The Linear Oscillation Zoo Within Giant Stars: A Probe Of Their Deep Interiors

Similar documents
Asteroseismology of Red Giants. Josefina Montalbán Université de Liège

Asteroseismology of red giant stars: The potential of dipole modes

arxiv: v1 [astro-ph.sr] 9 Sep 2010

Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT

Observed solar frequencies. Observed solar frequencies. Selected (two) topical problems in solar/stellar modelling

The physics of red-giant oscillations

Supporting Online Material for

Stochastic excitation mechanism. Sun. pressure modes periods : 5 min Physics tested depth of conv env diffusion rotation He abundance

Asteroseismology of the Open Clusters NGC 6791, NGC 6811, and NGC 6819 from 19 months of Kepler photometry

arxiv: v1 [astro-ph.sr] 12 Sep 2011

arxiv: v1 [astro-ph.sr] 13 Feb 2013

Status of solar and stellar modelling. Jørgen Christensen-Dalsgaard Stellar Astrophysics Centre Aarhus University

arxiv: v1 [astro-ph.sr] 8 Sep 2014

Helium signature in red giant oscillation patterns observed by Kepler

D. Cardini, R. Ventura, G. Catanzaro, C. Barban,T. R. Bedding, J. Christensen- Dalsgaard, J. De Ridder, S. Hekker, D.Huber, T. Kallinger,A.

Supporting Online Material for

Red-giant seismic properties analyzed with CoRoT

arxiv: v2 [astro-ph.sr] 29 Jun 2010

Abstract. Introduction. A. Miglio, J. Montalbán, P. Eggenberger and A. Noels

Asteroseismic Study of Red Giant ɛ Ophiuchi

arxiv: v1 [astro-ph.sr] 12 Jan 2016

Rotation and stellar evolution

Probing Stellar Structure with Pressure & Gravity modes the Sun and Red Giants. Yvonne Elsworth. Science on the Sphere 14/15 July 2014

Asteroseismology with WFIRST

Where are we now and where are we going? Arlette Noels & Josefina Montalbán

Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars

arxiv: v1 [astro-ph.sr] 3 Apr 2010

3rd Aarhus Red Giants Workshop

arxiv: v1 [astro-ph.sr] 31 Dec 2018

Astronomy. Astrophysics. Asymptotic and measured large frequency separations

Helioseismology. Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK

Solar-like oscillations in intermediate mass stars

arxiv: v1 [astro-ph.sr] 27 Jan 2010

arxiv:astro-ph/ v1 12 Feb 2007

arxiv: v1 [astro-ph.sr] 27 Apr 2009

When dipole modes in red giants are simultaneously mixed and depressed

ASTEROSEISMIC STUDY ON CLUSTER DISTANCE MODULI FOR RED GIANT BRANCH STARS IN NGC 6791 AND NGC 6819

The Solar Interior and Helioseismology

BUT DOES IT QUACK LIKE A DUCK? STARS IN CLUSTERS. Andrea Miglio, Karsten Brogaard, Rasmus Handberg

arxiv: v1 [astro-ph] 3 Jul 2008

Calibrating Core Overshooting in Low-Mass Stars with Kepler Data

Seminar: Measurement of Stellar Parameters with Asteroseismology

Asteroseismology & Exoplanets: A Kepler Success Story

Period spacings in red giants. I. Disentangling rotation and revealing core structure discontinuities ABSTRACT

arxiv: v1 [astro-ph.sr] 30 Mar 2011

arxiv: v1 [astro-ph.sr] 12 Oct 2016

arxiv: v2 [astro-ph.sr] 22 Jan 2010

Asteroseismic inferences on red giants in open clusters NGC 6791, NGC 6819 and NGC 6811 using Kepler

What does helioseismology tell us about the Sun?

Do red giants have short mode lifetimes?

