Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Similar documents
Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

THE INVERTER. Inverter

The Inverter. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic

The CMOS Inverter: A First Glance

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET )

The CMOS Inverter: A First Glance

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

5.0 CMOS Inverter. W.Kucewicz VLSICirciuit Design 1

ECE321 Electronics I

Chapter 5. The Inverter. V1. April 10, 03 V1.1 April 25, 03 V2.1 Nov Inverter

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Lecture 4: CMOS Transistor Theory

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Microelectronic Circuits ( )

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

MOSFET: Introduction

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

ECE 546 Lecture 10 MOS Transistors

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

The Physical Structure (NMOS)

EEC 118 Lecture #5: CMOS Inverter AC Characteristics. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Lecture 11 VTCs and Delay. No lab today, Mon., Tues. Labs restart next week. Midterm #1 Tues. Oct. 7 th, 6:30-8:00pm in 105 Northgate

ECE321 Electronics I

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

VLSI Design and Simulation

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

Lecture 4: CMOS review & Dynamic Logic

MOS Transistor Theory

CMOS Inverter (static view)

EE5311- Digital IC Design

EECS 141: FALL 05 MIDTERM 1

The Devices. Devices

MOS Transistor Theory

Digital Integrated Circuits 2nd Inverter

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

The Devices: MOS Transistors

The Devices. Jan M. Rabaey

Lecture 3: CMOS Transistor Theory

Practice 7: CMOS Capacitance

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

ECE 342 Solid State Devices & Circuits 4. CMOS

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

EE5311- Digital IC Design

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ENEE 359a Digital VLSI Design

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Digital Integrated Circuits

Chapter 4 Field-Effect Transistors

Lecture 5: CMOS Transistor Theory

ECE 497 JS Lecture - 12 Device Technologies

MOS Transistor I-V Characteristics and Parasitics

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

DC and Transient Responses (i.e. delay) (some comments on power too!)

EE5311- Digital IC Design

Digital Integrated Circuits A Design Perspective

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Digital Integrated Circuits EECS 312

COMP 103. Lecture 10. Inverter Dynamics: The Quest for Performance. Section 5.4.2, What is this lecture+ about? PERFORMANCE

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

2007 Fall: Electronic Circuits 2 CHAPTER 10. Deog-Kyoon Jeong School of Electrical Engineering

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EEE 421 VLSI Circuits

Chapter 3-7. An Exercise. Problem 1. Digital IC-Design. Problem. Problem. 1, draw the static transistor schematic for the function Q = (A+BC)D

Integrated Circuits & Systems

EE105 - Fall 2005 Microelectronic Devices and Circuits

Midterm. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Lecture Outline. Pass Transistor Logic. Restore Output.

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Digital Microelectronic Circuits ( ) The CMOS Inverter. Lecture 4: Presented by: Adam Teman

CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Inverter: A First Look

2.CMOS Transistor Theory

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Integrated Circuits & Systems

Integrated Circuits & Systems

Practice 3: Semiconductors

University of Toronto. Final Exam

Step 1. Finding V M. Goal: Þnd V M = input voltage for the output = V M both transistors are saturated at V IN = V M since

Miscellaneous Lecture topics. Mary Jane Irwin [Adapted from Rabaey s Digital Integrated Circuits, 2002, J. Rabaey et al.]

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

ECE 342 Electronic Circuits. Lecture 35 CMOS Delay Model

CMOS Inverter: CPE/EE 427, CPE 527 VLSI Design I L06: CMOS Inverter, CMOS Logic Gates. Course Administration. CMOS Properties.

VLSI Design I; A. Milenkovic 1

Lecture 5: DC & Transient Response

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

EE 560 MOS TRANSISTOR THEORY

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: CMOS Inverter: Visual VTC. Review: CMOS Inverter: Visual VTC

MOSFET and CMOS Gate. Copy Right by Wentai Liu

THE CMOS INVERTER CHAPTER. Quantification of integrity, performance, and energy metrics of an inverter Optimization of an inverter design

Transcription:

EE141 Fall 005 Lecture 6 MOS Capacitances, Propagation elay Important! Check course home page periodically for announcements Homework is due TOAY by 5pm In 40 Cory Homework 3 will be posted TOAY ue Thursday Sep by 5pm EE141

Today s Lecture The MOS transistor characteristics for transient analysis Propagation delay EE141 3 Review MOS Transistor Model CMOS Inverter VTC EE141 4

