DWARFS IN THE LOCAL REGION

Similar documents
Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

CHEMICAL ABUNDANCE ANALYSIS OF RC CANDIDATE STAR HD (46 LMi) : PRELIMINARY RESULTS

The Composition of the Old, Metal-Rich Open Cluster, NGC 6791

Detailed chemical abundances of M-dwarf planet hosts from APOGEE observations

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

ASTR-1020: Astronomy II Course Lecture Notes Section III

PHYSICAL CHARACTERISTICS OF PLANET-HOSTING STARS AND OPTIMIZATION OF THE EXTRASOLAR PLANET SEARCHES

CNO abundances in the Sun and Solar Twins

ARES+MOOG From EWs to stellar parameters

PARENT STARS OF EXTRASOLAR PLANETS. VI. ABUNDANCE ANALYSES OF 20 NEW SYSTEMS GUILLERMO GONZALEZ,1 CHRIS LAWS,1 SUDHI TYAGI,1 AND B. E.

SpectroWeb: An Interactive Graphical Database of Digital Stellar Spectral Atlases

A list of data for the broadening of metallic lines by neutral hydrogen collisions

High resolution spectroscopy of two metal-poor red giants: HD and HD

Metallicities of M Dwarf Planet Hosts from Spectral Synthesis

Determination of [α/fe] and its Application to SEGUE F/G Stars. Young Sun Lee

Chemical abundances in solar analogs Ricardo López Valdivia

Differential abundances in the HAT-P-4 binary system

WHAT DO RADIAL VELOCITY MEASUREMENTS TELL ABOUT RV TAURI STARS?

Chapter 10 Measuring the Stars

Types of Stars and the HR diagram

arxiv:astro-ph/ v1 18 Apr 2000

Measuring Radial Velocities of Low Mass Eclipsing Binaries

High resolution spectroscopic characterization of the FGK stars in the solar neighbourhood

Parallax: Measuring the distance to Stars

Signatures of Peculiar Supernova Nucleosynthesis in Extremely α-enhanced Metal-poor Stars

arxiv: v1 [astro-ph.im] 6 Nov 2017

Outline. c.f. Zhao et al. 2006, ChJA&A, 6, 265. Stellar Abundance and Galactic Chemical Evolution through LAMOST Spectroscopic Survey

Metal Poor Stars: A Review for Non-Observers. Charli Sakari

Chemical abundances of planet-host stars. Results for alpha and Fe-group elements. 1 With probably the only exception being the studies of beryllium

Formation and Evolution of Planetary Systems

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11

5. A particular star has an angle of parallax of 0.2 arcsecond. What is the distance to this star? A) 50 pc B) 2 pc C) 5 pc D) 0.

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

THE ABSOLUTE DIMENSIONS OF THE OVERCONTACT BINARY FI BOOTIS

Chapter 7: From theory to observations

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

Oxygen in the Early Galaxy: OH Lines as Tracers of Oxygen Abundance in Extremely Metal-Poor Giant Stars

LI ABUNDANCES IN PTPS RED CLUMP GIANTS

Structure & Evolution of Stars 1

BRASS. The Belgian Repository of fundamental Atomic data and Stellar Spectra. Contact day meeting 19th September 2017

Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex

Stars: Stars and their Properties

Universe. Tenth Edition. The Nature of the Stars. Parallax. CHAPTER 17 The Nature of Stars

THE PLANET-METALLICITY CORRELATION 1

SISD Training Lectures in Spectroscopy

arxiv: v1 [astro-ph.ga] 20 Jun 2013

arxiv:astro-ph/ v1 16 Dec 2006

Astronomy. The Nature of Stars

arxiv:astro-ph/ v1 14 Dec 1998

Measuring the Properties of Stars (ch. 17) [Material in smaller font on this page will not be present on the exam]

Tests of MATISSE on large spectral datasets from the ESO Archive

A Survey of Stellar Families Multiplicity of Solar-type Stars

Sun. Sirius. Tuesday, February 21, 2012

Exoplanet Host Stars

arxiv:astro-ph/ v1 28 Feb 2003

V. Stars.

Do the Large Magellanic Cloud and the Milky Way Globular Clusters Share a Common Origin?

Equivalent Width Abundance Analysis In Moog

Characterizing Stars

Thorium (Th) Enrichment in the Milky Way Galaxy

Characterizing Stars. Guiding Questions. Parallax. Careful measurements of the parallaxes of stars reveal their distances

From theory to observations

SUPPLEMENTARY INFORMATION

CHEMICAL ABUNDANCES OF WEAK T TAURI STARS

The Cosmic Distance Ladder

ASTRONOMY AND ASTROPHYSICS. Line formation in solar granulation. II. The photospheric Fe abundance

arxiv: v1 [astro-ph] 22 Oct 2007

The Gaia-ESO Survey: Detailed Abundances in the Globular Cluster NGC 4372

Chemical abundance analysis of the symbiotic red giants

The Family of Stars. Chapter 13. Triangulation. Trigonometric Parallax. Calculating Distance Using Parallax. Calculating Distance Using Parallax

SDSS-IV MaStar: a Large, Comprehensive, and High Quality Empirical Stellar Library

PoS(NIC XI)301. Andreas Korn. IFA, Uppsala University. Heidelberg,

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

KEELE UNIVERSITY SCHOOL OF CHEMICAL AND PHYSICAL SCIENCES Year 1 ASTROPHYSICS LAB. WEEK 1. Introduction

Science Olympiad Astronomy C Division Event National Exam

arxiv: v1 [astro-ph.ep] 23 Oct 2018

arxiv:astro-ph/ v1 15 Oct 2004

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

FIA0221: Taller de Astronomía II. Lecture 14 Spectral Classification of Stars

The Milky Way Galaxy (ch. 23)

arxiv:astro-ph/ v1 25 Aug 2006

Star-planet connection:

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Outline. ESA Gaia mission & science objectives. Astrometric & spectroscopic census of all stars in Galaxy to G=20 mag.

Exoplanets Atmospheres. Characterization of planetary atmospheres. Photometry of planetary atmospheres from direct imaging

The Sun and the Stars

ABUNDANCES OF RED GIANTS IN OLD OPEN CLUSTERS. II. BERKELEY 17

Lecture 12: Distances to stars. Astronomy 111

TECHNICAL REPORT. Doc #: Date: Rev: JWST-STScI , SM-12 August 31, Authors: Karl Gordon, Ralph Bohlin. Phone:

Measuring Radial & Tangential Velocity. Radial velocity measurement. Tangential velocity measurement. Measure the star s Doppler shift

Electromagnetic Spectra. AST443, Lecture 13 Stanimir Metchev

arxiv: v1 [astro-ph.ep] 13 Jul 2015

Chemistry & Dynamics of the Milky Way From Before Hipparcos Until Gaia

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Searching for Other Worlds

Chemical Abundance Analysis of the Symbiotic Red Giants

Astr 5465 Feb. 6, 2018 Today s Topics

Transcription:

The Astronomical Journal, 131:3069 3092, 2006 June # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DWARFS IN THE LOCAL REGION R. Earle Luck 1 and Ulrike Heiter 2 Received 2006 January 24; accepted 2006 March 3 ABSTRACT We present lithium, carbon, and oxygen abundance data for a sample of nearby dwarfs a total of 216 stars including samples within 15 pc of the Sun, as well as a sample of local close giant planet (CGP) hosts (55 stars) and comparison stars. The spectroscopic data for this work have a resolution of R 60; 000, a signal-to-noise ratio >150, and spectral coverage from 475 to 685 nm. We have redetermined parameters and derived additional abundances (Z > 10) for the CGP host and comparison samples. From our abundances for elements with Z > 6 we determine the mean abundance of all elements in the CGP hosts to range from 0.1 to 0.2 dex higher than nonhosts. However, when relative abundances ([x/fe]) are considered we detect no differences in the samples. We find no difference in the lithium contents of the hosts versus the nonhosts. The planet hosts appear to be the metal-rich extension of local region abundances, and overall trends in the abundances are dominated by Galactic chemical evolution. A consideration of the kinematics of the sample shows that the planet hosts are spread through velocity space; they are not exclusively stars of the thin disk. Key words: solar neighborhood stars: abundances Online material: machine-readable tables 1 Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7215; luck@fafnir.astr.cwru.edu. 2 Department of Astronomy and Space Physics, Uppsala University, Box 515, SE-75120 Uppsala, Sweden; ulrike@astro.uu.se. 3069 1. INTRODUCTION This paper and its predecessors (Heiter & Luck 2003; Luck & Heiter 2005, hereafter HL03 and LH05, respectively) are parts of the former NSF/ NASA Nearby Stars Project. In this context our specific aim is to examine the overall abundance properties of the local region to determine the standard of normalcy (at least in terms of abundances). We wish to do this on a very local scale, 15 pc, to examine in detail the abundance distribution. On a larger scale, out to 100 pc, we wish to statistically sample the volume using as probes both solar-type dwarfs and K giants. The primary goal is an increased understanding of the local region about the Sun. We seek the mean metallicity of the region and to determine if there are any believable temporal, spatial, or stellar characteristic related variations in the metallicity. If one considers the local region as a typical volume, then these results can be applied to other locations and thus will increase our understanding of galactic evolution. This paper further considers the 15 pc sample of LH05 and the stars of HL03 not contained in LH05. The latter stars, numbering about 100, are either close giant planet (CGP) hosts or comparison objects. It must be noted at this point that other groups are engaged in similar pursuits: notably the work presented in Allende Prieto et al. (2004), Fuhrmann (2004), and Fischer & Valenti (2005). Photometric and radial velocity studies of the local region are also in progress or have been recently completed, most notably that of Nordström et al. (2004). Given the amount of information available about these stars and the redundancy factor in the analyses, we endeavor to present our new results with brevity and point specifically at what we consider to be the crux of these new results. The parent sample for this program is those stars in the Hipparcos parallax catalog that are within 100 pc of the Sun or that are known CGP hosts (1 star in this sample is not in the Hipparcos catalog, BD 10 3166, which is a CGP host). This catalog contains 22,010 stars obviously an impossibility for a highresolution spectroscopic survey. The subset of stars with an origin in the Hipparcos catalog is those stars at distances less than 15 pc from the Sun and with absolute magnitudes greater than 7.5 that are north of declination 30N0. The Hipparcos parallax catalog contains 273 stars within 15 pc. Applying the declination limit and absolute magnitude limit(s) reduces the list to about 120 stars. This sample comprises a significant fraction of all stars within 15 pc of the Sun. These stars are those that were considered in LH05. The CGP hosts are all planet hosts considered by HL03: both the ones analyzed in the work proper and those within the appendix. HL03 analyzed a comparison sample of stars drawn from lists of stars that do not have a known companion CGP (at a rather strict level) and that have spectral characteristics comparable to the CGP hosts. In addition, we gave abundances and parameters for a number of very strong lined dwarfs (that is, dwarfs imputed to be metal-rich). Here, however, we take as our two samples the totality of the available stars subdivided into CGP hosts and comparison stars. Our rationale for this lies in two statements found in Marcy et al. (2005): Among the nearest FGK main-sequence stars (d < 40 pc) the yet undiscovered giant planets typically reside beyond 1 AU because the giant planets within 1 AU have already been found and Most of the remaining undetected planets orbiting nearby FGK stars (d < 30 pc) either have masses less than 1 M Jup or reside in orbits beyond 3 AU,... Since the bulk of the comparison objects either are from the 15 pc sample or from stars known to not harbor CGPs, or fall within 40 pc of the Sun, it is unlikely that the comparison sample has any CGPs remaining within it. The possible exceptions are those stars in the mid- F-dwarf range (typically hotter than 6250 K) that are intrinsically brighter and that can reside at larger distances (up to about 80 pc). In Table 1 we present the sample of CGP hosts and related stars to be considered here and some basic information about them. Similar information about the stars of the 15 pc sample can be found in Table 1 of LH05 and here in Table 3, which gives the list of 15 pc objects along with parameters and some abundance