Detection of solar-like oscillations in relics of the Milky Way: asteroseismology of K giants in M4 using data from the NASA K2 mission

TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA

Oscillations in g-mode period spacings in red giants as a way to determine their state of evolution

Supporting Online Material for

arxiv: v1 [astro-ph.sr] 6 May 2015

Solar-like oscillations in red giants observed with Kepler: how to improve knowledge of global oscillation parameters

Modeling sub-giant stars. Fernando Jorge Gutiérrez Pinheiro Centro de Astrofísica da Universidade do Porto ESO Visiting Scientist

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

arxiv: v1 [astro-ph.sr] 7 Mar 2019

Granulation in stars. solar granulation. Thomas IAU GA Beijing, Aug Wednesday, January 2, 13

ASTEROSEISMIC ANALYSIS OF THE CoRoT TARGET HD 49933

Revised instability domains of SPB and β Cephei stars

Period spacings in red giants

arxiv: v1 [astro-ph.sr] 4 Nov 2014

arxiv: v1 [astro-ph.sr] 22 Jun 2009

Asteroseismology of Exoplanet Host Stars

Stars burn hydrogen into helium through

The Octave (Birmingham Sheffield Hallam) automated pipeline for extracting oscillation parameters of solar-like main-sequence stars

Asteroseismology of the β Cep star HD II. Seismic constraints on core overshooting, internal rotation and stellar parameters

THEORETICAL ASPECTS OF ASTEROSEISMOLOGY: SMALL STEPS TOWARDS A GOLDEN FUTURE

Transport of angular momentum within stars

Ensemble asteroseismology of solar-type stars with the NASA Kepler Mission

Detection of solar-like oscillations in the red giant star ɛ Ophiuchi by MOST spacebased photometry ABSTRACT. 0.8 )days.

OBSERVATIONS OF INTENSITY FLUCTUATIONS ATTRIBUTED TO GRANULATION AND FACULAE ON SUN-LIKE STARS FROM THE KEPLER MISSION

2. Oscillation parameters

What the seismology of red giants is teaching us about stellar physics S. Deheuvels

The new solar abundances - Part II: the crisis and possible solutions

SONG overview. Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University

Analysis of the acoustic cut-off frequency and the HIPs in 6 Kepler stars with stochastically excited pulsations

arxiv: v2 [astro-ph.sr] 24 Feb 2017

Global parameters and evolutionary sequences

Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission

Testing stellar evolution models with the retired A star HD

arxiv: v2 [astro-ph.sr] 31 Mar 2014

STELLAR ROTATION AND MAGNETIC ACTIVITY:

Expected asteroseismic performances with the space project PLATO

arxiv:astro-ph/ v1 15 Feb 2004

arxiv: v2 [astro-ph] 4 May 2008

Update on asteroseismology with Plato

Astronomy. Astrophysics. Seismic modelling of the β Cephei star HD (V1449 Aquilae)

arxiv: v3 [astro-ph.sr] 18 Oct 2016

Probing the Deep End of the Milky Way with New Oscillating Kepler Giants

arxiv: v1 [astro-ph.sr] 7 Jul 2015

The Giant Branches. Stellar evolution of RGB and AGB stars. Importance, features, uncertainties

PROBING THE DEEP END OF THE MILKY WAY WITH KEPLER: ASTEROSEISMIC ANALYSIS OF 851 FAINT RED GIANTS MISCLASSIFIED AS COOL DWARFS

Interferometric Constraints on Fundamental Stellar Parameters

Spin alignment of stars in old open clusters

arxiv: v1 [astro-ph.sr] 27 Dec 2011

HR diagram and asteroseismic analysis of models for β Hydri

Objectives & Significance

Transcription:

