Australian Journal of Basic and Applied Sciences. A numerical for Predicted Efficiency of a Solar Collector Installed Heat Pipe

Similar documents
Appendix A: HVAC Equipment Efficiency Tables

APPLICATION OF WATER EQUIVALENTS METHOD TO CALCULATION OF RADIATION RECUPERATORS WITH MICROFINNED SURFACE

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

Supporting Information

VISIBLE AND INFRARED ABSORPTION SPECTRA OF COVERING MATERIALS FOR SOLAR COLLECTORS

Review Topic 14: Relationships between two numerical variables

Effects of Drought on the Performance of Two Hybrid Bluegrasses, Kentucky Bluegrass and Tall Fescue

NEW CIRCUITS OF HIGH-VOLTAGE PULSE GENERATORS WITH INDUCTIVE-CAPACITIVE ENERGY STORAGE

Complete analytical model of a loop heat pipe with a flat evaporator

Iowa Training Systems Trial Snus Hill Winery Madrid, IA

8 THREE PHASE A.C. CIRCUITS

Table of Content. c 1 / 5

Vapour compression refrigeration system

University of Sioux Falls. MAT204/205 Calculus I/II

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

ANALYSIS AND MODELLING OF RAINFALL EVENTS

Environmental Science

EE 330/330L Energy Systems (Spring 2012) Laboratory 1 Three-Phase Loads

Estimation of Global Solar Radiation in Onitsha and Calabar Using Empirical Models

a) Read over steps (1)- (4) below and sketch the path of the cycle on a P V plot on the graph below. Label all appropriate points.

Department of Mechanical Engineering ME 322 Mechanical Engineering Thermodynamics. Lecture 33. Psychrometric Properties of Moist Air

Thermal energy 2 U Q W. 23 April The First Law of Thermodynamics. Or, if we want to obtain external work: The trick of using steam

Supplementary Information. High-Performance Mixed-Dimensional Perovskite Solar Cells with Enhanced

Lecture 6. CMOS Static & Dynamic Logic Gates. Static CMOS Circuit. PMOS Transistors in Series/Parallel Connection

, g. Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g. Solution 1.

Energy Balance of Solar Collector

Magnetically Coupled Coil

Effects of Applying Accumulator Straw in Soil on Nutrient Uptake and Soil Enzyme Activity of Capsella bursa-pastoris under Cadmium Stress

Worksheet #2 Math 285 Name: 1. Solve the following systems of linear equations. The prove that the solutions forms a subspace of

Journal of Chemical and Pharmaceutical Research, 2013, 5(12): Research Article

THE INFLUENCE OF MODEL RESOLUTION ON AN EXPRESSION OF THE ATMOSPHERIC BOUNDARY LAYER IN A SINGLE-COLUMN MODEL

Novel Fiber-Optical Refractometric Sensor Employing Hemispherically-Shaped Detection Element

Appendix C Partial discharges. 1. Relationship Between Measured and Actual Discharge Quantities

Investigation of fuel assembly by using subchannel analysis for supercritical-water cooled power reactor

A Mathematical Model for Unemployment-Taking an Action without Delay

The Stirling Engine: The Heat Engine

EXPERIMENTAL STUDY ON HEATING OF UNINSULATED ELECTRICAL CONDUCTORS

1 This question is about mean bond enthalpies and their use in the calculation of enthalpy changes.

Electronic Circuits I Revision after midterm

Applications of Bernoulli s theorem. Lecture - 7

THERMAL EXPANSION COEFFICIENT OF WATER FOR VOLUMETRIC CALIBRATION

Thermal Performance of Low Cost Packed Bed Thermal Energy Storage Systems for Space Heating and Crop Drying Applications in the Rural Areas

Applying Hyperaccumulator Straw in Cd-Contaminated Soil Enhances Nutrient Uptake and Soil Enzyme Activity of Capsella bursa-pastoris

APPLICATION OF WATER EQUIVALENTS METHOD TO CALCULATION OF CERAMIC HEAT EXCHANGERS

MATH 122, Final Exam

Polyphase Systems. Objectives 23.1 INTRODUCTION

Multi-Turn Surface Mount 1/4" Square Cermet Trimmers, Fully Sealed

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

Algorithm Design and Analysis

ME 354 Tutorial, Week#11 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

MATH Final Review

SIDESWAY MAGNIFICATION FACTORS FOR STEEL MOMENT FRAMES WITH VARIOUS TYPES OF COLUMN BASES

Forces on curved surfaces Buoyant force Stability of floating and submerged bodies