TABLE 1 Program Stars: Planet Hosts and Comparison Stars HIC HD HR Other Spectral Type m M B V Parallax d Host 1499... 1461 72 G0 V 6.47 4.62 0.674 42.67 23.4 4151... 5015 244 F8 V 4.80 3.46 0.540 53.85 18.6 6643... 8574 F8 7.12 3.90 0.577 22.65 44.2 H 7276... 9562 448 G2 IV 5.75 3.39 0.639 33.71 29.7 9353... 12235 582 G2 IV 5.89 3.43 0.610 32.18 31.1 12048... 16141 G5 IV 6.83 4.05 0.670 27.85 35.9 H 13769... 18445 K2 V 7.84 5.79 0.960 38.87 25.7 B 14954... 19994 962 F8 V 5.07 3.32 0.575 44.69 22.4 H 17747... 23596 F8 7.25 3.67 0.634 19.24 52.0 H 19076... 25680 1262 G5 V 5.90 4.78 0.620 59.79 16.7 19335... 25998 1278 F7 V 5.52 3.87 0.520 46.87 21.3 19832... BD 04 0782 K5 V 9.39 7.84 1.170 48.95 20.4 B 20723... 28185 G5 7.80 4.81 0.750 25.28 39.6 H 21832... 29587 G2 V 7.29 5.03 0.633 35.31 28.3 B 24205... 33636 G0 7.00 4.71 0.588 34.85 28.7 H 26381... 37124 G4 IV V 7.68 5.07 0.667 30.08 33.2 H 27253... 38529 1988 G4 V 5.95 2.81 0.773 23.57 42.4 H 28767... 40979 F8 6.74 4.13 0.573 30.00 33.3 H 32439... 46588 2401 F8 V 5.44 4.18 0.525 56.02 17.9 32480... 48682 2483 G0 V 5.24 4.15 0.575 60.56 16.5 33212... 50554 F8 6.84 4.38 0.582 32.23 31.0 H 33719... 52265 2622 G0 III IV 6.29 4.05 0.572 35.63 28.1 H 34017... 52711 2643 G4 V 5.93 4.53 0.595 52.37 19.1 40687... 68988 G0 8.20 4.35 0.652 17.00 58.8 H 40843... 69897 3262 F6 V 5.13 3.84 0.487 55.17 18.1 42030... 72659 G0 7.46 3.91 0.612 19.47 51.4 H 42172... 72945 3395 ADS 6886A F8 V 5.91 3.79 0.530 37.68 26.5 42173... 72946 3396 ADS 6886B G5 V 7.25 5.40 0.710 42.71 23.4 42430... 73752 3430 G3/G5 V 5.05 3.55 0.720 50.20 19.9 42723... 74156 G0 7.61 3.56 0.585 15.49 64.6 H 43726... 76151 3538 G3 V 6.01 4.85 0.661 58.50 17.1 44897... 78366 3625 F9 V 5.95 4.54 0.585 52.25 19.1 45982... 80606 BDS 5037B G5 8.93 5.10 0.765 17.13 58.4 H 45983... 80607 BDS 5037A G5 9.07 3.96 0.828 9.51 105.2 46454... 81858 3754 F9 V 5.40 2.72 0.605 29.05 34.4 47007... 82943 G0 6.54 4.35 0.623 36.42 27.5 H 48113... 84737 3881 G2 V 5.08 3.75 0.619 54.26 18.4 48351... 85380 3901 F8 V 6.42 3.18 0.577 22.45 44.5 50013... 88595 4005 F7 V 6.45 3.33 0.494 23.75 42.1 50786... 89744 4067 F7 V 5.73 2.78 0.531 25.65 39.0 H 52409... 92788 G5 7.31 4.76 0.694 30.94 32.3 H 55846... 99491 4414 ADS 8162A K0 IV 6.49 5.25 0.778 56.59 17.7 55848... 99492 ADS 8162B K2 V 7.58 6.31 1.002 55.59 18.0 H 56809... 101177 4486 G0 V 6.29 4.45 0.566 42.94 23.3 57001... 101563 4498 G2 III/IV 6.44 3.35 0.651 24.08 41.5 59610... 106252 G0 7.41 4.54 0.635 26.71 37.4 H 61028... 108874 G5 8.76 4.58 0.738 14.59 68.5 H 62145... 110833 K3 V 7.01 6.12 0.936 66.40 15.1 B 62207... 110897 4845 G0 V 5.95 4.75 0.557 57.57 17.4 62523... 111395 4864 G7 V 6.29 5.12 0.703 58.23 17.2 63366... 112758 K0 V 7.54 5.93 0.769 47.60 21.0 B 64426... 114762 F9 V 7.30 4.26 0.525 24.65 40.6 H 65721... 117176 5072 G5 V 4.97 3.68 0.714 55.22 18.1 H 67275... 120136 5185 F7 V 4.50 3.54 0.508 64.12 15.6 H 69881... 125184 5353 F9 V 6.47 3.89 0.723 30.47 32.8 70310... 126141 5387 F5 V 6.22 3.46 0.411 28.00 35.7 70319... 126053 5384 G1 V 6.25 5.02 0.639 56.82 17.6 71395... 128311 K0 7.48 6.38 0.973 60.35 16.6 H 72339... 130322 K0 III 8.04 5.67 0.781 33.60 29.8 H 74432... 135101A 5659 ADS 9535A G5 V 6.69 4.42 0.680 35.14 28.5 74434... 135101B 5659 ADS 9535B G7 V 7.53 4.75 0.730 27.79 36.0 74500... 134987 5657 G5 V 6.47 4.42 0.691 38.98 25.7 H 74948... 136118 F8 6.93 3.34 0.553 19.13 52.3 H 77152... 140913 G0 V 8.06 4.66 0.612 20.85 48.0 B 77740... 141937 G2/G3 V 7.25 4.63 0.628 29.89 33.5 H 78400... 143333 5954 F7 V 5.47 2.89 0.517 30.49 32.8