The Linear Oscillation Zoo Within Giant Stars: A Probe Of Their Deep Interiors Andrea Miglio School of Physics and Astronomy University of Birmingham

the zoo of red giants: a unique snapshot of stellar evolution Sun

the zoo of red giants determines oscillation spectrum 1.2 M sun

Miglio Montalban Noels Eds. 1 Astrophysics and Space Science Proceedings Andrea Miglio Josefina Montalban Arlette Noels Editors Red Giants as Probes of the Structure and Evolution of the Milky Way Red Giants as Probes of the Structure and Evolution of the Milky Way Red Giants as Probes of the Structure and Evolution of the Milky Way Series: Astrophysics and Space Science Proceedings Miglio, Andrea; Montalban, Josefina; Noels, Arlette (Eds.) 212, ISBN 978-3-642-18417-8, Hardcover

Miglio Montalban Noels Eds. 1 Red Giants as Probes of the Structure and Evolution of the Milky Way Astrophysics and Space Science Proceedings Andrea Miglio Josefina Montalban Arlette Noels Editors Red Giants as Probes of the Structure and Evolution of the Milky Way Red Giants as Probes of the Structure and Evolution of the Milky Way Series: Astrophysics and Space Science Proceedings Miglio, Andrea; Montalban, Josefina; Noels, Arlette (Eds.) 212, ISBN 978-3-642-18417-8, Hardcover PART 2: Internal structure, atmosphere, and evolution of red giants: current models and their uncertainties Evolution and internal structure of red giants Maurizio Salaris Uncertainties and systematics in stellar evolution models of Red Giant Stars Santi Cassisi Convection modelling and the morphology of RGBs in stellar clusters Paolo Ventura Helium burning in moderate-mass stars Achim Weiss Impact of rotational mixing on the global and asteroseismic properties of red giants Patrick Eggenberger 3D picture of the convective envelope of a rotating RGB star Ana Palacios Effects of rotation and thermohaline mixing in red giant stars Corinne Charbonnel 3D Model Atmospheres of Red Giant Stars Hans-Günter Ludwig

the zoo of red giants Oscilla/on frequencies Features in stellar interior - global stellar parameters specificity of seismic diagnostics: few examples

Mode Inertia Acoustic glitches in giants First evidence for a sharp-structure variation in a red giant CoRoT target HR7349 ν [µhz] Fig. 4. Mode inertias of radial modes (full dots), l = 1modes(asterisks) and l = 2modes(opentriangles)fora1.2M red-giant model. Δν detrended [µhz].2.1.1.2 18 2 22 24 26 28 3 32 34 36 ν [µhz] Fig. 5. Miglio Open squares et al. 21, represent A&A ν n,l computed from l =, 1, 2adiabatic frequencies in a 1.2 M red giant model. The solid line shows a sinusoidal component with amplitude decreasing with frequency (see Monteiro & Thompson 1998; Houdek & Gough 27) fitted to the l =, 1largeseparationdeterminedbyCarrieretal.21(dotswith error bars). 5. Conclusions l=2 Sun and solar-like stars, the amplitude of the periodic component depends on the envelope helium abundance (see e.g. Basu et al. 24; Houdek & Gough 27, and references therein). While CoRoT and Kepler observations will provide other targets and further reduce the uncertainty on the oscillation frequencies, a thorough study on the required precision in terms of seismic and non-seismic observational constraints, as well as and in terms of models, should be undertaken to aim for reliable seismic estimate of the envelope helium abundance in giants. Acknowledgements. JM acknowledges the Belgian Prodex-ESA for support (contract C931). FC is a postdoctoral fellow of the Funds for Scientific Research, Flanders (FWO). References Baglin, A., Michel, E., Auvergne, M., & The COROT Team. 26, in ESA Special Publication, Vol. 624, Proceedings of SOHO 18/GONG 26/HELAS I, Beyond the spherical Sun Ballot, J., Turck-Chièze, S., & García, R. A. 24, A&A, 423, 151 Basu, S., Mazumdar, A., Antia, H. M., & Demarque, P. 24, MNRAS, 35, 277 Bedding, T. R., Huber, D., Stello, D., et al. 21a, ApJ, 713, L176 Bedding, T. R., Kjeldsen, H., Campante, T. L., et al. 21b, ApJ, 713, 935 Borucki, W. J., Koch, D., Basri, G., et al. 21, Science, 327, 977 Carrier, F., De Ridder, J., Baudin, F., et al. 21, A&A, 59, A73 Catelan, M. 29, Ap&SS, 32, 261 Christensen-Dalsgaard, J. 22, Reviews of Modern Physics, 74,173 Christensen-Dalsgaard, J. 24, Sol. Phys., 22, 137 De Ridder, J., Barban, C., Baudin, F., et al. 29, Nature, 459, 398 Dupret, M., Belkacem, K., Samadi, R., et al. 29, A&A, 56, 57 Dziembowski, W. A., Gough, D. O., Houdek, G., & Sienkiewicz, R. 21, MNRAS, 328, 61 Eggenberger, P., Miglio, A., Montalban, J., et al. 21, A&A,59,A72 Frandsen, S., Carrier, F., Aerts, C., et al. 22, A&A, 394, L5 Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 21, PASP, 122, 131 Girardi, L. & Salaris, M. 21, MNRAS, 323, 19 Gough, D. O. 199, Lecture Notes in Physics, Berlin Springer Verlag, 367, 283 Hatzes, A. P. & Zechmeister, M. 27, ApJ, 67, L37 Hekker, S., Kallinger, T., Baudin, F., et al. 29, A&A, 56, 465 Houdek, G. & Gough, D. O. 27, MNRAS, 375, 861 Kippenhahn, R. & Weigert, A. 199, Stellar Structure and Evolution (Springer- Verlag) Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87

