CSR Benchmark Test-Case Results

Similar documents
Linear Collider Collaboration Tech Notes

ATTOSECOND X-RAY PULSES IN THE LCLS USING THE SLOTTED FOIL METHOD

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

Compensation of CSR in bunch compressor for FACET-II. Yichao Jing, BNL Vladimir N. Litvinenko, SBU/BNL 10/17/2017 Facet II workshop, SLAC

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

Femtosecond and sub-femtosecond x-ray pulses from a SASE-based free-electron laser. Abstract

LCLS Accelerator Parameters and Tolerances for Low Charge Operations

Generation and characterization of ultra-short electron and x-ray x pulses

A Bunch Compressor for the CLIC Main Beam

LOLA: Past, present and future operation

Chromatic Corrections for the LCLS-II Electron Transport Lines

Femto-second FEL Generation with Very Low Charge at LCLS

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

SPPS: The SLAC Linac Bunch Compressor and Its Relevance to LCLS

6 Bunch Compressor and Transfer to Main Linac

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes. Estimation of CSR Effects for FLASH2HGHG

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Linac optimisation for the New Light Source

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

Andreas Kabel Stanford Linear Accelerator Center

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Accelerator Physics Issues of ERL Prototype

MOGA Optimization of LCLS2 Linac

Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 250 MeV

Coherent synchrotron radiation in magnetic bunch compressors. Qiang Gao, ZhaoHeng Guo, Alysson Vrielink

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Linac Driven Free Electron Lasers (III)

LCLS-II Beam Stay-Clear

SABER Optics. Y. Nosochkov, K. Bane, P. Emma, R. Erickson. SABER Workshop, SLAC, March 15-16, /25

A 6 GeV Compact X-ray FEL (CXFEL) Driven by an X-Band Linac

Estimates of Power Radiated by the Beam in Bends of LCLS-II

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

S2E (Start-to-End) Simulations for PAL-FEL. Eun-San Kim

CSR Microbunching: Gain Calculation

ILC Spin Rotator. Super B Workshop III. Presenter: Jeffrey Smith, Cornell University. with

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Laser Heater: Scaling of Laser Power with Undulator Period and Laser Wavelength

FACET-II Design, Parameters and Capabilities

Beam Optimization with Fast Particle Tracking (FPT)

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Coherent Synchrotron Radiation

USPAS Simulation of Beam and Plasma Systems. Lecture: Coherent Synchrotron Radiation

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

FACET-II Design Update

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

Design, Parameters, and Tolerances for the LCLS First Bunch Compressor Chicane, BC1

Simple limits on achieving a quasi-linear magnetic compression for an FEL driver

Low slice emittance preservation during bunch compression

Vertical Polarization Option for LCLS-II. Abstract

Wakefield computations for the LCLS Injector (Part I) *

Lattice Design and Performance for PEP-X Light Source

Emittance preservation in TESLA

Wakefield Effects of Collimators in LCLS-II

modeling of space charge effects and CSR in bunch compression systems

Beam Echo Effect for Generation of Short Wavelength Radiation

UCLA Neptune Ramped Bunch Experiment. R. Joel England UCLA Department of Physics and Astronomy Particle Beam Physics Laboratory May 19, 2004

Coherence Requirements for Various Seeding Schemes

4 FEL Physics. Technical Synopsis

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005

Transverse Emittance Preserving Arc Compressor: Sensitivity to Beam Optics, Charge and Energy

Transverse to Longitudinal Emittance Exchange *

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

EMITTANCE CONTROL FOR VERY SHORT BUNCHES

Stanford Linear Accelerator Center

ILC Beam Dynamics Studies Using PLACET

Simulations of the Microbunching Instability in FEL Beam Delivery Systems

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

CSR calculation by paraxial approximation

Echo-Enabled Harmonic Generation

Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting

An ERL-Based High-Power Free- Electron Laser for EUV Lithography

Longitudinal and transverse beam manipulation for compact Laser Plasma Accelerator based free-electron lasers

LCLS Commissioning Status

DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

Generating ultrashort coherent soft x-ray radiation in storage rings using angular-modulated electron beams. Abstract

Transverse-to-Longitudinal Emittance Exchange to Improve Performance of High-Gain Free-Electron Lasers

Linac Design for the LCLS Project at SLAC*

A Two-Stage Bunch Compressor Option for the US Cold LC

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

Studies on Coherent Synchrotron Radiation at SOLEIL

Tuning Techniques And Operator Diagnostics for FACET at SLAC National Accelerator Laboratory. Chris Melton SLAC Accelerator Operations

LCLS Undulators Present Status and Future Upgrades

Linear Collider Collaboration Tech Notes. A New Structure for the NLC Positron Predamping Ring Lattice

Femtosecond X-ray Pulse Temporal Characterization in Free-Electron Lasers Using a Transverse Deflector. Abstract

(M. Bowler, C. Gerth, F. Hannon, H. Owen, B. Shepherd, S. Smith, N. Thompson, E. Wooldridge, N. Wyles)

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

A Transverse RF Deflecting Structure for Bunch Length and Phase Space Diagnostics