DWARFS IN LOCAL REGION 3071 TABLE 1 Continued HIC HD HR Other Spectral Type m M B V Parallax d Host 78459... 143761 5968 G2 V 5.39 4.18 0.612 57.38 17.4 H 79248... 145675 K0 V 6.61 5.32 0.877 55.11 18.2 H 89844... 168443 G5 6.92 4.03 0.724 26.40 37.9 H 90004... 168746 G5 7.95 4.78 0.713 23.19 43.1 H 90485... 169830 6907 F8 V 5.90 3.10 0.517 27.53 36.3 H 93746... 177830 K0 7.18 3.33 1.093 16.94 59.0 H 94076... 178911 7272 ADS 12101A G1 V 6.70 3.25 0.643 20.42 49.0 94075... 178911 7272 ADS 12101B G5 7.98 4.63 0.730 21.40 46.7 H 94336... 179957 ADS 12169B G4 V 6.75 4.77 0.666 40.16 24.9 94336... 179958 7294 ADS 12169A G4 V 6.57 4.59 0.650 40.16 24.9 94645... 179949 7291 F8 V 6.25 4.09 0.548 36.97 27.1 H 95447... 182572 7373 G8 IVvar 5.17 4.27 0.761 66.01 15.2 96081... 184151 F5 V 6.87 2.37 0.456 12.61 79.3 96895... 186408 7503 16 Cyg A G2 V 5.99 4.32 0.643 46.25 21.6 96901... 186427 7504 16 Cyg B G5 V 6.25 4.60 0.661 46.70 21.4 H 97336... 187123 G5 7.83 4.43 0.661 20.87 47.9 H 97675... 187691 7560 F8 V 5.12 3.68 0.563 51.57 19.4 98066... 188376 7597 G3/G5 III 4.70 2.82 0.748 42.03 23.8 98714... 190228 G5 IV 7.30 3.33 0.793 16.10 62.1 H 99711... 192263 K0 7.79 6.30 0.938 50.27 19.9 H 100017... 193664 7783 G3 V 5.91 4.69 0.602 56.92 17.6 100269... 193555 F8 V 6.77 2.25 0.568 12.47 80.2 100970... 195019 G3 IV V 6.87 4.01 0.662 26.77 37.4 H 102531... 197963 7947 ADS 14279B F7 V 5.15 2.66 0.495 31.69 31.6 102532... 197964 7948 ADS 14279A K1 IV 4.27 1.81 1.042 32.14 31.1 104903... 202206 G6 V 8.08 4.75 0.714 21.58 46.3 H 108859... 209458 F8 7.65 4.29 0.594 21.24 47.1 H 109378... 210277 G0 6.54 4.90 0.773 46.97 21.3 H 112447... 215648 8665 F7 V 4.20 3.15 0.502 61.54 16.3 112670... 216172 8687 ADS 16291AB F5 6.19 2.21 0.440 16.01 62.5 112670... 216172 8687 ADS 16291AB F5 6.19 2.21 0.440 16.01 62.5 113357... 217014 8729 G5 V 5.45 4.52 0.666 65.10 15.4 H 113421... 217107 8734 G8 IV 6.17 4.70 0.744 50.71 19.7 H 116164... 221445 F5 6.80 2.37 0.505 13.00 76.9 116906... 222582 G5 7.68 4.57 0.648 23.84 42.0 H BD 10 3166 K0 V 10.00 0.900 H Notes. These are the stars from HL03 that are not within 15 pc of the Sun. The m and M columns are the apparent and absolute V magnitudes, respectively. The parallaxes are from Hipparcos ( Perryman et al. 1997 ). The d column is the distance in parsecs. Host codes are ( H ) CGP host and ( B) brown dwarf host. data. All of the stars in Tables 1 and 3 have published abundances. Our goals here are (1) to analyze the remaining HL03 stars using the procedures of LH05 to homogenize the data; (2) to give detailed abundances for the stars of Table 1, spanning sodium through europium; abundances for the same elements are available for the stars of the 15 pc sample in LH05; and (3) to derive using spectrum synthesis lithium, carbon, and oxygen abundances for the complete sample. 2. SPECTROSCOPIC MATERIAL High signal-to-noise ratio (S/ N) spectra were obtained during several observing runs between 1997 and 2003. These spectra (and reductions including the equivalent width database) are the same as those used in HL03 and LH05, in which details (dates, etc.) can be found concerning the spectra. For all observations we used the Sandiford Cassegrain Echelle Spectrograph ( McCarthy et al. 1993) attached to the 2.1 m telescope at McDonald Observatory. The spectra continuously cover a wavelength range from about 484 to 700 nm, with a resolving power of about 60,000. Typical S/N values for the spectra are in excess of 150. Each night we also observed a broad-lined B star to enable cancellation of telluric lines where necessary with a S/N exceeding that of the program stars. We used IRAF 3 to perform CCD processing, scattered light subtraction, and echelle order extraction. For all further reductions a Windows-based graphical package (ASP) developed by R. E. L. was used. This includes Beer s law removal of telluric lines, smoothing with a fast Fourier transform procedure, continuum normalization, and wavelength calibration using template spectra. Finally, equivalent widths (W k ) were determined using the Gaussian approximation to the line profile. For lines with multiple measurements, average fractional differences in W k are in general lower than 15% for 10 m8 < W k < 20 m8, lower than 10% for 20 m8 < W k < 30 m8, and lower than 5% for W k > 30 m8. A comparison with published values indicates agreement at the 3% level for most stars (see Fig. 2 of HL03). Only lines with equivalent widths between 10 and 200 m8 were used for the analysis. To enable a differential analysis, we obtained a solar flux spectrum using Callisto as the reflector. We used the same spectrograph and reduction procedure as for our program stars. The measured equivalent widths are in reasonable agreement with 3 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

3072 LUCK & HEITER that determined by other authors from different sources, as shown in Figure 3 of HL03. 3. METHODS 3.1. Parameters and Metal Abundances This analysis follows (on the whole) the precepts laid out in HL03. The major building blocks of the analysis in addition to the spectroscopic data are atmospheric models and atomic data, starting atmospheric parameters, traditional spectroscopic criteria to determine final effective temperatures, gravities, microturbulences, and finally, the determination of elemental abundances. The model atmospheres used here were computed using the prior generation MARCS75 code (Gustafsson et al. 1975). While not a current state of the art model atmosphere generator, this code provides continuity with a wide range of previous analyses, and it has been shown that abundances generated by these models are in good agreement with those generated by other codes (HL03). As a point of reference, the model used to generate the data for the solar differential analysis was also a MARCS75 model with T ea ¼ 5770 K, log g ¼ 4:44, and V t ¼ 0:8 kms 1 (Grevesse & Sauval 1999). The atomic data for this project were assembled from a variety of laboratory sources. Bulk sources for oscillator strengths include Fuhr et al. (1988), Martin et al. (1988), and other individual sources too numerous to enumerate. These g f-values are used to determine imputed solar abundances on a per-line basis that are in turn then used to determine the differential abundances of our program stars. Line damping in F/G/K dwarfs is dominated by van der Waals damping, for which we have used the coefficients of Barklem et al. (2000) when available and have otherwise computed from the Unsöld approximation ( Unsöld 1938). Starting atmospheric parameters for the stars reanalyzed here (Table 1) were taken from our previous analysis (HL03). Final parameters were derived by enforcing traditional spectroscopic criteria for effective temperature, gravity, and microturbulence. Lines of Fe i were forced to yield zero slope in the relations between total iron abundance and excitation potential by manipulating the model effective temperature. Simultaneously, the total abundances of iron as predicated from Fe i and Fe ii were forced into equality using the model gravities. Along with the previous two forcing operations, the slope of the Fe i abundance versus equivalent width relation was minimized, with a target of zero slope. The major departure from HL03 in this study (as in LH05) is the use of an interactive line editing procedure instead of the blind statistical process used previously. The previous procedure was to use a 2 clip (computed relative to a simple mean) on the iron abundances determined from the raw data, except for the three coolest stars in the sample of HL03, for which additional lines were eliminated manually. Our current procedure is to interactively edit the raw data by visual examination of the various relations (at the best-fitting atmospheric parameters as determined from the raw data). The visual process enables one to allow for nonlinear trends in the data, determine if there are untoward trends in items such as abundance versus wavelength (indicative of a continuum problem if present), and check how elimination of lines in one relation (such as abundance vs. excitation potential) affects another (abundance vs. equivalent width). As we see below when we compare these results to those of HL03, this difference in technique leads only to minor differences in the derived abundances. Redetermined parameters and abundance data for Fe (and light-element abundances) are given in Table 2 for the CGP host stars and related objects. Table 3 carries similar information (taken from LH05 except for the light elements, which are derived here) for the 15 pc sample. The internal uncertainty in the spectroscopically determined effective temperature is of order 0.005 in terms of ¼ 5040/T. This is determined from the uncertainty in the abundance versus potential slope. At 5000 K this translates to 25 K, while at 6000 K the error is 35 K. After consideration of the uncertainty due to the editing process, we feel that the actual uncertainty is more properly set at the 100 K level, and we use that as the uncertainty in all further discussions. For gravities the uncertainty is determined by consideration of how much difference can be tolerated between the total iron abundance as given by Fe i versus Fe ii. Allowing a difference no larger than 0.05 dex yields an uncertainly of 0.1 in log g. The microturbulent velocities (V t ) are determined by minimizing the slope in the Fe i abundance equivalent width relation. Nominally the minimized slope value should be 0. As shown by LH05 and Allende Prieto et al. (2004), the value of the microturbulence depends strongly on ; the sense is that as decreases, so does V t. This means that the thermal velocity grows increasingly important, finally dominating the Doppler-broadening velocity. At about 5000 K we find that the abundances of individual Fe i lines are relatively insensitive to V t : a change of 0.3 to 0.8 km s 1 in the microturbulent velocity changes the abundance by only 0.05 dex. This is fortunate, as the formal solution forcing the slope to 0 properly demands a negative microturbulence in some cases. These cases, common below T ea ¼ 5000 K, also show little change in the slope as the microturbulence varies. In HL03 we set these values to V t ¼ 0, while here we decided that 0.5 km s 1 would be more realistic. The choice fortunately has little effect on the final abundances. The final quoted abundances are differential with respect to the Sun. Mean abundances in the form [x/h], where x is a particular element (Ca, for example), are given in Tables 4 and 5 for the CGP host dwarfs and related objects. Statistics for the abundances [x/fe] and [x/h] over all stars are given in Table 6. The statistics are broken down into three groups: brown dwarf hosts, CGP hosts, and objects not known to be hosts. Details on the abundances [x/h] per species (mean, standard deviation, and number of lines) are given in Table 7. Mean and detailed abundances for the 15 pc sample can be found in LH05 Tables 5 and 6. 3.2. Syntheses To derive lithium, carbon, and oxygen abundances for our total sample, we have employed spectrum synthesis techniques. For the lithium feature we have used all components of 7 Li (using the data presented by Andersen et al. 1984) to match the observed profiles. These abundances are given in Tables 2 and 3 along with a code indicating the quality of fit: A = excellent to D = poor, while L indicates that the abundance is an upper limit. To demonstrate the quality of the fits and spectroscopic data, we show in Figure 1 three examples of spectrum fits to the lithium feature. We note that a fit to lithium has been done for our solar spectrum using a MARCS model for the Sun. Our synthesis yields a lithium abundance for the Sun of 0.85 (log, where log H ¼ 12). This is in fair agreement (considering the differences in spectra and models) with the best current value of 1.05 (Asplund et al. 2005a). To derive carbon abundances we have used C i lines at 505.2, 538.0, and 658.7 nm and Swan system C 2 at 513.5 nm. These lines are all of moderate strength (1 6 nm) in F/G dwarfs and thus can be synthesized with good precision. For the atomic lines we have used the oscillator strengths of Biémont et al. (1993).