I 3 2 = I I 4 = 2A

Thermodynamics. Question 1. Question 2. Question 3 3/10/2010. Practice Questions PV TR PV T R

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

Lecture Notes No. 10

( ) CAGE ASSEMBLY ( )

CHAPTER 20: Second Law of Thermodynamics

Statistics in medicine

Algorithm Design and Analysis

College of engineering/ Babylon University, Babylon, Iraq

MATRIX INVERSE ON CONNEX PARALLEL ARCHITECTURE

dy ky, dt where proportionality constant k may be positive or negative

Polyphase Systems 22.1 INTRODUCTION

Educational Modeling for Fault Analysis of Power Systems with STATCOM Controllers using Simulink

Mechanical Engineering Letters, Szent István University

Freely propagating jet

21.1 Using Formulae Construct and Use Simple Formulae Revision of Negative Numbers Substitution into Formulae

ENSC 461 Tutorial, Week#9 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

International Industrial Informatics and Computer Engineering Conference (IIICEC 2015)

Activities. 4.1 Pythagoras' Theorem 4.2 Spirals 4.3 Clinometers 4.4 Radar 4.5 Posting Parcels 4.6 Interlocking Pipes 4.7 Sine Rule Notes and Solutions

Momentum and Energy Review

Studies on Nuclear Fuel Rod Thermal Performance

Series-Hybrid Components

TCCS (3VZ E) B R I A IGN 15A EFI IGNITION SW ST1 IG2 L L W R W R B G B Y B Y EB1 B G B G B G EB1 EFI MAIN RELAY 12 B G

CHENG Chun Chor Litwin The Hong Kong Institute of Education

( ) Same as above but m = f x = f x - symmetric to y-axis. find where f ( x) Relative: Find where f ( x) x a + lim exists ( lim f exists.

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Linear Algebra Introduction

CONTRIBUTION TO THE EXTENDED DYNAMIC PLANE SOURCE METHOD

Chemical Equilibrium

Name Class Date. Match each phrase with the correct term or terms. Terms may be used more than once.

Acoustic panels ACOUSTICS BUILDING FOR COMFORT AND HEALTH CEMENTED WOOD WOOL PANELS

Measuring Electron Work Function in Metal

ChE 548 Final Exam Spring, 2004

Newly Established Hydrometer Calibration Set Up at UM. Ümit Y. AKÇADAĞ, S. Eren SAN TÜBİTAK, Ulusal Metroloji Enstitüsü (UME) Gebze Kocaeli, Turkey

Thermal Performance of Electrocaloric Refrigeration using Thermal Switches of Fluid Motion and Changing Contact Conductance

AP Calculus AB Unit 4 Assessment

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

ANALYSIS OF CFD HEAT TRANSFER OF VACUUM FREEZE-DRYING SHELF

Mathematics SKE: STRAND F. F1.1 Using Formulae. F1.2 Construct and Use Simple Formulae. F1.3 Revision of Negative Numbers

Distributed Generation Placement in Unbalanced Distribution System with Seasonal Load Variation

SECOND HARMONIC GENERATION OF Bi 4 Ti 3 O 12 FILMS

Electrical Circuits II (ECE233b)

Chapter 19: The Second Law of Thermodynamics

Electromagnetic-Power-based Modal Classification, Modal Expansion, and Modal Decomposition for Perfect Electric Conductors

DATE 2 RELEASE REV * * DRAINAGE SYSTEM INSTL USE SMOOTH PLUMBERS PUTTY TO SEAL STRAINER (0.

Hyers-Ulam stability of Pielou logistic difference equation

Something found at a salad bar

Transcription:

