Analogne modulacije / Analog modulations

Similar documents
Signal s(t) ima spektar S(f) ograničen na opseg učestanosti (0 f m ). Odabiranjem signala s(t) dobijaju se 4 signala odbiraka: δ(t kt s τ 2 ),

5 Analog carrier modulation with noise

EE401: Advanced Communication Theory

A First Course in Digital Communications

ZANIMLJIVI ALGEBARSKI ZADACI SA BROJEM 2013 (Interesting algebraic problems with number 2013)

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Summary II: Modulation and Demodulation

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

KLASIFIKACIJA NAIVNI BAJES. NIKOLA MILIKIĆ URL:

EE303: Communication Systems

TEORIJA SKUPOVA Zadaci

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

Red veze za benzen. Slika 1.

Example: Bipolar NRZ (non-return-to-zero) signaling

Modulation & Coding for the Gaussian Channel

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

Signal Design for Band-Limited Channels

This examination consists of 11 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

EE4061 Communication Systems

Analog Electronics 2 ICS905

Square Root Raised Cosine Filter

Projektovanje paralelnih algoritama II

Digital Communications

Multi User Detection I

Osnove telekomunikacija Osnove obrade signala potrebne za analizu modulacijskih tehnika prof. dr. Nermin Suljanović

Funkcijske jednadºbe

ZANIMLJIV NAČIN IZRAČUNAVANJA NEKIH GRANIČNIH VRIJEDNOSTI FUNKCIJA. Šefket Arslanagić, Sarajevo, BiH

7 The Waveform Channel

Parameter Estimation

that efficiently utilizes the total available channel bandwidth W.

LOPE3202: Communication Systems 10/18/2017 2

P a g e 3 6 of R e p o r t P B 4 / 0 9

PRIPADNOST RJEŠENJA KVADRATNE JEDNAČINE DANOM INTERVALU

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING Final Examination - Fall 2015 EE 4601: Communication Systems

Direct-Sequence Spread-Spectrum

II - Baseband pulse transmission

Introduction to Probability and Stochastic Processes I

Principles of Communications

CHAPTER 14. Based on the info about the scattering function we know that the multipath spread is T m =1ms, and the Doppler spread is B d =0.2 Hz.

Iskazna logika 1. Matematička logika u računarstvu. oktobar 2012

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

Mathcad sa algoritmima

TELEKOMUNIKACIONA MERENJA 1

Lecture 7: Wireless Channels and Diversity Advanced Digital Communications (EQ2410) 1

Carrier Transmission. The transmitted signal is y(t) = k a kh(t kt ). What is the bandwidth? More generally, what is its Fourier transform?

Digital Communications

Es e j4φ +4N n. 16 KE s /N 0. σ 2ˆφ4 1 γ s. p(φ e )= exp 1 ( 2πσ φ b cos N 2 φ e 0

Signals and Systems: Part 2

Communication Theory Summary of Important Definitions and Results

2016 Spring: The Final Exam of Digital Communications

ECE 541 Stochastic Signals and Systems Problem Set 11 Solution

Principles of Communications Lecture 8: Baseband Communication Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

MATHEMATICAL TOOLS FOR DIGITAL TRANSMISSION ANALYSIS

Sample Problems for the 9th Quiz

Fourier Analysis and Power Spectral Density

Communications and Signal Processing Spring 2017 MSE Exam

2A1H Time-Frequency Analysis II

Chapter 10. Timing Recovery. March 12, 2008

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY UNIT 3 RANDOM PROCESS TWO MARK QUESTIONS

Review of Doppler Spread The response to exp[2πift] is ĥ(f, t) exp[2πift]. ĥ(f, t) = β j exp[ 2πifτ j (t)] = exp[2πid j t 2πifτ o j ]

P a g e 5 1 of R e p o r t P B 4 / 0 9

EE5713 : Advanced Digital Communications

Lecture 8 ELE 301: Signals and Systems

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

5 th INTERNATIONAL CONFERENCE Contemporary achievements in civil engineering 21. April Subotica, SERBIA