TABLE 2 Parameter and Abundance Data for Planet Hosts and Comparison Sample ID (K) log g (cm s 2 ) V t (km s 1 ) [Fe/H] N V M (km s 1 ) Type Host Li Code h[c/h]i h[c/fe]i h[o/h]i h[o/fe]i d HR 72... 5708 4.28 0.50 0.21 0.04 345 0.5 G 0.89 L 0.05 0.16 0.07 0.03 0.24 0.01 HR 244... 6235 4.43 1.55 0.07 0.05 293 7.0 R 1.17 L 0.03 0.10 0.04 0.14 0.07 0.01 HD 8574... 6112 4.38 1.42 0.03 0.05 314 3.0 G H 2.54 A 0.04 0.01 0.01 0.09 0.12 0.00 HR 448... 5878 4.18 1.18 0.20 0.05 384 3.5 G 2.44 A 0.20 0.01 0.08 0.13 0.07 0.01 HR 582... 6202 4.43 1.56 0.33 0.06 369 6.0 R 0.95 L 0.30 0.03 0.09 0.28 0.05 0.00 HD 16141... 5740 4.14 0.95 0.13 0.04 342 2.0 G H 1.35 B 0.09 0.04 0.05 0.15 0.02 0.01 HD 18445... 5244 4.61 1.28 0.01 0.10 294 6.0 R B 0.36 L 0.11 0.12 0.04 0.17 0.18 0.01 HR 962... 6165 4.31 1.54 0.24 0.06 338 9.0 R H 2.00 C 0.20 0.04 0.07 0.15 0.09 0.01 HD 23596... 6038 4.39 1.17 0.23 0.05 406 2.5 G H 2.66 A 0.20 0.03 0.05 0.00 0.23 0.01 HR 1262... 5912 4.57 1.22 0.02 0.03 310 3.0 G 2.43 A 0.03 0.05 0.04 0.15 0.17 0.01 HR 1278... 6575 4.85 2.18 0.32 0.10 243 18.0 R 3.15 A 0.05 0.27 0.12 0.26 0.06 0.01 HIC 19832... 5218 4.33 1.97 0.02 0.24 320 3.0 G B 1.01 C 0.16 0.14 0.16 0.24 0.22 0.01 HD 28185... 5692 4.46 0.50 0.28 0.08 443 0.5 G H 0.72 L 0.22 0.07 0.05 0.05 0.23 0.01 HD 29587... 5645 4.55 0.60 0.62 0.03 252 2.0 G B 0.07 L 0.40 0.23 0.07 0.13 0.49 0.01 HD 33636... 6073 4.64 1.20 0.10 0.04 304 3.0 G H 2.49 A 0.17 0.07 0.08 0.14 0.04 0.01 HD 37124... 5495 4.34 0.30 0.48 0.04 301 1.0 G H 0.63 L 0.29 0.20 0.12 0.27 0.21 0.02 HR 1988... 5714 4.04 1.38 0.42 0.08 419 3.5 G H 0.51 L 0.36 0.06 0.08 0.44 0.02 0.01 HD 40979... 6242 4.61 1.30 0.20 0.05 331 7.0 R H 2.88 A 0.02 0.22 0.22 0.01 0.21 0.01 HR 2401... 6320 4.63 1.56 0.11 0.06 310 7.0 R 2.61 A 0.04 0.07 0.03 0.22 0.11 0.01 HR 2483... 6155 4.5 1.29 0.10 0.05 354 5.0 R 2.63 A 0.05 0.05 0.01 0.09 0.02 0.01 HD 50554... 6110 4.57 1.30 0.04 0.04 336 3.0 G H 2.50 A 0.07 0.03 0.05 0.07 0.11 0.01 HR 2622... 6134 4.47 1.26 0.17 0.05 366 3.5 G H 2.70 A 0.14 0.04 0.07 0.12 0.05 0.01 HR 2643... 6015 4.55 1.23 0.12 0.03 257 2.5 G 1.97 A 0.15 0.03 0.07 0.10 0.02 0.01 HD 68988... 6044 4.51 1.45 0.36 0.06 401 3.0 G H 2.20 A 0.37 0.01 0.06 0.30 0.06 0.01 HR 3262... 6480 4.62 1.72 0.30 0.04 216 7.0 R 2.78 A 0.20 0.11 0.07 0.07 0.24 0.01 HD 72659... 5999 4.36 1.35 0.06 0.04 356 2.0 G H 2.23 A 0.03 0.03 0.04 0.01 0.07 0.01 HR 3395... 6392 4.63 1.59 0.06 0.04 275 6.0 G 3.22 A 0.12 0.06 0.06 0.05 0.02 0.01 HR 3396... 5600 4.4 0.40 0.16 0.04 351 2.0 G 1.23 C 0.01 0.17 0.01 0.03 0.14 0.01 HR 3430... 5856 4.36 1.26 0.39 0.07 374 3.5 G 1.69 A 0.37 0.02 0.05 0.32 0.07 0.01 HD 74156... 6049 4.37 1.21 0.09 0.04 344 3.0 G H 2.46 A 0.07 0.02 0.02 0.24 0.15 0.01 HR 3538... 5765 4.44 0.85 0.08 0.03 379 2.5 G 1.79 A 0.09 0.01 0.04 0.05 0.03 0.01 HR 3625... 6061 4.62 1.28 0.01 0.03 252 3.0 G 2.38 A 0.08 0.09 0.02 0.00 0.01 0.01 HD 80606... 5708 4.39 0.87 0.48 0.05 399 2.0 G H 1.07 L 0.30 0.19 0.12 0.31 0.17 0.01 HD 80607... 5639 4.39 0.64 0.52 0.08 428 2.0 G 0.64 L 0.31 0.21 0.07 0.23 0.29 0.01 HR 3754... 5991 4.17 1.49 0.03 0.04 346 3.5 G 2.00 A 0.01 0.02 0.03 0.09 0.12 0.01 HD 82943... 5927 4.36 0.90 0.23 0.04 358 2.0 G H 2.32 A 0.17 0.06 0.08 0.15 0.08 0.00 HR 3881... 5946 4.3 1.23 0.09 0.04 372 2.5 G 2.27 A 0.09 0.00 0.05 0.03 0.06 0.00 HR 3901... 6162 4.36 1.50 0.10 0.05 351 6.0 R 1.45 L 0.11 0.01 0.03 0.18 0.08 0.01 HR 4005... 6506 4.54 1.85 0.09 0.05 282 8.0 R 1.80 C 0.10 0.01 0.06 0.25 0.16 0.01 HR 4067... 6311 4.37 1.78 0.22 0.07 284 10.0 R H 2.05 A 0.21 0.02 0.10 0.22 0.01 0.01 HD 92788... 5845 4.43 1.00 0.38 0.05 347 2.5 G H 1.10 L 0.28 0.10 0.08 0.36 0.02 0.01 HR 4414... 5585 4.45 0.70 0.44 0.07 423 2.0 G 0.60 L 0.27 0.17 0.05 0.04 0.40 0.01 HD 99492... 5250 4.52 1.24 0.36 0.10 350 2.0 G H 0.56 L 0.25 0.11 0.32 0.37 0.01 0.08 HR 4486... 6040 4.61 1.34 0.21 0.04 296 2.5 G 2.24 A 0.20 0.01 0.06 0.16 0.06 0.01 HR 4498... 5905 4.14 1.34 0.02 0.07 386 3.5 G 1.17 L 0.17 0.19 0.06 0.07 0.05 0.01 HD 106252... 5911 4.46 1.10 0.10 0.04 321 2.5 G H 1.72 B 0.01 0.10 0.04 0.20 0.30 0.01 HD 108874... 5747 4.45 1.11 0.31 0.05 381 2.5 G H 1.00 D 0.20 0.12 0.12 0.21 0.10 0.01 HD 110833... 5143 4.54 0.50 0.16 0.10 424 0.5 G B 0.57 D 0.09 0.08 0.04 0.03 0.19 0.06 HR 4845... 5947 4.59 1.13 0.57 0.05 240 2.0 G 1.95 A 0.49 0.08 0.01 0.10 0.47 0.01 HR 4864... 5656 4.48 0.77 0.10 0.05 423 2.0 G 1.40 B 0.11 0.21 0.05 0.18 0.28 0.01 HD 112758... 5277 4.7 0.50 0.53 0.08 300 0.5 G B 0.10 L 0.30 0.23 0.15 0.16 0.37 0.05 HD 114762... 6012 4.51 1.48 0.77 0.06 221 2.5 G H 2.03 A 0.44 0.33 0.08 0.20 0.58 0.01 HR 5072... 5600 4.09 1.03 0.06 0.04 399 2.0 G H 1.81 A 0.13 0.07 0.04 0.01 0.05 0.01 HR 5185... 6629 4.75 1.87 0.44 0.10 277 16.0 R H 1.91 A 0.32 0.12 0.06 0.31 0.14 0.01 HR 5353... 5810 4.26 1.20 0.38 0.05 350 2.5 G 0.29 0.09 0.08 0.16 0.22 0.00 HR 5387... 7141 4.92 2.33 0.05 0.06 230 9.0 R 1.77 L 0.10 0.15 0.05 0.01 0.05 0.01 HR 5384... 5630 4.39 0.53 0.43 0.04 304 1.0 G 0.70 L 0.33 0.10 0.10 0.40 0.04 0.01 HD 128311... 5009 4.46 0.50 0.15 0.09 356 2.5 G H 0.18 L 0.17 0.32 0.08 0.28 0.43 0.01 HD 130322... 5453 4.48 0.50 0.09 0.06 420 0.5 G H 0.57 D 0.07 0.16 0.08 0.09 0.18 0.01 HR 5659A... 5668 4.18 0.75 0.08 0.05 401 1.5 G 0.50 L 0.12 0.04 0.03 0.16 0.08 0.01 HR 5659B... 5588 4.39 0.50 0.10 0.06 367 0.5 G 0.60 L 0.09 0.02 0.03 0.04 0.06 0.00 HR 5657... 5911 4.38 1.36 0.35 0.07 416 2.0 G H 1.08 L 0.30 0.06 0.11 0.33 0.02 0.01 HD 136118... 6329 4.47 1.72 0.03 0.07 313 8.0 R H 2.54 B 0.05 0.02 0.04 0.16 0.19 0.01 HD 140913... 6105 4.66 1.52 0.09 0.06 281 9.0 R B 2.74 A 0.01 0.10 0.04 0.23 0.14 0.01