Austrlin Journl of Bsi nd Applied Sienes, 9(3) Septemer 25, Pes: 9-25 ISSN:99-878 Austrlin Journl of Bsi nd Applied Sienes Journl home pe:.jse.om A numeril for Predited Effiieny of Solr Colletor Instlled Het Pipe Smpn Rittideh nd Sksit Sridoot Het Pipe nd herml ools Desin Reserh Unit (HDR), Mhsrkhm University, Fulty of Enineerin, hilnd A R I C L E I N F O Artile history: Reeived 28 Auust 25 Aepted 28 Septemer 25 Aville online 5 Otoer 25 Keyords: Het pipe, Mthemtil model, Solr olletor A B S R AC Bkround: Generlly, hen the solr pnels use the sun for lon time to umulte het in the solr olletor pnels hih ffet the eletril properties. ht mkes the open iruit volte dereses nd short iruit urrent inreses. As result, the mximum poer output nd effiieny of solr olletor pnels dereses ith inresin temperture. Ojetive: used the mthemtil model for predited performne of solr olletor instlled het pipe system nd omprison results eteen mthemtil model nd experimentl dt. Results omprison results eteen mthemtil model nd experimentl dt tht the model s le to yield stisftory preditions. Results the het trnsfer rte nd effiieny from mthemtil model nd experimentl dt of the solr olletor instlled het pipe system ere similr trend. Conlusion: he results of mthemtil model re promisin the sme results of experimentl dt. But it is hiher thn the results from the experimentl dt. 25 AENSI Pulisher All rihts reserved. o Cite his Artile: Smpn Rittideh nd Sksit Sridoot. A numeril for Predited Effiieny of Solr Colletor Instlled Het Pipe. Aust. J. Bsi & Appl. Si., 9(3): 9-25, 25 INRODUCION he pplition of solr enery n e lssified into to forms: the prodution of eletriity nd het prodution. he pplition of solr enery in the form of eletriity neessry to use devie ple of onvertin solr enery into eletril enery, lled photovolti. Generlly, hen the solr pnels use the sun for lon time to umulte het in the solr olletor pnels (see fi. ), hih ffet the eletril properties. ht mkes the open iruit volte dereses nd short iruit urrent inreses. As result, the mximum poer output nd effiieny of solr olletor pnels dereses ith inresin temperture. Avere temperture rise for every C ould use volte drop of out.5%. Het pipe is het exhner tht n het ithout relyin on externl poer (see Fiure 2). Works y usin het pipes trnsfer the het from the het of the orkin fluid inside the pipe, hih hs een vporized y the het from the het soure nd het trnsfer y ondenstion. he ltent het of vporiztion of the orkin fluid is very hih. It n trnsfer het from one end to the other side y slihtly different temperture. he reserh studies relted to the pplition of het pipes for oolin the solr pnel system hih is enouh to onlude the folloin. Pei Gn et l., (2) ere desined nd used to rete het pipe oolin, ith photovolti pnels. Het pipes mde of opper pipe ith dose of the evportor 8 x.7 x mm nd the size of the ondensed 24 2 mm (dimeter thikness of the pipe sin pipe lenth), usin ter s the orkin fluid. he solr olletor pnel is sinle rystlline silion s onduted y omprin the model. he experiments shoed tht the model n predit the results re stisftory. herml nd eletril effiieny of 4.9% nd 9.4% respetively, hile the vere of the therml nd eletril ondutivity is 276.9 nd 62.3 W/m2 respetively nd the totl performne of the system is 6.8%. Pei Gn et l., (22) studied the performne nd nlysis of prmeters of het pipes used for oolin the solr pnels tht n produe oth eletriity nd hot. hey re omprison results eteen the onventionl systems tht use ter for oolin ith het pipe oolin systems. he experiments shoed tht the het in, eletril in nd effiieny of the system re inresed ith inresed of ter flo rte. Hoever, hen the flo is reter thn.7 k/s the het in nd eletril in re dereses. Shun Yin Wu et l., (2) onduted the performne of het pipes used for oolin the photovolti system. Het pipes ith porous mteril ik used for oolin the photovolti system. hey re nlyzed the het trnsfer performne nd totl eletril poer y theoretil models. he ojetives of the present study re used the mthemtil model for predited performne of Correspondin Author: Smpn Rittideh, Mhsrkhm University, Fulty of Enineerin, 445, hilnd.