Mode Inertia Acoustic glitches in giants First evidence for a sharp-structure variation in a red giant CoRoT target HR7349 ν [µhz] Fig. 4. Mode inertias of radial modes (full dots), l = 1modes(asterisks) and l = 2modes(opentriangles)fora1.2M red-giant model. Δν detrended [µhz].2.1.1.2 18 2 22 24 26 28 3 32 34 36 ν [µhz] Fig. 5. Miglio Open squares et al. 21, represent A&A ν n,l computed from l =, 1, 2adiabatic frequencies in a 1.2 M red giant model. The solid line shows a sinusoidal component with amplitude decreasing with frequency (see Monteiro & Thompson 1998; Houdek & Gough 27) fitted to the l =, 1largeseparationdeterminedbyCarrieretal.21(dotswith error bars). 5. Conclusions l=2 Sun and solar-like stars, the amplitude of the periodic component depends on the envelope helium abundance (see e.g. Basu et al. 24; Houdek & Gough 27, and references therein). While CoRoT and Kepler observations will provide other targets and further reduce the uncertainty on the oscillation frequencies, a thorough study on the required precision in terms of seismic and non-seismic observational constraints, as well as and in terms of models, should be undertaken to aim for reliable seismic estimate of the envelope helium abundance in giants. Acknowledgements. JM acknowledges the Belgian Prodex-ESA for support (contract C931). FC is a postdoctoral fellow of the Funds for Scientific Research, Flanders (FWO). References Baglin, A., Michel, E., Auvergne, M., & The COROT Team. 26, in ESA Special Publication, Vol. 624, Proceedings of SOHO 18/GONG 26/HELAS I, Beyond the spherical Sun Ballot, J., Turck-Chièze, S., & García, R. A. 24, A&A, 423, 151 Basu, S., Mazumdar, A., Antia, H. M., & Demarque, P. 24, MNRAS, 35, 277 Bedding, T. R., Huber, D., Stello, D., et al. 21a, ApJ, 713, L176 Bedding, T. R., Kjeldsen, H., Campante, T. L., et al. 21b, ApJ, 713, 935 Borucki, W. J., Koch, D., Basri, G., et al. 21, Science, 327, 977 Carrier, F., De Ridder, J., Baudin, F., et al. 21, A&A, 59, A73 Catelan, M. 29, Ap&SS, 32, 261 Christensen-Dalsgaard, J. 22, Reviews of Modern Physics, 74,173 Christensen-Dalsgaard, J. 24, Sol. Phys., 22, 137 De Ridder, J., Barban, C., Baudin, F., et al. 29, Nature, 459, 398 Dupret, M., Belkacem, K., Samadi, R., et al. 29, A&A, 56, 57 Dziembowski, W. A., Gough, D. O., Houdek, G., & Sienkiewicz, R. 21, MNRAS, 328, 61 Eggenberger, P., Miglio, A., Montalban, J., et al. 21, A&A,59,A72 Frandsen, S., Carrier, F., Model Aerts, C., 1.2 et Mal. sun 22, A&A, 394, L5 Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 21, PASP, 122, 131 Girardi, L. & Salaris, M. 21, MNRAS, 323, 19 Gough, D. O. 199, Lecture Notes in Physics, Berlin Springer Verlag, 367, 283 Hatzes, A. P. & Zechmeister, M. 27, ApJ, 67, L37 Hekker, S., Kallinger, T., Baudin, F., et al. 29, A&A, 56, 465 Houdek, G. & Gough, D. O. 27, MNRAS, 375, 861 Kippenhahn, R. & Weigert, A. 199, Stellar Structure and Evolution (Springer- Verlag) Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87