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Emittance preserving staging optics for PWFA and LWFA

Impedance & Instabilities

Switchyard design for the Shanghai soft x-ray free electron laser facility

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

Wakefields in the LCLS Undulator Transitions. Abstract

Gennady Stupakov. Stanford Linear Accelerator Center

Transcription:

CSR Benchmark Test-Case Results Paul Emma SLAC January 4, 2 BERLIN CSR Workshop

Chicane CSR Test-Case Chicane parameters symbol value unit Bend magnet length (not curved length) L B.5 m Drift length (projected; B-B2 & B3-B4) L 5 m Drift length (B2-B3) L c. m Post-chicane drift length (after B4) L f 2. m Bend angle per dipole magnet θ 2.77 deg Bend radius of each dipole magnet R.35 m Momentum compaction factor R 56 25. mm 2 nd -order momentum compaction factor T 566 +37.5 mm Total projected-length of chicane L tot 3. m Vertical half-gap of bend magnets g 2.5 mm Electron beam parameters symbol value unit Nominal energy E 5. GeV bunch charge q.5 &. nc Incoherent rms relative energy spread ( E/E ) u-rms 2. 6 Linear energy-z correlation a +36. m Total initial rms relative energy spread ( E/E ) rms.72 % Initial rms bunch length σ zi 2 µm Final rms bunch length σ zf 2 µm Initial rms norm. emittances γε x,y.,. µm Initial beta-functions at st bend entrance β x,y 4, 3 m Initial α-functions at st bend entrance α x,y +2.6, +. L L L L B B B L L B B θ B2 L c B3 θ B4 Use line-charge CSR γ transient model described in LCLS-TN--2 (Stupakov/Emma, Dec. 2) [same now used in Elegant] based on TESLA-FEL-96-4 (Saldin et al., Nov. 996) (T 566 included, no ISR * added) * incoherent synchrotron radiation L f

Initial Gaussian Distribution Prior to Chicane E/E [%] 2 perfectly linear correlation E/E [%] 2 Energy distribution (σ E /E =.72 %) σ E /E =.72 % 2 bunch head 2 f(s) [/mm] Longitudinal distribution (σ s = 2 µm) 2.5.5 σ s = 2 µm 5 5 N E = 5 GeV

Second Order Compression Included: T 566 4 T 566 [m] /mm 3 2 T 566 566 3R 56 /2 2 4 6 8 2 4 6 S /m λ(s) (arb.) 2.5 2.5.5 after drift-3 before drift-3 leads to slight bunch shape distortion..5.5.

β x [m] 4 3 2 B Beta and Dispersion Functions Horizontal Beta Function (β x, RED/dash=CSR) B2 B3 CSR-altered β x B4 linear β x 2 4 6 8 2 4 6 S /m η x [m].2. Horizontal dispersion (η x ) η x-max 267 mm linear η x 2 4 6 8 2 4 6 S /m

σ z [mm].2.5. B Bunch Length and ز 56 σ s = 2 µm RMS bunch length B2 B3.5 σ s = 2 µm 2 4 6 8 2 4 6 S /m B4 R 56 [m]...2 B Momentum compaction factor (R 56 ) B2 B3.3 2 4 6 8 2 4 6 S /m B4 R 56 = 25 mm

Final input) δ - phase space (gaussian ε/ε =.52; ε c /ε =.499 Energy distribution (σ E /E =.76 %) 2 2 σ E /E =.76 % E/E [%] f(s) [/mm] 2 bunch head 4.. Longitudinal distribution (σ 25 z =2.3 µm) σ 2 s = 2.3 µm 5 5 ( E/E ) CSR [%] E/E [%] 2 4 2 N x 4 CSR induced Energy Gradient.2.2.4...6..

Energy Spread and Emittance (gaussian) E/E and ( E/E ) 2 /2 [%].4.2 CSR energy loss (DASH) and rms spread (SOLID) accumulated B B2 B3 2 4 6 8 2 4 6 S /m B4 Ε /Ε.43% σ δ.2% γε x [µm].6.4.2 B Bend plane normalized emittance B2 B3 B4 γε x.52 µm 2 4 6 8 2 4 6 S /m

Total RMS Relative Energy Spread (including chirp ) σ E /E /%.78.76.74 B Total RMS Relative Energy Spread B2 B3 B4 2 4 6 8 2 4 6 S /m

Chicane CSR-wake Movie (gaussian)

Chicane CSR-integrated integrated-wake (gaussian)

Final x-x Phase Space (gaussian input) γε CSR =.45 µm; β CSR =.368 m; α CSR =.99 (GRN=CSR,BLUE=nom,RED=tot) 5 5 γε.52 µm x /µrad 5 γε =. µm γε CSR.45 µm β opt α opt opt.37 m opt. 5 3 2 x /µm 2 3

Final x-x Phase Space (gaussian & optimal β, α ) γε CSR =.42 µm; β CSR =.368 m; α CSR =.3 (GRN=CSR,BLUE=nom,RED=tot) 5 5 emittance growth can be reduced by choosing optimal β-functions γε.5 µm x /µrad 5 γε =. µm γε CSR.45 µm β β opt α α opt 5 3 2 x /µm 2 3