2 Smpn Rittideh et l, 25 Austrlin Journl of Bsi nd Applied Sienes, 9(3) Septemer 25, Pes: 9-25 solr olletor instlled het pipe system nd omprison results eteen mthemtil model nd experimentl dt. Fi. : Solr olletor pnel. Copper tue het pipe Fi. 2: Copper tue het pipe. heory nd experimentl proedure: heory of therml nlysis of the het pipe: Findin solutions usin numeril methods to pply the finite differene method nd enery lne equtions to help solve prolems. his nlysis is divided het pipes used for oolin the het of the solr olletor system into six prts. here re listed elo. - Het lne of the over lss plte. - Het lne of the solr ell. - herml ondution lne of the k sheet. - herml lne of the het pipe. - herml lne of ter in the ondenser. - herml lne of ter in the store tnk. For the over lss plte, the het lne eqution is iven s follos: δ ρ h ( ) h sky, ( sky ) h For het lne eqution of the solr ell. γδ ρ,i,i h, (,i ) R,,i, (,i ) Gα G(η ) γe () (2) For therml ondution lne eqution of the k sheet. he enter for ontt point of the het pipe. ρ k 2 Δx 2 δ (, (,i nd enter for ontt point. ρ k 2 Δx 2, ( δ ( p,ev.j, ( For therml lne eqution of the het pipe. M,i p, i )/(R.A ) (3) ), (4) p,ev.j p,ev.j p, ev p ( p,on.j p,ev.j/r ev, on ) ( p,ev.j p, nd p,ev.j p,ev.j M p, on p ( p,ev.j p,on.j/r ev, on) A h,on(,j (5) ) p, on.j (6) For therml lne eqution of ter in the ondenser.,j M,j m (,j,j ) (,j,,on ( p,on.j A h, j) (7) For therml lne eqution of ter in the store tnk.,t,t M, tnk (,t,t n.m (,out,in ) (8)

2 Smpn Rittideh et l, 25 Austrlin Journl of Bsi nd Applied Sienes, 9(3) Septemer 25, Pes: 9-25 Effiieny nlysis system of solr olletor instlled het pipe: his nlysis is divided into to prts. here re listed elo. - Het trnsfer rte of solr olletor instlled het pipe. - herml effiieny of solr olletor instlled het pipe. For het trnsfer rte eqution of solr olletor instlled het pipe. nd Q Q M tnkc,t,t (9) Q Q q () A πd L N For therml effiieny eqution of solr olletor instlled het pipe. η t2 t A Q A E A t2 t Gdt dt o () Experimentl Proedure: he lenth of the opper tue het pipe s.7m, nd it hs mm outer dimeter ith solder ik lyers nd R-23 used s orkin fluid (s shon in Fiure 2). Fi. 3 sho tht solr olletor instlled ith het pipe. Fi.4 sho tht shemti dirm of experimentl pprtus hih onsist of solr olletor instlled het pipe system. Fi. 5 sho tht the test ri of solr olletor ith het pipes. In the evportor setion ith het soure y solr rdition, for ondenser setion ith het sink y ool ter in store thnk. he solr olletor pnel ere used units of model M55/S53, 53 WP, nd other speifition of poer (±%) 53 W, urrent (t lod) 3.5 A, volte (t lod) 7.4 V, short iruit urrent 3.27 A nd open iruit urrent 2.8 V.en thermoouples ere instlled to dt (Yoko DX2 ith ±. C ury, 2 hnnel input nd -2 C to C mesurement temperture-rne) s used ith type K thermoouples (OMEGA ith ±. C ury) to the inlet nd outlet of the hetin jket nd oolin jket, thermoouple ere tthed to the het pipe nd dt loer ere reorded. hese ere three points on the ondenser, three points on the evportor nd three points on the ter store re thnk. A esto pilot tue proes (635.245) model 445 for ind speed olletion. he solr poer meter model D-37 for the solr rdition mesure. he mpere nd volte e mesured y multimeter model UNI- U5~55. A LEONICS model APOLLO S-2A for ontrol pity of mpere hre. he ttery for mpere store s used 2V-2AH. he system s used to pump the oolin ter into the store thnk in ondenser setion, y the inlet temperture of the oolin ter s mintined t 2 C then used the flotin Rot meter (PLAON PF2 ASS-C for flo rte of.2 liter/min-.5liter/min) s used to mesure the flo rte of ter. Durin the experiment, the mss flo rte s set s.25 liter/min. At time, oolin ter floed to the ondenser setion. he outer ll tempertures nd the ter inlet nd outlet tempertures ere reorded t n intervl of 2 se. he ool ter flo rte s refully mesured durin eh time intervl. he het reovery from the ondenser s mesured y mens of the ter inlet nd outlet tempertures until the ttinment of stedy stte. In order to lulte the het trnsfer hrteristis of het pipe from usin the lorifi method. RESULS AND DISCUSSION he mthemtil models nd experimentl results hve een presented in the Fiures 6, 7, 8, 9 nd respetively.. Effet of time on temperture of the over lss plte: he omprison of test results nd mthemtil models of the time on the over lss plte temperture of the solr olletor instlled het pipes. As shon in Fiure 6 tht the results of mthemtil model is promisin the sme results. But it is hiher thn the results from the tests. he result of the test s to test 9..m. the temperture of the lss ill slihtly inreses. he hihest temperture is 42 C t intervl time 2.3-3. p.m. fter the temperture of the lss ill e rdully redued the loest temperture is 4 C t intervl time 6.-6.3 p.m.. he results of the mthemtil model s initilly tested t 9..m. the temperture of the lss en to inrese stedily. he hihest temperture is 6 C t intervl time 2.3-3. p.m., fter the temperture of the lss ill e rdully redued the loest temperture is 45 C t intervl time 6.-6.3 p.m.. he use my e due to the ind onditions. he tests re losin het tht hits the lss of solr olletor instlled het pipes. he results of the test ere loer thn the results of mthemtil model. 2. Effet of time on temperture of se pnel of the solr olletor pnels instlled het pipes: he omprison of test results nd mthemtil models of the time on temperture of the se pnel solr olletor pnels instlled het pipes. As shon in Fiure 7 tht the results of mthemtil model is promisin the sme results. But it is hiher thn the results from the tests. he result of the test s to test t 9..m. the temperture of the se plte it slihtly inreses. he hihest temperture is 4 C t intervl time 2.3-3. p.m. fter the temperture of the sustrte is redued rdully the loest

