suitable parameters to obtain smooth curves. Save the data on Excel spread sheet for data analysis. 2. Qualitative assessment Describe (in words) the nature of the spectrum. (e.g. is it continuous or discrete). Did you observe any radiation bellow around 300 nm from the discharge tubes? If not why not? 3. Compare the spectrum you have observed to the 'known' spectrum from a physics reference. Make a chart for each gas showing your recorded wavelength, the accepted wavelength for this line, and the difference between these values. 4. You may have noticed in the known spectrum from a physics reference that Mercury has an emission line at 253.7 nm, did you observe this line? If not why not? 5. Describe the purpose of this measurement ( Part A I, hint look at the title of this section) II) Hydrogen Spectrum In this experiment we will examine the radiation given off by a hydrogen discharge tube. Using the Ocean Optics spectrometer observe the spectra of your gas discharge tube by placing it in the power supply (switched OFF, of course, when the tubes are installed or removed). 1. Data collection Record and save the spectra for the hydrogen tube. 2. Qualitative assessment Describe ( in words) the nature of the spectrum. (e.g. is it continuous or discrete). 3. Print out the graph of the spectrum (from excel) and on the graph write down the atomic transition that is producing each peak. For example 3p 3s. 4. Identify as many peaks from the Balmer series as you can. Make a data table of these wavelengths and the corresponding photon energies ( in ev). Make a graph

of 1/λ versus 1/n i 2, where n i is the quantum number of the initial state. The Balmer equation is 1 λ 1 1 R 2 n f n i = 2 Where n f is the quantum number of the final state. 5. From the slope of the graph, determine the Rydberg constant R 6. From the intercept of the vertical axis, and your value of R, determine n f which is the quantum number of the final state. 7. Do the values you obtained for R and n f agree with those stated in the literature? What are some of the reasons that they might be a little bit different? The results for this section (Part A II) will be reported in the scientific paper. III) Molecular Spectra 1. Data Collection Collect and save the spectra from 2 molecular discharge lamps. 2. Qualitative Assessment Describe (in words) the nature of the spectra. How are these spectra different from the spectra you obtained in part I and II? What could be the reason for the difference? Part B Incandescent Light source Our Incandescent light source will be tungsten filament. 1. Data Collection Record and save the spectra for the light bulb when it is operating at its normal brightness. 2. Qualitative Assessment Describe (in words) the nature of the spectrum. (e.g. is it continuous or discrete). Do you notice any unusual features? Do you think is representative of a perfect black body radiation? Why or why not. 3. From the spectrum, estimate the temperature of the filament. This can be done by modeling the filament as a black body radiator. In this case, the Wien displacement law kt= 0.2014 hc/λ max. From your spectra estimate as best as you can what λ max is. Is your result close to what listed in the literature as the temperature of a light bulb? 4. Reduce the voltage across the filament, and repeat Part 3 above. Is λ max the same, less, or greater as in part 3? Is your observation consistent with the change in temperature?

Part C LED spectrum In this experiment we will examine the radiation given of by different Light Emitting Diodes (LED). 1. Data collection For each LED, you will slowly increase the voltage across it. For each step in voltage, you will also record the current through the LED. Keep recording voltages and currents until the LED lights up. Do not put too much voltage, as you might damage the LED. The goal of this exercise is to determine at which voltage the diode starts conducting. The charge of an electron, e, times this starting voltage should be equal to the energy of the photon that is emitted. 2. When the LED is producing light, record and save a spectrum with the spectrometer. 3. Qualitative Assessment Describe (in words) the nature of the spectrum. (e.g. is it continuous or discrete). 4. For each LED, determine the wavelength that has the most counts. This is the characteristic wavelength of the LED. Estimate the Full Width at Half Maximum (FWHM) of the peak in nanometers. This is the range of wavelength for which the counts drop to 1/2 the maximum value to the left and right of the peak. 5. If you examine the graph of current versus voltage for each LED, you will be able to estimate the voltage at which the current starts. This starting voltage times the charge of the electron should equal the energy of the photons emitted. That is ev= hc/ λ 6. Make a graph of voltage V versus 1/ λ for each LED. Do your data lie in a straight line? If so find the slope of the line. Does it agree with the literature value? Part D Laser spectrum In this experiment we will examine the radiation given of by a diode laser. 1. Data Collection Collect and save the spectrum from a laser pointer. BE CAREFUL NOT TO HAVE TOO MUCH LIGHT INTENSITY GOING INTO THE FIBER. For the laser, you will need to put the cloth provided over the laser light to diffuse the light before it enters the optical fiber. 2. Qualitative Assessment Describe (in words) the nature of the spectrum. (e.g. is it continuous or discrete).

3. Quantitative Assessment Print out a graph of the spectrum (from Excel). Determine the wavelength of the peak(s) and estimate the width of the peak(s). What does the width of the peak represents? Part E Florescent lamp In this experiment we will examine the radiation given of by the florescent lights in the classroom. 1. Data Collection Collect and save the spectrum from the florescent lights in the room. 2. What are the main wavelengths (three) present in the spectrum? Are they approximately the same intensity? What colors do these wavelengths correspond to? Why do you think the florescent light manufacturer designed the light to give the spectrum it does. Part F Identification of Unknown Gases Install the tube with the 'mystery' gas, compare to known spectra and identify the gas. Include a paragraph describing your rational for identifying it ( e.g. # of lines, wavelengths, error justification..). Repeat this section for 2 mystery gases.

Lab report The Lab report is due one week after the experiment is completed at the beginning of the lab period. Your grade for Lab reports handed in late will drop by 10 percentage points for each day beyond the due date. During the lab you will work together with other students, however every student will turn in his/her own report written in his/her own words (students who are found to have a similar report, will each receive a zero for that report). The laboratory report should be typed. In your lab report should display all the data you collected and answer the questions in the body of the lab description. You do not need to include Part A Hydrogen spectrum since you will be reporting/reported these results in the scientific paper. Your lab report should have the following form Pre Lab 1). 2) Part A Line Spectra Of Gases I) Mercury spectrum (calibration) Display data ( and or graphs) 2). 3).. III) Molecular Spectra Display data (and or graphs) 2) Part F Identification of Unknown Gases Display data ( and or graphs)