Acoustic glitches in giants Sun: low-degree modes a. Red giant Base of the convective envelope Second helium ionization zone b. Sun Houdek & Gough, 27 Ballot et al. 24 Base of the convective envelope Second helium ionization zone

Acoustic glitches in giants Δν [µhz] 16 14 12 1 8 Kepler data - field stars Δν [µhz] 5.5 5 4.5 can we estimate envelope Y? first steps: H&H exercises 6 4 2 5 1 15 2 25 ν max [µhz] 4 3.5 2 3 4 5 6 7 8 ν max [µhz] test robustness in Kepler giants belonging to old open clusters thanks to B. Mosser

Period spacing: evolutionary state = 2π 2 l(l +1) ( r2 r 1 N dr ) 1 r Bedding et al. 211 Kepler He-burning RGB Mosser et al. 211 CoRoT

Period spacing: evolutionary state Kepler Bedding et al. 211.8-1.8 Msun 2. Msun 2.3 Msun 2.4, 2.5 Msun ATON stellar models + Adiabatic frequency computations (LOSC) Montalban, Miglio, Noels,Ventura, 211 in prep

Period spacing: Mass of the He core Y=.28 Z=.2 No overshooting 2.5 M 2.3 M 2.1 M in the secondary clump M(He core) vs Mstar depends on overshooting during the MS (Girardi et al. 1999, Castellani et al. 2) 3. M test of core-mixing during the MS evolutionary phase Montalban, Miglio, Noels, Ventura, 211 in prep

Mosser et al. in preparation Goupil et al. in preparation

the zoo of red giants: global parameters Mass and radius estimate: ( ) R = R ( νmax ν max, ) ( ) ( ν 2 Teff ν T eff, ).5, ( ) M = M ( νmax ν max, ) 3 ( ) ( ν 4 Teff ν T eff, ) 1.5. the paper were estimated by the direct method. W

Testing scaling relations 1 1 R/R sun 1 1 1 1 R/R sun (seismo) Miglio. 211, ApSS

Testing scaling relations.3.2 (R R seismo )/R.1.1.2.3 Miglio. 211, ApSS 1 1 1 R/R sun