3074 LUCK & HEITER TABLE 2 Continued ID (K) log g (cm s 2 ) V t (km s 1 ) [Fe/H] N V M (km s 1 ) Type Host Li Code h[c/h]i h[c/fe]i h[o/h]i h[o/fe]i d HD 141937... 5892 4.44 0.88 0.12 0.04 377 3.0 G H 2.30 A 0.08 0.04 0.07 0.02 0.14 0.01 HR 5954... 6373 4.44 1.85 0.01 0.07 253 10.0 R 1.00 L 0.01 0.00 0.03 0.39 0.40 0.01 HR 5968... 5921 4.4 1.35 0.25 0.04 286 2.0 G H 1.51 C 0.30 0.05 0.08 0.09 0.34 0.01 HD 145675... 5477 4.44 0.50 0.63 0.10 379 3.0 G H 1.20 C 0.39 0.24 0.11 0.33 0.30 0.03 HD 168443... 5579 4.08 0.63 0.11 0.05 353 1.0 G H 0.95 C 0.09 0.02 0.03 0.06 0.17 0.01 HD 168746... 5586 4.31 0.19 0.01 0.04 335 1.5 G H 0.58 L 0.03 0.02 0.07 0.16 0.15 0.01 HR 6907... 6395 4.37 1.73 0.12 0.06 319 5.0 R H 0.89 L 0.12 0.00 0.02 0.14 0.02 0.01 HD 177830... 5035 3.65 0.80 0.64 0.13 342 2.5 G H 0.64 L 0.40 0.25 0.04 0.38 0.27 0.04 HR 7272A... 5865 4.26 1.09 0.06 0.06 249 2.5 G 2.27 A 0.17 0.11 0.13 0.05 0.01 0.01 HR 7272B... 5599 4.52 0.50 0.27 0.10 455 0.5 G H 0.40 L 0.27 0.00 0.09 0.13 0.15 0.03 HR 7293... 5717 4.37 0.70 0.02 0.04 363 2.0 G 0.48 L 0.02 0.04 0.02 0.05 0.07 0.00 HR 7294... 5743 4.34 0.63 0.06 0.04 318 2.0 G 0.60 L 0.01 0.07 0.03 0.08 0.14 0.01 HR 7291... 6197 4.47 1.25 0.20 0.06 340 8.0 R H 2.48 A 0.15 0.05 0.07 0.16 0.05 0.01 HR 7373... 5730 4.24 1.48 0.44 0.10 389 2.5 G 1.00 L 0.40 0.04 0.05 0.32 0.13 0.01 HD 184151... 6819 4.43 2.41 0.17 0.10 200 14.0 R 2.43 A 0.32 0.15 0.05 0.05 0.13 0.01 HR 7503... 5794 4.34 0.89 0.08 0.03 330 2.0 G 1.10 D 0.03 0.05 0.07 0.02 0.07 0.01 HR 7504... 5790 4.38 0.83 0.08 0.04 355 2.0 G H 1.20 D 0.01 0.07 0.03 0.03 0.11 0.01 HD 187123... 5811 4.37 0.88 0.09 0.04 379 2.0 G H 0.55 L 0.05 0.04 0.06 0.06 0.15 0.01 HR 7560... 6156 4.4 1.36 0.11 0.05 306 3.5 G 2.60 A 0.08 0.03 0.04 0.03 0.14 0.01 HR 7597... 5546 3.92 0.96 0.07 0.06 408 2.5 G 2.22 A 0.07 0.14 0.04 0.06 0.13 0.01 HD 190228... 5381 3.86 1.00 0.19 0.04 373 2.5 G H 1.20 A 0.23 0.04 0.12 0.08 0.11 0.01 HD 192263... 5093 4.54 0.50 0.07 0.09 353 2.5 G H 0.12 L 0.11 0.04 0.11 0.08 0.01 0.08 HR 7783... 5998 4.56 1.13 0.10 0.04 288 2.5 G 2.26 A 0.18 0.08 0.10 0.04 0.06 0.01 HD 193555... 6493 4.51 2.41 0.52 0.16 209 22.0 R 0.63 L 0.38 0.15 0.06 0.80 0.28 0.01 HD 195019... 5821 4.28 1.00 0.06 0.04 356 2.5 G H 1.44 A 0.07 0.01 0.06 0.11 0.05 0.01 HR 7947... 6497 4.39 1.95 0.13 0.07 302 6.0 R 1.73 A 0.06 0.07 0.06 0.33 0.20 0.01 HR 7948... 4999 3.33 1.40 0.33 0.12 418 2.5 G 0.62 C 0.08 0.41 0.33 0.47 0.14 0.03 HD 202206... 5845 4.5 1.11 0.39 0.07 443 2.5 G H 1.50 C 0.21 0.18 0.09 0.31 0.08 0.01 HD 209458... 6142 4.56 1.33 0.01 0.06 320 3.0 G H 2.68 A 0.03 0.02 0.03 0.22 0.23 0.01 HD 210277... 5585 4.41 0.50 0.23 0.08 391 0.5 G H 0.80 L 0.16 0.08 0.04 0.07 0.16 0.02 HR 8665... 6376 4.29 2.11 0.26 0.07 266 9.0 R 2.39 A 0.25 0.01 0.06 0.09 0.18 0.01 HR 8687A... 7071 4.93 2.77 0.46 0.16 198 24.0 R 2.51 B 0.32 0.14 0.08 0.65 0.19 0.01 HR 8687B... 6983 4.96 2.45 0.47 0.13 235 20.0 R 1.70 L 0.40 0.08 0.05 0.65 0.18 0.01 HR 8729... 5723 4.21 0.33 0.26 0.06 385 2.0 G H 1.40 D 0.12 0.14 0.06 0.04 0.22 0.01 HR 8734... 5749 4.34 1.09 0.41 0.06 415 2.0 G H 1.00 L 0.25 0.17 0.14 0.28 0.13 0.02 HD 221445... 6418 4.45 1.96 0.14 0.06 266 7.0 R 0.07 L 0.13 0.02 0.10 0.09 0.23 0.01 HD 222582... 5768 4.38 0.71 0.03 0.05 340 2.0 G H 0.79 L 0.02 0.05 0.03 0.00 0.03 0.01 BD 10 3166... 5477 4.38 0.73 0.54 0.10 449 3.0 G H 1.02 L 0.42 0.12 0.12 0.13 0.41 0.04 Notes. In these columns, V t is the microturbulent velocity, is the standard deviation about the mean of the [Fe/H] ratio, N is the number of lines (Fe i)usedinthe iron abundance determination, and V M is the macroturbulent velocity. Types are (G) Gaussian and (R) rotation profile. At V M < 5kms 1 the two profiles are indistinguishable, and we assume a Gaussian. Hosts are (H) planet host and (B) brown dwarf host. Li is the lithium abundance (or limit). The value is log Li,where log H ¼ 12. Codes are A D for the quality of fit, with A the best fit, and L denotes an abundance limit. The column h[c/ H ]i is the average [C/ H ] ratio, h[c/ Fe]iis the average carbon-to-iron ratio, is the standard deviation about the mean of the [C/H] ratio, h[o/h]i is the average [O/H] ratio, and h[o/fe]i is the average oxygen-to-iron ratio. See x 3.2 for discussion and Table 8 for individual and solar values. The d column is the dependence of the [O/H] ratio on a variation of 0.3 dex in the carbon abundance. For Swan C 2 we have used f (0; 0) ¼ 0:0303 (Grevesse et al. 1991) with the relative band f-values of Danylewych & Nicholls (1974), along with D 0 ¼ 6:210 ev (Grevesse et al. 1991) and theoretical line wavelengths (as needed) from C. Amiot (1982, private communication). We have used these data to determine solar abundances for each of these features for the Sun from our solar reflection spectrum. For these features we derive log C ¼ 8:41, 8.50, 8.54, and 8.42 (with respect to log H ¼ 12), respectively, for 505.2, 538.0, 658.7, and 513.5. These abundances have been used to derive our abundances for the program stars with respect to the Sun for each feature. Note that the most recent carbon abundance determination for the Sun (Asplund et al. 2005b) yields a mean carbon abundance of 8.39. They adopted the same gf-values as used here for C i but a different dissociation energy for C 2 (6.297 ev). Since we are interested primarily in differential abundances, the differences for C 2 have little to no effect on our discussion. We show in Figure 2 three fits to the C i 538 nm feature. The most remarkable thing about the data is that the C i line shows little variation in strength over the 1000 K range in effective temperature of the objects. This is actually disconcerting, as for equal abundances the lowest temperature object should show a much weaker line. In Figure 3 we show the behavior of our four carbon abundance indicators (normalized to Fe) as a function of temperature. It is obvious that C i 538.0 and 505.2 nm have significant problems. For the C i 505.2 nm line, it is clear that the problem lies in the strong Fe i line at 505.16 nm, which develops very strong wings as the temperature decreases. This makes the C i feature a marginal presence; i.e., the C i line essentially disappears into the wing of the Fe i line as the temperature decreases. For the C i 538 nm line the situation is not resolved. Since the strength of the observed line does not decrease as expected, either there is an increasing strong blend coming into play as the temperature decreases, or a strong non-lte effect comes into play. We