Important to Remember! -4 x 10.5 V S = V SAT I (A) 1.5 Linear Velocity Saturation Linear Relationship 1 0.5 V = V SAT GT V S = V GT Saturation 0 0 0.5 1 1.5.5 V S (V) Quadratic Relationship EE141 5 A Unified Model for Manual Analysis define V GT = V GS V T G for V GT 0: I =0 S B I for V GT 0: I W V min = k' VGT V L min λ ( 1+ V ) S with V min = min (V GT, V S, V SAT ) EE141 6

PMOS Load Lines Coordinate transform: I p (V Sp ) I n ( ) V in = V + V GSp I n = -I p = V + V Sp I n I p V in = 0 I n I n V in= 0 V in = 1.5 V in = 1.5 V GSp = -1 V Sp V Sp V GSp = -.5 V in = V + V GSp I n = -I p = V + V Sp EE141 7 CMOS Inverter Load Characteristics I n V in = 0 V in =.5 PMOS V in = 0.5 V in = NMOS V in = 1.5 V in = 1 V in = 1.5 V in = 1 V in = V in = 1.5 V in = 1 V in = 0.5 V in =.5 V in = 0 EE141 8

CMOS Inverter VTC.5 NMOS off PMOS res NMOS sat PMOS res 1.5 1 0.5 NMOS sat PMOS sat NMOS res PMOS sat NMOS res PMOS off 0.5 1 1.5.5 V in EE141 9 Inverter Gain 0 - gain -4-6 -8-10 -1 1 g = I ( V g ( V M M V kn VSATn + k p V ) λ λ Tn 1+ r V SATn n p SATp ) ( λ λ ) n p -14-16 -18 0 0.5 1 1.5.5 V (V) in EE141 10

Gain as a function of V.5 0. 0.15 (V) 1.5 1 0.5 0 0 0.5 1 1.5.5 V (V) in V in (V) (V) 0.1 0.05 Gain = -1 0 0 0.05 0.1 0.15 0. V (V) in V in (V) EE141 11 Impact of Process Variations.5 (V) 1.5 1 Good NMOS Bad PMOS Nominal Good PMOS Bad NMOS Good means: t ox L W V th 0.5 0 0 0.5 1 1.5.5 V in (V) EE141 1

Outline ynamic Operation of MOS Transistor MOS Capacitances Propagation elay EE141 13 MOS Capacitances G C GS C G S C SB C GB C B B EE141 14

The Gate Capacitance Polysilicon gate Source n + x d x d W rain n + L d Top view Gate-bulk overlap C gate ε = t ox ox WL Gate oxide t ox n + L n + Cross section EE141 15 Gate Capacitance G G G S C GC C GC C GC S S Cut-off Resistive Saturation C GCB C GCS C GC Textbook: page 109 Most important regions in digital design: saturation and cut-off EE141 16

G a t e C a p a c i t a n c e ( F ) Gate Capacitance C GC WLC ox WLC ox C GC WLC ox C GCB C GCS =C GC WLC ox C GCS C GC WLC ox 3 V GS 0 1 V S /(V GS V T ) C gate as a function of V GS (with V S = 0) C gate as a function of the degree of saturation EE141 17 Measuring the Gate Cap I V GS Capacitance (F) 10 x10-16 9 8 7 6 5 4 3 - -1.5-1 -0.5 0 0.5 1 1.5 V GS (V) EE141 18

iffusion Capacitance Channel-stop implant N A + W Bottom Side wall Source N x j Side wall L S Channel Substrate N A C diff = C bottom + C sw = C j AREA + C jsw PERIMETER = C j L S W + C jsw (L S + W) EE141 19 Junction Capacitance C j C j0 ( 1 V φ0 = m = 0.5: abrupt junction m m = 0.33: linear junction ) EE141 0

Linearizing the Junction Cap Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest C eq = Q V j Q j ( v = V high high ) Q V j ( V low low ) = K eq C j0 K eq = ( V high φ V 1 m 1 m [( φ V ) ( φ V ] m 0 0 high 0 low low) (1 m) ) EE141 1 Capacitive evice Model G C gate = C GB + C GS + C G C GS C G = C GCS + C GSO = C GC + C GO S C SB C GB C B = C diff = C GCB = C diff B EE141

Capacitances in 0.5µm CMOS Process Textbook: page 11 EE141 3.MOEL Parameters MOS1.MOEL Modname NMOS/PMOS <VT0=VT0 > EE141 4

Two Inverters V PMOS In Out 1.µm =λ Metal1 Polysilicon NMOS GN EE141 5 Two Inverters (modern view) V EE141 6

Computing the Capacitances V V M C db C g4 M4 V in C gd1 M1 C db1 C w C g3 M3 Simplified Model V in C L Fanout EE141 7 The CMOS Inverter: C in S C gsp C in V in G C gdn,p C L C gsn S EE141 8