22 Smpn Rittideh et l, 25 Austrlin Journl of Bsi nd Applied Sienes, 9(3) Septemer 25, Pes: 9-25 temperture is 38 C t intervl time 6.-6.3 p.m.. he results of the mthemtil model s initilly tested t 9. the temperture of the se pnel, it slihtly inreses. he hihest temperture is 58 C t intervl time 2.3-3. p.m. fter the temperture of the sustrte is redued rdully. he loest temperture is 5 C t intervl time 6.-6.3 p.m.. he use my e due to the effet of the lss temperture tht is loer thn the temperture of the lss from the mthemtil model. herefore hen the het trnsfer to the se pnel the temperture of the se pnel of the test is less thn the temperture of the se pnel from mthemtil models. Fi. 3: Solr olletor instlled ith het pipes. Wter tnk Flo meter Multimeter Condenste setion Chrt ontroller Solr pnel Bttery Solr poer meter Dt Loer Fi. 4. Shemti dirm of experimentl pprtus. Fi. 5: est ri of solr olletor ith het pipes.

Het trnsfer rte (W) emperture of se pnel (ºC) emperture of over lss (ºC) 23 Smpn Rittideh et l, 25 Austrlin Journl of Bsi nd Applied Sienes, 9(3) Septemer 25, Pes: 9-25. 8. 6. 4. 2.. ime Fi. 6: ime on temperture of the over lss plte.. 8. 6. 4. 2.. ime 3. Effet of time on het trnsfer rte of het pipe: he omprison of test results nd mthemtil models of the time on het trnsfer rte of the het pipe. As shon in the illustrtion 8 the results of mthemtil model is promisin the sme results. But it is hiher thn the results from the tests. he results of the test s to test t 9..m.. he het trnsfer rte of the het pipe eins to rise stedily. he hihest temperture is 55 C t 2. p.m. (noon) fter hih the het is redued rdully until the het trnsfer rte of the het pipe is the loest of 5 C t 6.3 p.m.. he results of the mthemtil model s initilly tested t 9..m.. he het Fi. 7: time on temperture of se pnel. trnsfer rte of the het pipe eins to rise stedily until the het trnsfer rte of the het pipe re the hihest 78 C t.3.m.. After the het trnsfer rte of the het pipe is rdully redued the loest temperture is 2 C t 6.3 p.m.. he use my e tht the effet of the surfe temperture of the het pipe t ondenser setion is loer thn the surfe temperture of the het pipe t ondenser setion from mthemtil model. When the het pipe trnsfer het to the ondenser setion. As result, the het trnsfer of the test results is less thn the het trnsfer from mthemtil model.. 8. 6. 4. 2.. ime Fi. 8: ime on het trnsfer rte of het pipe.