TABLE 3 Parameters and Abundance Data for the 15 pc Sample HIC HD HR (K) log g (cm s 2 ) V t (km s 1 ) [Fe/H] V M (km s 1 ) Type Host Li Code h[c/h]i h[c/fe]i h[o/h]i h[o/fe]i d 544... 166 8 5550 4.55 0.70 0.14 3.00 G 2.28 A 0.04 0.18 0.08 0.16 0.30 0.02 3093... 3651 166 5238 4.29 0.50 0.16 2.00 G H 0.59 D 0.05 0.20 0.16 0.31 3821... 4614 219 5900 4.50 0.60 0.35 3.00 G 1.98 A 0.21 0.15 0.09 0.24 0.11 0.01 3765... 4628 222 5150 4.70 0.70 0.22 2.50 G 0.07 A 0.20 0.03 0.28 0.11 0.12 0.06 5336... 6582 321 5500 4.80 0.30 0.91 3.00 G 0.95 L 0.58 0.34 0.16 0.28 0.64 0.02 7513... 9826 458 6200 4.40 1.60 0.12 10.00 R H 2.27 A 0.15 0.03 0.09 0.18 0.06 0.01 7918... 10307 483 5925 4.46 1.10 0.01 3.00 G 1.86 A 0.04 0.05 0.03 0.14 0.15 0.01 7981... 10476 493 5250 4.40 0.50 0.02 2.25 G 0.51 L 0.02 0.00 0.12 0.02 0.04 0.04 8102... 10700 509 5350 4.50 0.50 0.58 2.00 G 0.11 L 0.49 0.09 0.14 0.36 0.22 0.02 8362... 10780 511 5350 4.50 0.60 0.02 2.50 G 1.00 L 0.14 0.16 0.10 0.19 0.21 0.02 10798... 14412 683 5400 4.60 0.50 0.54 2.50 G 0.79 L 0.42 0.12 0.09 0.45 0.09 0.02 12114... 16160 753 5000 4.50 0.20 0.07 2.00 G 0.25 L 0.09 0.02 0.31 0.05 0.03 0.08 12777... 16895 799 6500 4.70 1.95 0.01 9.00 R 2.95 A 0.01 0.00 0.06 0.01 0.02 0.01 12843... 17206 818 6205 4.56 2.33 0.05 24.00 R 2.00 L 0.24 0.19 0.19 0.01 0.04 0.01 13402... 17925 857 5200 4.60 0.60 0.15 2.50 G 2.67 A 0.04 0.19 0.18 0.27 0.42 0.11 14632... 19373 937 6015 4.36 1.21 0.10 3.00 G 2.41 A 0.10 0.01 0.02 0.17 0.07 0.00 14879... 20010 963 6280 4.26 1.85 0.24 7.00 R 2.04 A 0.12 0.12 0.08 0.12 0.13 0.01 15457... 20630 996 5700 4.55 0.95 0.05 3.50 G 2.04 A 0.02 0.07 0.05 0.18 0.23 0.01 16537... 22049 1084 5200 4.50 0.70 0.04 2.00 G H 0.55 L 0.02 0.02 0.00 0.04 16852... 22484 1101 6050 4.20 1.70 0.14 2.50 G 2.39 A 0.10 0.04 0.06 0.01 0.13 0.01 17378... 23249 1136 5100 3.80 0.60 0.18 2.25 G 1.29 A 0.08 0.10 0.03 0.03 0.21 0.04 17420... 23356 5080 4.53 0.90 0.08 2.50 G 0.04 L 0.09 0.01 0.18 0.00 0.08 0.04 19849... 26965 1325 5250 4.55 0.40 0.24 2.25 G 0.15 L 0.10 0.14 0.22 0.13 0.12 0.07 21818... 29697 4440 4.19 0.50 0.18 9.00 R 0.79 A 0.16 0.02 0.05 0.13 22263... 30495 1532 5925 4.63 1.13 0.01 3.00 G 2.39 A 0.10 0.11 0.04 0.03 0.02 0.01 22449... 30652 1543 6420 4.30 2.68 0.01 18.00 R 2.10 L 0.03 0.02 0.06 0.03 0.04 0.01 23311... 32147 1614 4900 4.25 0.75 0.36 3.50 G 0.09 L 0.37 0.01 0.07 0.28 0.08 0.01 24813... 34411 1729 5890 4.34 1.07 0.05 3.00 G 1.98 A 0.04 0.01 0.04 0.06 0.01 0.00 25220... 35171 4515 4.08 0.50 0.04 3.50 G 0.24 L 0.07 0.11 0.08 0.19 0.23 0.12 25278... 35296 1780 6120 4.35 2.28 0.05 16.00 R 2.92 A 0.09 0.04 0.09 0.10 0.05 0.01 25623... 36003 4590 4.39 0.50 0.08 3.00 G 0.29 D 0.38 0.46 0.32 0.40 26779... 37394 1925 5240 4.39 0.50 0.12 2.00 G 0.07 L 0.06 0.18 0.11 0.05 0.08 0.02 27072... 38393 1983 6440 4.56 2.03 0.12 10.00 R 2.88 A 0.12 0.00 0.13 0.29 0.41 0.01 27913... 39587 2047 6090 4.68 1.58 0.01 10.00 R 2.95 A 0.08 0.09 0.03 0.00 0.01 0.01 30630... 45088 4750 3.72 0.40 0.15 8.00 R 0.38 L 0.38 0.23 0.49 0.34 32984... 50281 4820 4.40 0.30 0.06 3.50 G 0.25 L 0.15 0.21 0.05 0.38 0.44 0.01 33817... 52698 5085 4.16 0.50 0.16 3.00 G 0.26 L 0.11 0.05 0.07 0.06 0.10 0.06 37279... 61421 2943 6850 4.45 2.40 0.04 7.00 R 1.32 L 0.04 0.08 0.02 37349... 61606 4930 4.40 0.50 0.03 2.75 G 0.04 L 0.05 0.02 0.04 0.03 0.01 0.05 27826... 62509 2990 4930 3.06 1.40 0.12 3.50 G 0.93 C 0.05 0.17 0.12 0.13 0.01 0.02 40693... 69830 3259 5485 4.40 0.65 0.00 2.50 G 0.87 A 0.06 0.06 0.05 0.13 0.13 0.01 42438... 72905 3391 6025 4.74 1.54 0.00 10.00 R 2.90 A 0.07 0.07 0.05 0.16 0.16 0.01 43587... 75732 3522 5375 4.35 0.45 0.50 2.50 G H 0.85 L 0.37 0.14 0.10 0.35 0.15 0.02 46580... 82106 4845 4.35 0.50 0.05 2.50 G 0.05 L 0.02 0.03 0.16 0.02 0.04 0.04 46853... 82328 3775 6450 4.20 2.30 0.21 9.00 R 0.14 0.08 0.09 0.42 0.21 0.01 47080... 82885 3815 5660 4.50 1.25 0.36 2.50 G 0.42 L 0.24 0.12 0.07 0.17 0.19 0.01 47592... 84117 3862 6215 4.47 1.69 0.12 6.50 R 2.53 A 0.01 0.11 0.03 0.01 0.13 0.01 49081... 86728 3951 5740 4.31 0.59 0.22 2.00 G 1.35 B 0.08 0.14 0.03 0.15 0.07 0.00 51459... 90839 4112 6300 4.60 1.45 0.10 2.50 G 0.16 0.06 0.05 0.14 0.04 0.01 53721... 95128 4277 5940 4.45 1.05 0.01 2.50 G H 1.75 A 0.03 0.02 0.01 0.02 0.03 0.00 54952... 97584 4670 4.05 0.60 0.04 4.50 R 0.23 L 0.22 0.19 0.33 0.26 0.23 0.13 56997... 101501 4496 5630 4.55 0.90 0.01 2.25 G 0.98 B 0.12 0.11 0.05 0.10 0.09 0.01 57757... 102870 4540 6200 4.32 1.65 0.08 5.00 R 0.11 0.03 0.04 0.01 0.07 0.01 57939... 103095 4550 5250 5.00 0.60 1.26 2.50 G 0.77 B 0.90 0.36 0.72 0.54 58345... 103932 4560 4.27 0.50 0.12 3.00 G 0.05 C 0.19 0.07 0.04 0.09 0.04 0.02 58576... 104304 4587 5690 4.45 1.05 0.35 3.00 G 0.63 L 0.32 0.04 0.09 0.25 0.11 0.01 59199... 105452 4623 7290 4.53 3.30 0.08 24.00 R 3.25 A 0.20 0.12 0.11 0.00 0.00 61317... 109358 4785 6045 4.60 1.35 0.21 3.00 G 1.71 A 0.27 0.06 0.10 0.16 0.37 0.01 61901... 110315 4480 4.02 0.50 0.14 3.00 G 0.67 L 0.15 0.29 0.04 0.04 0.18 0.02 61941... 110379 4825 7090 4.49 3.45 0.07 28.00 R 3.10 A 0.09 0.02 0.12 0.00 0.00 64241... 114378 4968 6365 4.19 2.78 0.23 20.00 R 2.16 A 0.23 0.00 0.09 0.10 0.14 0.01 64394... 114710 4983 6075 4.55 1.25 0.02 5.00 R 0.03 0.05 0.04 0.04 0.06 0.01 64797... 115404 5035 4.30 0.50 0.11 2.50 G 0.76 L 0.35 0.24 0.19 0.38 0.27 0.02 64797... 115404B 4100 4.30 0.50 0.34 2.50 G 0.01 L 64924... 115617 5019 5585 4.35 0.45 0.02 3.00 G 0.07 0.09 0.03 0.06 0.08 0.01