Miller Effect Z F i 1 = V in (1-A) Z F i 1 V in A Z L i 1 = V in Z 1 V in i 1 A Z 1 Z Z L EE141 9 Miller Effect Z F A A Z 1 Z Z 1 = Z F 1 A Z = Z F 1 A 1 C 1 = C F (1 A) C 1 = C F (1 1/A) EE141 30

CMOS Inverter Example: C in C gsp C gs = C gsn + C gsp + V C gd - V C gd = C gdn + C gdp C in A = -1 C gsn C in = C gs + C gd (1-A) EE141 31 The Miller Effect V C gd1 V V in V C gd1 C gd1 M1 V V in M1 A capacitor experiencing identical but opposite voltage swing at both terminals can be replaced by a capacitor to ground, whose value is two times the original value EE141 3

Computing the Capacitances V V M C db C g4 M4 V in C gd1 M1 C db1 C w C g3 M3 Simplified Model V in C L Fanout EE141 33 Computing the Capacitances EE141 34

Outline ynamic Operation of MOS Transistor MOS Capacitances Propagation elay EE141 35 CMOS Inverter Propagation elay: Approach 1 V t phl C = L V I swing avg I avg C L t phl CL ~ k V n V in = V EE141 36

CMOS Inverter Propagation elay: Approach V t phl = f ( R C ) L on = 0. 69R C on L ln(0.5) C L 1 V R n 0.5 0.36 V in = V R on C L t EE141 37 MOS Transistor as a Switch V GS V T Traversed path S R on I V GS = V R mid R 0 V / V V S R R t t t 1 1 VS eq = avg( Ron( t)) = R ( ) = = on t dt t t1 t t1 t ) t1 t1 I t1 1 ( R ( t ) R ( )) eq on 1 + on t ( t) dt ( t EE141 38

The Transistor as a Switch V GS V T I V GS = V R on S R mid R 1 = ( R R ) eq mid + 0 R 0 V / V V S R R eq eq 1 = I 3 V 4 I SAT SAT V + ( 1+ λ V ) ( 1+ ) I SAT λ V 5 1 λ V 6 V EE141 39 Transient Response 3.5? t p = 0.69 C L (R eqn +R eqp )/ (V) 1.5 1 t plh t phl 0.5 0-0.5 0 0.5 1 1.5.5 t (sec) x 10-10 EE141 40

esign for Performance Keep capacitances small Increase transistor sizes watch out for self-loading! Increase V (?) EE141 41 elay as a function of V 5.5 5 t p (normalized) 4.5 4 3.5 3.5 t phl 3 CL V = 0.69 4 I SATn R eq = 0.5 ( W L) k ' V n n SATn CL V ( V V Tn V SATn ) 1.5 1 0.8 1 1. 1.4 1.6 1.8..4 V (V) EE141 4

evice Sizing 3.8 x 10-11 3.6 (fixed load) t p (sec) 3.4 3. 3.8.6.4. Self-loading effect: Intrinsic capacitances dominate 4 6 8 10 1 14 S EE141 43 NMOS/PMOS Ratio 5 x 10-11 tplh tphl 4.5 t p (sec) 4 tp β = W p /W n 3.5 3 1 1.5.5 3 3.5 4 4.5 5 β EE141 44

Impact of Rise Time on elay 0.35 0.3 t phl (nsec) 0.5 0. 0.15 0 0. 0.4 0.6 t rise (nsec) 0.8 1 t p = t step(i) + η t step(i-1) EE141 45 The Sub-Micron MOS Transistor Threshold Variations Sub-threshold Conduction Parasitic Resistances EE141 46

Threshold Variations V T V T Long-channel threshold Low V S threshold L V S Threshold as a function of channel length (for low V S ) rain induced barrier lowering (IBL) (for low L) EE141 47 Sub-Threshold Conduction I (A) 10-10 -4 10-6 10-8 Quadratic Linear The Slope Factor I ~ I 0 e qvgs nkt, C n =1+ C S is V GS for I /I 1 =10 ox 10-10 Exponential 10-1 V T 0 0.5 1 1.5.5 V GS (V) Typical values for S: 60 100 mv/decade EE141 48

Sub-Threshold I vs. V GS qvgs nkt I I0e 1 e qvs = kt I V S from 0 to 0.5V V GS EE141 49 Sub-Threshold I vs. V S I qvgs qvs = nkt kt I e 0 1 e ( 1+ λ V ) S I V GS from 0 to 0.3V V S EE141 50

Next Lecture Optimizing for Performance Power dissipation in CMOS inverters EE141 51