Digital Baseband Systems. Reference: Digital Communications John G. Proakis

Lecture Notes 7 Stationary Random Processes. Strict-Sense and Wide-Sense Stationarity. Autocorrelation Function of a Stationary Process

2.1 Basic Concepts Basic operations on signals Classication of signals

EE6604 Personal & Mobile Communications. Week 12a. Power Spectrum of Digitally Modulated Signals

T h e C S E T I P r o j e c t

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

A L A BA M A L A W R E V IE W

= 4. e t/a dt (2) = 4ae t/a. = 4a a = 1 4. (4) + a 2 e +j2πft 2

S f s t j ft dt. S f s t j ft dt S f. s t = S f j ft df = ( ) ( ) exp( 2π

UCSD ECE 153 Handout #46 Prof. Young-Han Kim Thursday, June 5, Solutions to Homework Set #8 (Prepared by TA Fatemeh Arbabjolfaei)

BROJEVNE KONGRUENCIJE

ECE353: Probability and Random Processes. Lecture 18 - Stochastic Processes

EE456 Digital Communications


Digital Modulation 2

LECTURE 16 AND 17. Digital signaling on frequency selective fading channels. Notes Prepared by: Abhishek Sood

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

Detecting Parametric Signals in Noise Having Exactly Known Pdf/Pmf

Digital Communications: A Discrete-Time Approach M. Rice. Errata. Page xiii, first paragraph, bare witness should be bear witness

Fajl koji je korišćen može se naći na

a) Find the compact (i.e. smallest) basis set required to ensure sufficient statistics.

UCSD ECE153 Handout #40 Prof. Young-Han Kim Thursday, May 29, Homework Set #8 Due: Thursday, June 5, 2011

7.7 The Schottky Formula for Shot Noise

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

s o (t) = S(f)H(f; t)e j2πft df,

E4702 HW#4-5 solutions by Anmo Kim

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

E&CE 358, Winter 2016: Solution #2. Prof. X. Shen

2.1 Introduction 2.22 The Fourier Transform 2.3 Properties of The Fourier Transform 2.4 The Inverse Relationship between Time and Frequency 2.

Solution to Homework 1

EE 224 Signals and Systems I Review 1/10

Carrier frequency estimation. ELEC-E5410 Signal processing for communications

Uvod u analizu (M3-02) 05., 07. i 12. XI dr Nenad Teofanov. principle) ili Dirihleov princip (engl. Dirichlet box principle).

Transcription:

Analogne modulacije / Analog modulations Zadatak: Na slici 1 je prikazana blok ²ema prijemnika AM-1B0 signala sa sinhronom demodulacijom. Moduli²u i signal m(t) ima spektar u opsegu ( f m f m ) i snagu P m. U estanost nosioca je f c, a amplituda k. Osim AM-1B0 modulisanog signala u(t) (sa donjim bo nim opsegom) na ulazu prijemnika postoji i aditivni beli Gausov ²um n(t) ija je spektralna gustina snage p n = N 0 /2. Odrediti odnos signal/²um na izlazu prijemnika. Figure 1: Sinhroni prijemnik / Synchronous receiver Problem: Figure 1 depicts the receiver of the SSB modulated signal with synchronous demodulation. The power of the modulating signal m(t) is P m and its spectrum is contained in the band ( f m f m ). The carrier has frequency f c, and amplitude k. Together with the SSB modulated signal u(t) (with lower sideband), at the input of the receiver there is also an additive white Gaussian noise n(t) with spectral power density p n = N 0 /2. Determine the signal to noise ratio at the output of the receiver.