3076 LUCK & HEITER TABLE 3 Continued HIC HD HR (K) log g (cm s 2 ) V t (km s 1 ) [Fe/H] V M (km s 1 ) Type Host Li Code h[c/h]i h[c/fe]i h[o/h]i h[o/fe]i d 67487... 120467 4200 4.50 0.50 0.24 2.00 G 0.42 L 67422... 120476N 4530 4.04 0.50 0.03 2.50 G 0.25 L 0.20 0.17 0.01 0.02 67422... 120476S 4345 4.08 0.50 0.02 2.50 G 0.57 L 0.24 0.22 0.10 0.08 67927... 121370 5235 6035 3.94 2.34 0.28 14.00 R 1.19 L 0.35 0.07 0.15 0.31 0.03 0.05 68184... 122064 5256 4945 4.58 0.50 0.16 2.50 G 0.32 L 0.41 0.25 0.28 0.12 69673... 124897 5340 4340 1.93 1.87 0.55 3.50 G 1.08 L 0.23 0.32 0.05 0.60 70497... 126660 5404 6335 4.34 3.50 0.02 30.00 R 2.22 A 0.04 0.06 0.19 0.10 0.12 0.01 71181... 128165 4755 4.34 0.50 0.00 3.00 G 0.13 L 0.12 0.12 0.18 0.07 0.07 0.05 72659... 131156 5544 5465 4.38 1.00 0.14 3.50 G 0.25 0.11 0.06 0.39 0.25 0.01 72848... 131511 5553 5220 4.20 0.50 0.13 3.50 G 0.72 C 0.01 0.14 0.01 0.04 0.17 0.01 73184... 131977 5568 4575 4.28 0.50 0.09 2.50 G 0.38 L 0.02 0.07 0.00 0.09 73695... 133640 5618 5740 4.29 0.56 0.34 3.00 G 1.92 A 0.30 0.04 0.12 0.34 0.01 0.01 77052... 140538 5853 5735 4.52 0.83 0.05 3.00 G 1.53 B 0.08 0.13 0.03 0.10 0.05 0.01 77257... 141004 5868 5940 4.31 1.42 0.06 3.00 G 1.82 A 0.04 0.02 0.02 0.10 0.04 0.00 78072... 142860 5933 6400 4.30 2.47 0.23 11.00 R 2.20 A 0.32 0.09 0.02 0.16 0.39 0.01 78775... 144579 5395 4.75 0.50 0.69 2.50 G 0.28 L 0.57 0.12 0.05 0.33 0.36 0.02 79672... 146233 6060 5835 4.48 0.93 0.03 3.00 G 1.60 B 0.05 0.08 0.03 0.03 0.00 0.01 81300... 149661 6171 5215 4.35 0.05 0.05 2.00 G 0.23 L 0.11 0.06 0.06 0.15 0.10 0.04 81693... 150680 6212 5825 4.02 1.62 0.01 3.50 G 0.72 L 0.12 0.11 0.07 0.07 0.06 0.01 84405... 155885 6401 5200 4.50 0.90 0.19 3.00 G 0.39 L 0.25 0.06 0.24 0.03 0.16 0.03 84405... 155886 6402 5200 4.60 0.70 0.19 3.00 G 0.22 L 0.22 0.03 0.22 0.03 0.17 0.04 84478... 156026 4590 4.28 0.50 0.12 3.00 G 0.52 L 0.12 0.00 0.10 0.02 84862... 157214 6458 5650 4.35 0.50 0.47 3.00 G 0.00 L 0.25 0.22 0.12 0.03 0.44 0.01 85235... 158633 6518 5400 4.80 0.50 0.47 2.50 G 0.12 L 0.24 0.24 0.25 0.14 0.61 0.04 86036... 160269 6573 6000 4.50 1.40 0.04 3.50 G 2.55 A 0.07 0.03 0.03 0.16 0.12 0.01 86400... 160346 4920 4.42 0.50 0.02 2.00 G 0.02 L 0.01 0.01 0.00 0.14 0.12 0.05 86974... 161797 6623 5540 3.95 0.93 0.24 3.00 G 1.13 B 0.28 0.04 0.11 0.10 0.14 0.02 88601... 165341 6752 5275 4.31 0.50 0.07 3.00 G 0.08 L 0.03 0.04 0.09 0.01 0.06 0.03 88601... 165341B 4740 4.52 0.50 0.04 3.00 G 0.14 L 0.05 0.01 0.03 0.17 0.13 0.07 88972... 166620 6806 5125 4.50 0.10 0.10 2.50 G 0.16 L 0.04 0.14 0.13 0.13 0.23 0.02 89937... 170153 6927 6155 4.44 1.45 0.73 5.00 R 2.31 A 0.39 0.35 0.11 0.40 0.33 0.01 90790... 170657 5125 4.55 0.15 0.11 2.50 G 0.38 L 0.16 0.04 0.12 0.17 0.05 0.02 91438... 172051 6998 5700 4.55 0.96 0.24 3.00 G 1.29 A 0.28 0.04 0.14 0.03 0.27 0.02 93017... 176051 7162 6000 4.60 1.25 0.11 5.00 R 2.41 A 0.09 0.02 0.02 0.10 0.01 0.00 96100... 185144 7462 5415 4.55 1.10 0.20 3.00 G 0.36 L 0.19 0.01 0.10 0.44 0.24 0.03 98036... 188512 7602 5160 3.68 0.92 0.12 3.00 G 0.38 L 0.16 0.04 0.06 0.06 0.06 0.00 98698... 190007 4650 4.26 0.50 0.15 3.00 G 1.00 L 0.37 0.22 0.18 0.03 99825... 192310 7722 5075 4.34 0.50 0.02 2.50 G 0.09 L 0.07 0.05 0.07 0.08 0.06 0.00 101997... 196761 7898 5465 4.41 0.50 0.22 3.00 G 0.39 L 0.24 0.02 0.04 0.16 0.06 0.01 102485... 197692 7936 6725 4.51 3.57 0.04 40.00 R 1.36 L 0.10 0.06 0.07 102422... 198149 7957 5100 3.50 1.09 0.07 3.00 G 0.98 B 0.13 0.06 0.09 0.10 0.17 0.01 104092... 200779 4565 4.10 0.50 0.06 3.50 G 0.15 L 0.15 0.09 0.15 0.19 0.13 0.01 104214... 201091 8085 4640 4.40 0.50 0.20 3.00 G 0.06 L 0.04 0.16 0.08 0.12 104217... 201092 8086 4400 4.20 0.50 0.27 3.00 G 0.28 L 0.01 0.26 0.17 0.44 109176... 210027 8430 6570 4.60 2.19 0.15 10.00 R 3.08 A 0.02 0.17 0.05 111960... 214749 4520 4.00 0.50 0.06 3.50 G 0.01 L 0.04 0.02 0.19 0.25 114622... 219134 8832 5100 4.65 0.70 0.04 3.00 G 0.42 L 0.05 0.01 0.26 0.10 0.06 0.05 116771... 222368 8969 6300 4.35 1.85 0.15 7.00 R 2.28 A 0.15 0.00 0.04 0.07 0.22 0.01 116727... 222404 8974 5015 3.49 1.35 0.26 3.00 G H 0.51 L 0.12 0.14 0.24 0.38 0.12 0.03 171... 224930 9088 5400 4.40 0.20 0.90 3.00 G 0.50 L 0.82 0.09 0.02 0.82 0.09 0.01 Notes. In these columns, V t is the microturbulent velocity, is the standard deviation about the mean of the [Fe/H] ratio, N is the number of lines (Fe i)usedintheiron abundance determination, and V M is the macroturbulent velocity. Types are (G) Gaussian and (R) rotation profile. At V M < 5kms 1 the two profiles are indistinguishable, and we assume a Gaussian. Hosts are (H) planet host and (B) brown dwarf host. Li is the lithium abundance (or limit). The value is log Li, where log H ¼ 12. Codes are A D for quality of fit, with A the best fit, and L denotes an abundance limit. The column h[c/h]i is the average [C/H] ratio, h[c/fe]i is the average carbon-to-iron ratio, is the standard deviation about the mean of the [C/H] ratio, h[o/h]i is the average [O/H] ratio, and h[o/fe]i is the average oxygen-to-iron ratio. See x 3.2fordiscussionandTable8for individual and solar values. The d column is the dependence of the [O/H] ratio on a variation of 0.3 dex in the carbon abundance. are relatively certain that the problem is not a strong non-lte effect because (1) non-lte effects are typically factors of several, not orders of magnitude as seen here; and (2) the other two C i features behave as expected, and they have excitation potentials comparable to 538.0 (although they are from different levels). This leaves an intervening blend. However, we have not been able to identify the culprit. We have examined atomic line databases (NIST and VALD) without success and can find no molecular feature that is likely. To combine the carbon data to form the mean abundances given in Tables 2 and 3, we place a dividing line at an effective temperature of 5250 K. Above that temperature we use all extant data, while below that temperature we use only C 2 and C i 658.7 nm.