emperture of ter (ºC) 24 Smpn Rittideh et l, 25 Austrlin Journl of Bsi nd Applied Sienes, 9(3) Septemer 25, Pes: 9-25 4. Effet of time on temperture of ter in the store thnk: he omprison of test results nd mthemtil models of the time on the temperture of ter in the store tnk of solr olletor instlled hetin pipes s shon in Fiure 9. he results of mthemtil model is promisin the sme results. But it is hiher thn the results from the tests. he results of the test hen the test en t 9..m.. he temperture of ter in the store tnk eins to rise stedily. he hihest temperture is 32 C t 6.3 p.m.. After tht, the temperture of ter in the store tnk is fixed. And the results of mthemtil model s initilly tested t 9..m. the temperture of ter in the store tnk eins to rise stedily until the temperture of ter in the store tnk ith the hihest t 2. p.m. (noon) of 34 C. After tht, the temperture of ter in the store tnk ill e rdully redued the loest temperture is 32 C t 6.3 p.m.. he reson ould e euse of the effet of het trnsfer rte of the het pipe t ondenser setion is loer thn het trnsfer rte of the het pipe t ondenser setion from mthemtil model. As result, the temperture of ter in the store tnk of the test results is less thn the temperture of ter in the store tnk of mthemtil model.. 8. 6. 4. 2.. ime Fi. 9: time on temperture of ter in the store thnk. 5. Effet of time on effiieny of the solr olletor instlled hetin pipes: he omprison of test results nd mthemtil modelin of time on the effiieny of the solr olletor instlled het pipes s shon in Fiure. he results otined from the mthemtil model is promisin the sme results. But it is hiher thn the results from the tests. he results of the test hen the test en t 9..m.. he effiieny of the solr olletor instlled het pipes eins to rise stedily until effiieny of the solr olletor instlled het pipes the hihest.42 t..m.. After tht, effiieny of the solr olletor instlled hetin pipes to deline until minimum.3 t 6.3 p.m.. And the results of the mthemtil model s initilly tested t 9.. he effiieny of solr olletor instlled het pipes to rise stedily until the effiieny of the solr olletor instlled het pipes the hihest is.7 t..m.. After tht, the effiieny of the solr olletor instlled het pipes ill e rdully redued until the effiieny of the solr olletor instlled hetin pipes the loest is.3 t 6. p.m.. he reson ould e euse, ordin to the test results of n previous of 4.-4.4 loer vlue mthemtil models thus the effiieny of the solr olletor instlled het pipes from the test is loer thn the effiieny of the solr olletor instlled het pipes from the mthemtil model.

Effiienies 25 Smpn Rittideh et l, 25 Austrlin Journl of Bsi nd Applied Sienes, 9(3) Septemer 25, Pes: 9-25..9.8.7.6.5.4.3.2.. ime Fi. : ime on effiieny of the solr olletor instlled het pipes. Conlusions: he results of mthemtil model is promisin the sme results of experimentl dt. But it is hiher thn the results from the experimentl dt. his ould e euse, ordin to the experimentl dt of items to 5 is loer thn the mthemtil model. ACKNOWLEDGMEN he uthors knolede their rtitude to Mhsrkhm University for providin support finnil nnul udet on 24 for id to ondut the reserh. Nomenlture: A re, m 2 speifi het pity, J/k K D dimeter, m E output eletriity, W/m 2 G solr rdition intensity, W/m 2 h het trnsfer oeffiient, W/m 2 K k therml ondutivity, W/m K L lenth, m M mss, k N numer of het pipe n depend on Prndtl numer, R therml resistne, K/W temperture, C t time, s Q het trnsfer, W q het trnsfer rte, W/m 2 Susripts: ir, pnel, olletor, on, ondenser setion of the het pipe e, ev, evportor setion of the het pipe lss over i inner, differentil node i in inlet j differentil node j l liquid o outer out outlet p het pipe t time ter, ll of the het pipe PV ell sky sky REFERENCES Pei, Gn, Fu Huide, Zhn o, Ji Jie, 2. A numeril nd experimentl study on het pipe PV/ system. Sol. Enery. 85: 9-92. Pei Gn, Fu Huide, Ji Jie, Cho in-i, Zhn o, 22. Annul nlysis of het PV/ systems for domesti hot ter nd eletriity prodution. Ener. Convers. Mne. 56, 8-2. Shun Yin Wu, Qio Lin Zhn, Ln Xio, Fen Hu Guo, 2. A het pipe photovolti/therml (PV/) hyrid system nd its performne evlution. Ener. Buildins. 43: 3558-3567. Greek letters: α sorptivity, γ PV ell overe rtio, ε emissivity, η effiieny, ρ density, k/m 3, refletne, ζ Stefn-Boltzmn onstnt, W/m 2 K 4 ηα trnsmittne-sorptne produt,