Testing scaling relations 13 14 Stetson et al. photometry RGB stars used in this study RC stars used in this study 12 12.5 empirical calibrations: clusters 15 13 13.5 Kepler clusters e.g. NGC6791 Basu et al. 211, Stello et al. 211 V 16 17 V 14 14.5 15 18 NGC6791 15.5 19 16 2.8.9 1 1.1 1.2 1.3 1.4 1.5 1.6 B V 16.5.4 Miglio et al. 211, MNRAS in press Figure 1. Colour-magnitude diagram of NGC6791 (left panel) and NGC6819 al. (23) and Hole et al (29), respectively. RGB (RC) stars used in this wo

Testing scaling relations 1.25 1.2 1.15 1.1 R seismo /R CMD 1.5 1.95.9.85.8.75 6 7 8 9 1 11 12 13 14 15 16 R CMD Miglio et al. 211 MNRAS, in press RCMD using distance modulus from EB: (m-m)v=13.51±.6 Brogaard et al. 211 warning: need for 2-3% relative correction on RGB vs RC stars scaling

Distances Radii + Teff L + BC, de-reddened Ks apparent mag Distances (err ~15%)

Distances Radii + Teff L + BC, de-reddened Ks apparent mag 9 d (pc) 15 12 6 1 Distances (err ~15%) 15 Kepler LRc1, a1: ~ 2 stars Sun 18 Mosser et al. 21 Kepler public data: ~ 1 stars Hekker et al. 211 gal. longitude 21 LRa1 LRc1 5 pc Galactic Centre

Distances LRa1 Miglio et al. 211, in preparation

CoRoT LRa1 vs. LRc1 Radius Mass.5.4 Fraction.4.3.2 LRc1 LRa1 Fraction.3.2 LRc1 LRa1 observed.1.1 1 2 3 4 R/R sun 1 2 3 4 5 M/M sun.5.4 Fraction.4.3.2 LRc1 LRa1 Fraction.3.2 LRc1 LRa1 simulated TRILEGAL.1.1 1 2 3 4 R/R sun 1 2 3 4 5 M/M sun

CoRoT LRa1 vs. LRc1 Radius Mass.5.4 Fraction.4.3.2 LRc1 LRa1 Fraction.3.2 LRc1 LRa1 observed.1.1 Fraction 1 2 3 4.5.4.3.2 R/R sun LRc1 LRa1 Fraction 1 2 3 4 5.4.3.2 M/M sun LRc1 LRa1 Fraction.25.2.15.1 Age Lrc1 Lra1.1.1.5 1 2 3 4 R/R sun 1 2 3 4 5 M/M sun 8 8.5 9 9.5 1 1.5 log(age [yr])

from Mass to Age 1 9.8 log(g) < 3.5.4.3.2 log(age [yr]) 9.6 9.4 9.2 9.1.1.2.3.4 [Fe/H] 8.8 AGB mass good proxy for the age of RGB stars 8.6 He B RGB 1 1.5 2 2.5 M [M ] sun.5.6

from Mass to Age why is it relevant to determine ev. state of a ~1 Rsun giant?

from Mass to Age why is it relevant to determine ev. state of a ~1 Rsun giant? constraints: [Fe/H], Teff,,, ev. state from age estimates using PARAM (as in Da Silva et al. 26, Nordstrom et al. 24).4.3 ev. state RC RGB Unknown PDF.2.1 8.6 8.8 9 9.2 9.4 9.6 9.8 1 1.2 log(age [yr])

asteroseismic diagnostics in red giants global parameters M, R, ev. state (age) 9 local features in stellar interior e.g. signature of He ionisation info on detailed properties of the g-mode cavity 15 12 6 1 15 3 Kepler Sun 18 LRc1 5 pc Galactic Centre LRa1 21 33 24 3

thanks to M. Barbieri, Nice A.-M. Broomhall, W. Chaplin, Birmingham P. Eggenberger, Genève L. Girardi, Padova J. Montalbán, A. Noels, R. Scuflaire, MAD, Liège T. Morel, M. Valentini, Liège B. Mosser, Paris P. Ventura, F. D Antona, Roma G. Verner, London KASC WG 2, 8