TABLE 4 Average Abundances with Respect to H for Na to Co ID Na Mg Al Si S Ca Sc Ti V Cr Mn Fe Co HR 72... 0.31 0.26 0.19 0.20 0.20 0.18 0.22 0.21 0.21 0.21 0.29 0.21 0.22 HR 244... 0.08 0.04 0.01 0.07 0.03 0.15 0.08 0.11... 0.11 0.05 0.07 0.04 HD 8574... 0.01 0.04 0.03 0.00 0.08 0.02 0.02 0.01 0.03 0.03 0.15 0.03 0.08 HR 448... 0.29 0.32 0.23 0.23 0.15 0.20 0.26 0.22 0.29 0.20 0.22 0.20 0.22 HR 582... 0.49 0.55 0.32 0.33 0.23 0.32 0.42 0.39 0.21 0.36 0.40 0.33 0.40 HD 16141... 0.08 0.22 0.12 0.12 0.10 0.14 0.12 0.12 0.07 0.13 0.16 0.13 0.12 HD 18445... 0.00 0.09 0.13 0.06... 0.16 0.09 0.31 0.10 0.18 0.08 0.01 0.15 HR 962... 0.34 0.47 0.20 0.27 0.18 0.24 0.29 0.27 0.21 0.27 0.17 0.24 0.23 HD 23596... 0.37 0.12 0.24 0.26 0.19 0.21 0.33 0.24 0.30 0.26 0.25 0.23 0.25 HR 1262... 0.03 0.13 0.02 0.02 0.06 0.04 0.02 0.02... 0.04 0.06 0.02 0.00 HR 1278... 0.43... 0.50 0.35 0.05 0.35 0.30 0.45 0.54 0.38 0.16 0.32 0.48 BD 4 782...... 0.58 0.37 0.18... 0.54 0.02 0.61 0.14 0.43 0.30 0.02 0.40 HD 28185... 0.35 0.27 0.32 0.27 0.47 0.21 0.39 0.36 0.34 0.31 0.55 0.28 0.39 HD 29587... 0.59 0.20 0.37 0.43... 0.48 0.48 0.44... 0.66 0.97 0.62 0.65 HD 33636... 0.13... 0.08 0.08... 0.06 0.09 0.05... 0.10 0.35 0.10 0.10 HD 37124... 0.38... 0.18 0.28... 0.32 0.34 0.25 0.17 0.49 0.67 0.48 0.31 HR 1988... 0.52 0.49 0.43 0.44 0.59 0.36 0.42 0.45 0.41 0.43 0.61 0.42 0.55 HD 40979... 0.23 0.06 0.19 0.21 0.14 0.21 0.22 0.25 0.12 0.23 0.14 0.20 0.18 HR 2401... 0.09 0.05 0.16 0.07 0.15 0.08 0.14 0.16... 0.12 0.37 0.11 0.29 HR 2483... 0.11 0.19 0.07 0.10 0.09 0.12 0.07 0.11... 0.10 0.04 0.10 0.11 HD 50554... 0.03 0.02 0.02 0.03 0.08 0.01 0.04 0.02 0.07 0.03 0.13 0.04 0.07 HR 2622... 0.24 0.16 0.20 0.20 0.14 0.20 0.21 0.19... 0.20 0.10 0.17 0.17 HR 2643... 0.11 0.05 0.12 0.13 0.09 0.08 0.11 0.11... 0.16 0.31 0.12 0.13 HD 68988... 0.50 0.50 0.40 0.37 0.45 0.32 0.44 0.41 0.57 0.40 0.60 0.36 0.50 HR 3262... 0.22 0.14... 0.23 0.19 0.24 0.31 0.34... 0.31 0.38 0.30 0.44 HD 72659... 0.01 0.07 0.08 0.01 0.07 0.04 0.01 0.05... 0.06 0.22 0.06 0.03 HR 3395... 0.06 0.03 0.01 0.06 0.08 0.07 0.03 0.05... 0.07 0.11 0.06 0.03 HR 3396... 0.08 0.07 0.08 0.12 0.16 0.15 0.11 0.19 0.13 0.18 0.24 0.16 0.13 HR 3430... 0.48 0.57 0.44 0.43 0.50 0.30 0.51 0.45 0.44 0.41 0.69 0.39 0.55 HD 74156... 0.17 0.09 0.10 0.12 0.02 0.11 0.16 0.12... 0.11 0.02 0.09 0.14 HR 3538... 0.12 0.31 0.09 0.09 0.12 0.07 0.04 0.09 0.18 0.07 0.09 0.08 0.10 HR 3625... 0.07 0.07 0.00 0.01 0.16 0.05 0.02 0.03... 0.01 0.24 0.01 0.01 HD 80606... 0.60 0.53 0.45 0.46 0.58 0.42 0.51 0.53 0.59 0.50 0.66 0.48 0.61 HD 80607... 0.62 0.53 0.48 0.47 0.59 0.43 0.53 0.57 0.61 0.51 0.66 0.52 0.65 HR 3754... 0.07 0.18 0.02 0.05 0.04 0.06 0.03 0.05... 0.03 0.07 0.03 0.03 HD 82943... 0.31 0.25 0.20 0.25 0.30 0.23 0.23 0.20 0.14 0.24 0.27 0.23 0.22 HR 3881... 0.13 0.22 0.09 0.11 0.06 0.10 0.16 0.11 0.17 0.07 0.01 0.09 0.11 HR 3901... 0.18 0.20 0.06 0.12 0.02 0.13 0.14 0.14... 0.12 0.02 0.10 0.10 HR 4005... 0.18 0.03 0.12 0.12 0.04 0.11 0.11 0.12... 0.14 0.07 0.09 0.08 HR 4067... 0.29 0.45 0.16 0.25 0.20 0.25 0.28 0.29 0.06 0.28 0.02 0.22 0.29 HD 92788... 0.46 0.66 0.37 0.36 0.30 0.32 0.42 0.41 0.30 0.36 0.55 0.38 0.47 HR 4414... 0.54 0.43 0.44 0.42 0.61 0.37 0.49 0.49 0.27 0.46 0.48 0.44 0.58 HD 99492... 0.71 0.62 0.48 0.35... 0.41 0.28 0.53 0.23 0.44 0.44 0.36 0.50 HR 4486... 0.20 0.04 0.17 0.19... 0.18 0.20 0.21... 0.24 0.38 0.21 0.26 HR 4498... 0.02 0.10 0.02 0.01 0.06 0.01 0.00 0.03 0.07 0.02 0.11 0.02 0.01 HD 106252... 0.07 0.11 0.06 0.07 0.08 0.09 0.06 0.10 0.13 0.12 0.26 0.10 0.09 HD 108874... 0.33 0.55 0.28 0.27 0.30 0.26 0.33 0.37 0.35 0.32 0.46 0.31 0.43 HD 110833... 0.19 0.23 0.21 0.14... 0.12 0.21 0.33... 0.25 0.35 0.16 0.31 HR 4845... 0.60 0.33... 0.47... 0.51 0.50 0.55... 0.61 1.10 0.57 0.75 HR 4864... 0.03 0.09 0.06 0.05 0.27 0.11 0.06 0.12 0.18 0.11 0.08 0.10 0.08 HD 112758... 0.44 0.01 0.18 0.30... 0.44 0.32 0.18 0.15 0.42 0.58 0.53 0.27 HD 114762... 0.64 0.34... 0.54... 0.61 0.59 0.65... 0.85... 0.77 0.92 HR 5072... 0.08 0.11 0.01 0.03 0.06 0.01 0.01 0.01 0.01 0.07 0.05 0.06 0.01 HR 5185... 0.50... 0.43 0.41 0.22 0.45 0.55 0.46 0.58 0.47 0.32 0.44 0.46 HR 5353... 0.39 0.61 0.41 0.34 0.40 0.32 0.44 0.40... 0.37 0.56 0.38 0.47 HR 5387... 0.03 0.14 0.10 0.01 0.24 0.05 0.02 0.01... 0.06 0.21 0.05 0.11 HR 5384... 0.45 0.18 0.31 0.35... 0.36 0.45 0.38... 0.47 0.69 0.43 0.39 HD 128311... 0.14 0.29 0.16 0.12... 0.16 0.08 0.31 0.11 0.26 0.30 0.15 0.21 HD 130322... 0.06 0.13 0.09 0.05 0.26 0.06 0.10 0.15 0.15 0.13 0.20 0.09 0.18 HR 5659A... 0.10 0.37 0.23 0.14 0.15 0.12 0.22 0.19... 0.07 0.13 0.08 0.16 HR 5659B... 0.11 0.34 0.25 0.14 0.26 0.11 0.23 0.28 0.15 0.12 0.19 0.10 0.23 HR 5657... 0.48 0.52 0.38 0.34 0.39 0.29 0.42 0.39 0.49 0.33 0.60 0.35 0.47 HD 136118... 0.01 0.02 0.09 0.00 0.18 0.02 0.03 0.01... 0.03 0.17 0.03 0.00 HD 140913... 0.07 0.33 0.08 0.09 0.04 0.12 0.04 0.14... 0.15 0.00 0.09 0.10 HD 141937... 0.12 0.21 0.11 0.12 0.07 0.14 0.07 0.13... 0.13 0.07 0.12 0.10