Beta and emittance (gaussian & optimal β, α ) β x [m] 4 3 2 Horizontal Beta Function (β x, RED/dash=CSR) too big? β min.6 m β β opt α α opt 2 4 6 8 2 4 6 S /m.6 Bend plane normalized emittance γε x [µm].4.2 γε x.5 µm 2 4 6 8 2 4 6 S /m

..5 CSR wakefields (gaussian bend- to drift-2) bend- ( )( L =.4 m.8.6.4 drift- ( 2)( L = 5 m.2.2.5 N bin = 6, smoothed over 4. 6 4 2 2 4 6.4.6.8 6 4 2 2 4 6.3.2. bend-2 2 ( )( L =.4 m.2.5. drift-2 2 ( )( L = m..2.5.5..3.5.4 6 4 2 2 4 6.2 6 4 2 2 4 6

.5.5 CSR wakefields (gaussian bend-3 3 to drift-4) bend-3 3 ( 2)( L =.4 m.5 drift-3 3 ( 4)( L = 5 m.5.5.5 2 2.5 6 4 2 2 4 6 8.5 4 2 2 4 6 8 3 2 bend-4 4 ( 2)( L =.4 m.5 drift-4 4 ( 2)( L = 2 m.5 2.5 3 4 2 2 4 6 8 2 4 2 2 4 6 8

Compressing Uniform Distribution 25 Longitudinal distribution function 2 f(s) [/mm] 5 5.4.2.2.4

Final δ - phase space Uniform input dist. ε/ε =.8; ε c /ε =.2 Energy distribution (σ E /E =.72%) E/E [%] E/E [%] σ E /E =.72 % f(s) [/mm].4.2.2.4 Long. dist. (σ 25 z =2.2 µm) 2 5 5 σ s = 2.2 µm.4.2.2.4 ( E/E ) CSR [%] 5 N CSR induced Energy Gradient.5.5.4.2.2.4

Energy Spread and Emittance (uniform( uniform) E/E and ( E/E ) 2 /2 [%] γε x [µm].4.2.6.4.2 CSR energy loss (DASH) and rms spread (SOLID) accumulated 2 4 6 8 2 4 6 Bend plane normalized emittance emittance growth reduced compared to gaussian Ε /Ε.46% σ δ.7% γε x.2 µm 2 4 6 8 2 4 6 S /m

Chicane CSR-wake Movie Uniform Dist.

Chicane CSR-integrated integrated-wake Uniform Dist.

Final x-x Phase Space (uniform( input) γε CSR =.69 µm; β CSR = 3.872 m; α CSR =.58 (GRN=CSR,BLUE=nom,RED=tot) 5 5 γε.2 µm x /µrad 5 γε =. µm γε CSR.7 µm β opt α opt opt 3.9 m opt.5 5 3 2 x /µm 2 3

.5.4.3.2...2.3 N bin = 6, smoothed over 4 CSR wakefields (uniform( bend- to drift-2) bend- ( )( L =.4 m.8.6.4.2.2.4.6 drift- ( 2)( L = 5 m.4 2.5.5.5.5 2.8 2.5.5.5.5 2.6.4 bend-2 2 ( )( L =.4 m.3.2 drift-2 2 ( )( L = m.2..2.4..2.6.3.8 2.5.5.5.5 2.4 2.5.5.5.5 2

3 2 CSR wakefields (uniform( bend-3 3 to drift-4) bend-3 3 ( 2)( L =.4 m.5 drift-3 3 ( 4)( L = 5 m.5 2 3 2 2 3.5 2 2 3 6 4 2 2 bend-4 4 ( 2)( L =.4 m.5.5.5 drift-4 4 ( 2)( L = 2 m 4.5 6 2 2 3 2 2 2 3

Betatron Amplitude per Bunch Slice (x 2 + [xα + x β] 2 ) /2 /(βε) /2 (x 2 + [xα + x β] 2 ) /2 /(βε) /2 4 3 2.5.5. 4 3 2 Sliced Normalized Centroid Offsets (σ x units) λ(s) Sliced Normalized Centroid Offsets (σ x units) λ(s) gaussian uniform.4.2.2.4.6

Final δ - phase space - Single-Bend E/E [%].2.2 ε/ε =.2; ε c /ε =.37 E/E [%] Energy distribution (σ /E =. 4 ) E.2.2 σ E /E =. %.4.. Longitudinal distribution (σ z =2. µm) 2 f(s) [/mm] 5 5 σ s = 2. µm ( E/E ) CSR [%].4 5 N CSR induced Energy Gradient...2...3..

Energy Spread and Emittance Single Bend E/E and ( E/E ) 2 /2 [%] γε x [µm] CSR energy loss (DASH) and rms spread (SOLID) accumulated.2 (24σ s R 2 ) /3 E /E.5..5.6.4.2 steady-state state ( E/E E /E ) 2 /2 σ δ =.%.5 S /m.5 Bend plane normalized emittance.8 bend magnet.5.5 S /m

CSR-Wake Movie - Single-Bend

LCLS BC2 CSR-integrated integrated-wake (tracked dist.)