Announcements. Image Formation: Outline. The course. Image Formation and Cameras (cont.)

Similar documents
Multiple view geometry

Review of linear algebra. Nuno Vasconcelos UCSD

Lecture 8: Camera Calibration

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

4. Eccentric axial loading, cross-section core

COMPLEX NUMBER & QUADRATIC EQUATION

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Definition of Tracking

Principle Component Analysis

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

Lecture 8: Camera Calibra0on

Physics for Scientists and Engineers I

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

The Schur-Cohn Algorithm

VECTORS AND TENSORS IV.1.1. INTRODUCTION

CENTROID (AĞIRLIK MERKEZİ )

PART 1: VECTOR & TENSOR ANALYSIS

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Engineering Tensors. Friday November 16, h30 -Muddy Charles. A BEH430 review session by Thomas Gervais.

Least squares. Václav Hlaváč. Czech Technical University in Prague

Model Fitting and Robust Regression Methods

INTRODUCTION TO COMPLEX NUMBERS

? plate in A G in

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

(x',y') (x', y') (x, y) (x, y) Review: Rendering Pipeline. Review: Geometry Pipeline. Review: Graphics State. Transformations

Electrochemical Thermodynamics. Interfaces and Energy Conversion

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

6 Roots of Equations: Open Methods

Learning Enhancement Team

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

Correction and rectification of light field

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

THREE-DIMENSIONAL KINEMATICS OF RIGID BODIES

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede. with respect to λ. 1. χ λ χ λ ( ) λ, and thus:

Quiz: Experimental Physics Lab-I

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Effects of polarization on the reflected wave

CALIBRATION OF SMALL AREA ESTIMATES IN BUSINESS SURVEYS

Uniform Circular Motion

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Remember: Project Proposals are due April 11.

COMPLEX NUMBERS INDEX

Basic projective geometry

Quadrilateral et Hexahedral Pseudo-conform Finite Elements

An Introduction to Support Vector Machines

( ) ( )()4 x 10-6 C) ( ) = 3.6 N ( ) = "0.9 N. ( )ˆ i ' ( ) 2 ( ) 2. q 1 = 4 µc q 2 = -4 µc q 3 = 4 µc. q 1 q 2 q 3

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Lecture 8. Newton s Laws. Applications of the Newton s Laws Problem-Solving Tactics. Physics 105; Fall Inertial Frames: T = mg

The Number of Rows which Equal Certain Row

SECTION 9-4 Translation of Axes

Things to Memorize: A Partial List. January 27, 2017

x=0 x=0 Positive Negative Positions Positions x=0 Positive Negative Positions Positions

Spectral Graph Theory and its Applications September 16, Lecture 5

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Lecture 4: Piecewise Cubic Interpolation

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS

Strong Gravity and the BKL Conjecture

Review: Transformations. Transformations - Viewing. Transformations - Modeling. world CAMERA OBJECT WORLD CSE 681 CSE 681 CSE 681 CSE 681

Computer Graphics (CS 4731) Lecture 7: Linear Algebra for Graphics (Points, Scalars, Vectors)

Lecture 3. Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab. 13- Jan- 15.

13.4 Work done by Constant Forces

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT. PART IA (First Year) Paper 4 : Mathematical Methods

SYMMETRY CONCEPT APPLIED IN MOLECULAR SPECTROSCOPY

Lecture 22: Logic Synthesis (1)

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

A New Algorithm Linear Programming

Katholieke Universiteit Leuven Department of Computer Science

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Physics 1402: Lecture 7 Today s Agenda

Math 32B Discussion Session Session 7 Notes August 28, 2018

Announcements. Texture Mapping PA4. Geometric Registration

PHYS 2421 Fields and Waves

Symmetries and Conservation Laws in Classical Mechanics

EXPONENT. Section 2.1. Do you see a pattern? Do you see a pattern? Try a) ( ) b) ( ) c) ( ) d)

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

Differential Geometry: Conformal Maps

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

2. VECTORS AND MATRICES IN 3 DIMENSIONS

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Physics 121 Sample Common Exam 2 Rev2 NOTE: ANSWERS ARE ON PAGE 7. Instructions:

set is not closed under matrix [ multiplication, ] and does not form a group.

SVMs for regression Multilayer neural networks

Mobility Determination of Displacement Set Fully Parallel Platforms.

a = Acceleration Linear Motion Acceleration Changing Velocity All these Velocities? Acceleration and Freefall Physics 114

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

ragsdale (zdr82) HW6 ditmire (58335) 1 the direction of the current in the figure. Using the lower circuit in the figure, we get

Work and Energy (Work Done by a Varying Force)

Transcription:

nnouncements Imge Formton nd Cmers (cont.) ssgnment : Cmer & Lenses, gd Trnsformtons, nd Homogrph wll be posted lter tod. CSE 5 Lecture 5 CS5, Fll CS5, Fll CS5, Fll The course rt : The phscs of mgng rt : Erl vson rt 3: econstructon rt 4: ecognton CS5, Fll Imge Formton: Outlne Fctors n producng mges rojecton erspectveorthogrphc rojecton Vnshng ponts rojectve Geometr gd Trnsformton nd SO(3) Lenses Sensors Qunttonesoluton Illumnton eflectnce nd dometr nhole Cmer: erspectve projecton bstrct cmer model - bo wth smll hole n t Geometrc propertes of projecton 3-D ponts mp to ponts 3-D lnes mp to lnes lnes mp to whole mge or hlf-plne olgons mp to polgons Importnt pont to note: ngles & dstnces not preserved, nor re nequltes of ngles & dstnces. Degenerte cses: lne through focl pont project to pont plne through focl pont projects to lne CS5, Fll Forsth&once CS5, Fll

Equton of erspectve rojecton Dgresson Crtesn coordntes: We hve, b smlr trngles, tht (,, ) -> (f, f, f ) Estblshng n mge plne coordnte sstem t C lgned wth nd j, we get (,,) ( f, f ) rojectve Geometr nd Homogenous Coordntes CS5, Fll CS5, Fll Wht s the ntersecton of two lnes n plne? Do two lnes n the plne lws ntersect t pont? ont No, rllel lnes don t meet t pont. CS5, Fll CS5, Fll Cn the perspectve mge of two prllel lnes meet t pont? ES rojectve geometr provdes n elegnt mens for hndlng these dfferent stutons n unfed w nd homogenous coordntes re w to represent enttes (ponts & lnes) n projectve spces. CS5, Fll CS5, Fll

rojectve Geometr oms of rojectve lne. Ever two dstnct ponts defne lne. Ever two dstnct lnes defne pont (ntersect t pont) 3. There ests three ponts,,,c such tht C does not le on the lne defned b nd. Dfferent thn Euclden (ffne) geometr rojectve plne s bgger thn ffne plne ncludes lne t nfnt rojectve lne ffne Lne t = lne + Infnt Homogenous coordntes w to represent ponts n projectve spce Use three numbers to represent pont on projectve plne Wh? The projectve plne hs to be bgger thn the Crtesn plne. How: dd n etr coordnte e.g., (,) -> (,,) Impose equvlence relton (,,) *(,,) such tht ( not ).e., (,,) (,, ) ont t nfnt ero for lst coordnte e.g., (,,) Wh do ths? ossble to represent ponts t nfnt Where prllel lnes ntersect Where prllel plnes ntersect ossble to wrte the cton of perspectve cmer s mtr CS5, Fll CS5, Fll Homogenous coordntes w to represent ponts n projectve spce Use three numbers to represent pont on projectve plne dd n etr coordnte e.g., (,) -> (,,) Impose equvlence relton (,,) *(,,) such tht ( not ).e., (,,) (,, ) (,,) (,) Converson Euclden -> Homogenous -> Euclden In -D Euclden -> Homogenous: (, ) -> (,,) Homogenous -> Euclden: (,, ) -> (, ) In 3-D Euclden -> Homogenous: (,, ) -> (,,,) Homogenous -> Euclden: (,,, w) -> (w, w, w) (,,) (,) CS5, Fll CS5, Fll onts t nfnt Lnes n rojectve spce ont t nfnt ero for lst coordnte (,,) nd equvlence relton (,,) *(,,) No correspondng Euclden pont (,,) (,,). Lne n Euclden plne. lne through orgn n homogenous coordntes 3. lne s represented b ts norml N 4. Equton for plne s N. (,,) = or M. (,,) = where M = λn N rojectve lne ffne Lne t = lne + Infnt CS5, Fll CS5, Fll 3

The equton of projecton End of the Dgresson Crtesn coordntes: (,,) ( f, f ) Homogenous Coordntes nd Cmer mtr U V W f T CS5, Fll CS5, Fll rllel lnes meet n the mge Vnshng pont Vnshng ponts H VL V Imge plne Formed b lne through O rllel to the gven lne(s) sngle lne cn hve vnshng pont Dfferent drectons correspond dfferent vnshng ponts V V CS5, Fll CS5, Fll V 3 Vnshng onts Vnshng ont In the projectve plne, prllel lnes meet t pont t nfnt. The vnshng pont s the perspectve projecton of tht pont t nfnt, resultng from multplcton b the cmer mtr. CS5, Fll CS5, Fll 4

5 CS5, Fll ffne Cmer Model Te perspectve projecton equton, nd perform Tlor seres epnson bout some pont (,, ). Drop terms tht re hgher order thn lner. esultng epresson s ffne cmer model pproprte n Neghborhood bout (,, ) CS5, Fll p b v u ewrte ffne cmer model n terms of Homogenous Coordntes w v u ffne cmer model CS5, Fll v u Orthogrphc projecton Strtng wth ffne cmer mode Te Tlor seres bout (,, ) pont on optcl s (,, ) CS5, Fll The projecton mtr for scled orthogrphc projecton T W V U rllel lnes project to prllel lnes tos of dstnces re preserved under orthogrphc projecton CS5, Fll Wht f cmer coordnte sstem dffers from object coordnte sstem {c} {W} CS5, Fll Euclden Coordnte Sstems O O O O j j...

Coordnte Chnges: ure Trnsltons otton Mtr CS5, Fll O O O O = + O.. j. CS5, Fll j. j. j j... j. T T j T j Coordnte Chnges: ure ottons Coordnte Chnges: gd Trnsformtons O j j CS5, Fll CS5, Fll O convenent notton CS5, Fll O onts: Ledng superscrpt ndctes the coordnte sstem tht the coordntes re wth respect to Subscrpt n dentfer otton Mtrces Lower left (Gong from ths sstem) Upper left (Gong to ths sstem) To dd vectors, coordnte sstems must gree To rotte vector, ponts coordnte sstem must gree wth lower left of rotton mtr CS5, Fll Some ponts bout SO(n) SO(n) = { nn : T = I, det() = } SO(): rotton mtrces n plne SO(3): rotton mtrces n 3-spce 3 Forms Group under mtr product operton: Identt Inverse ssoctve Closure Closed (fnte ntersecton of closed sets) ounded,j [-, +] Does not form vector spce. Mnfold of dmenson n(n-) Dm(SO()) = Dm(SO(3)) = 3 6

SO(3) rmetertons of SO(3) 3-D mnfold, so between 3 prmeters nd n+ prmeters (Whtne s Embeddng Thm.) oll-tch-w Euler ngles s ngle (odrgues formul) Cle s formul Mtr Eponentl Quternons (four prmeters + one constrnt) gd Trnsformtons s Mppngs: otton bout the s = rot(,θ) CS5, Fll CS5, Fll otton: Homogenous Coordntes bout s ' ' ' = cos θ sn θ -sn θ cos θ rot(,θ) θ p' p bout s: bout s: ' ' ' ' ' ' otton cos θ = sn θ cos θ = -sn θ -sn θ cos θ sn θ cos θ CS5, Fll CS5, Fll oll-tch-w rot( ˆ, ) rot( ˆ, j ) rot( ˆ, ) otton bout (,, ), unt vector on n rbtrr s (odrgues Formul) otte(, θ) θ Euler ngles ' ' ' = (-c)+c (-c)+s (-c)-s (-c)-s (-c)+c (-c)-s (-c)+s (-c)-s (-c)+c rot( ˆ'', ) rot( ˆ', j ) rot( ˆ, ) where c = cos θ & s = sn θ CS5, Fll CS5, Fll 7

Quternons q = (,) q s quternon (generlton of mgnr numbers) s ts rel prt 3 s ts mgnr prt. Opertons on quternons: Sum of quternons: (, ) + ( b, ) (( +b ),(+ ) Multplcton b sclr: (, ) (, ) Quternon product: (, ) ( b, ) (( b ), ( + b + )) Conjugte: q = (,) q (, -) Unt Quternons nd ottons Let denote the rotton of ngle bout the unt vector u. Defne unt quternon q = (cos, sn u). Note q = (.e., q les on unt sphere for n u nd. Then for n vector, = mgnr(q * q ) where *= (, ) q nd q defne the sme rotton mtr. If q = (, ( b, c, d ) T) s unt quternon, the correspondng rotton mtr s: Norm: q q q = q q = + CS5, Fll CS5, Fll loc Mtr Multplcton Wht s? Homogeneous epresentton of gd Trnsformtons T O O T rojectve trnsformton 3 3 lner trnsformton of homogenous coordntes onts mp to ponts, lnes mp to lnes u u u 3 3 3 3 33 3 CS5, Fll CS5, Fll Centrl rojecton lnr Homogrph Fgure borrowed from Hrtle nd ssermn Multple Vew Geometr n computer vson Fgure borrowed from Hrtle nd ssermn Multple Vew Geometr n computer vson CS5, Fll CS5, Fll 8

lnr Homogrph: ure otton pplcton: norms Fgure borrowed from Hrtle nd ssermn Multple Vew Geometr n computer vson CS5, Fll CS5, Fll CS5, Fll Cmer prmeters Issue World unts (e.g., cm), cmer unts (pels) cmer m not be t the orgn, loong down the -s etrnsc prmeters one unt n cmer coordntes m not be the sme s one unt n world coordntes ntrnsc prmeters - focl length, prncpl pont, spect rto, ngle between es, etc. U Trnsformton Trnsformton V representng representng W ntrnsc prmeters etrnsc prmeters T 3 3 4 4: gd trnsformton CS5, Fll Cmer Clbrton, estmte ntrnsc nd etrnsc cmer prmeters See Tet boo for how to do t. Cmer Clbrton Toolbo for Mtlb (ouguet) http:www.vson.cltech.edubouguetjclb_doc 9