Re²enje: Modulisani signal je: u(t) = k m(t) cos(2πf c t) + k ˆm(t) sin(2πf c t). Korisni signal na izlazu mnoºa a je: u 1 (t) = u(t) cos(2πf c t) = k m(t) cos(2πf c t) cos(2πf c t) + k ˆm(t) sin(2πf c t) cos(2πf c t) = 1 2 k m(t) + 1 2 k m(t) cos(2π2f ct) + 1 2 k ˆm(t) sin(2π2f ct) tako da je korisni signal na izlazu NF ltra: u d (t) = 1 2 k m(t) a njegova snaga: P d = u 2 d (t) = 1 4 k2 m 2 (t) = 1 4 k2 P m. Uskopojasni ²um na ulazu mnoºa a je: n 1 (t) = n c (t) cos(2πf 0 t) + n s (t) sin(2πf 0 t) a snaga: fc P n1 = 2 p N df = 2p N f m = N 0 f m f c f m i jednaka je snazi svake od niskofrekvencijskih komponenata ²uma n c (t) i n s (t). U estanost f 0 predstavlja centralnu u estanost propusnika opsega i u ovom zadatku iznosi f 0 = f c f m /2. um na izlazu mnoºa a je: n 2 (t) = n 1 (t) cos(2πf c t) = n c (t) cos(2πf 0 t) cos(2πf c t) + n s (t) sin(2πf 0 t) cos(2πf c t) = 1 2 n c(t) cos(2π(f 0 f c )t) + 1 2 n c(t) cos(2π(f 0 + f c )t) + + 1 2 n s(t) sin(2π(f 0 f c )t) + 1 2 n s(t) sin(2π(f 0 + f c )t) = 1 2 n c(t) cos(πf m t) + 1 2 n c(t) cos(2π(2f c f m /2)t) + 1 2 n s(t) sin(πf m t) + 1 2 n s(t) sin(2π(2f c f m /2)t). um na izlazu NF ltra je takodje uskopojasni ²um sa centralnom u estano² u f m /2: tako da je njegova snaga: n 3 (t) = 1 2 n c(t) cos(πf m t) 1 2 n s(t) sin(πf m t) P n3 = 1 4 fm p N df = 1 f m 4 p N2f m = N 0f m 4. Traºeni odnos signal/²um je: SNR = P d P n3 = k2 P m N 0 f m.

Signali i sistemi / Signals and systems Zadatak: Signal s(t) ima spektar S(f) ograni en na interval u estanosti ( f m f m ). Odabiranjem signala s(t) dobijaju se dva signala odbiraka: s 1 (t) = s(t) s 2 (t) = s(t) n= n= δ(t kt s ) i δ(t kt s τ 0 ), pri emu je T s = 1 i f m 0 < τ 0 < T s /4. Smatrati da je signal s(t) realan. Da li je na osnovu spektara signala odbiraka s 1 (t) i s 2 (t) mogu e rekonstruisati spektar originalnog signala? Odgovor potkrepiti odgovaraju im dokazom. Problem: The signal s(t) is real, with a spectrum S(f) contained in the band ( f m f m ). By sampling s(t), two new signals are obtained as follows: s 1 (t) = s(t) s 2 (t) = s(t) n= n= δ(t kt s ) and δ(t kt s τ 0 ), where T s = 1 and f m 0 < τ 0 < T s /4. Is it possible to reconstruct perfectly the spectrum of the original signal S(f) from the spectrums of the signals s 1 (t) and s 2 (t)? Prove your answer.

Re²enje: Originalni signal je mogu e rekonstruisati. Spektar signala s 2 (t) je: S 2 (f) = = s(t) s(t) 1 T s n= 2π jk e Ts τ 0 = 1 T s = 1 T s Pri traºenju spektra S 2 (f) iskori² ena je jednakost: δ(t kt s τ 0 )e j2πft dt 2π jk e Ts (t τ0) e j2πft dt 2π jk e Ts τ 0 S(f k ). T s δ(t kt s τ 0 ) = 1 T s s(t)e j2π(f k Ts )t dt 2π jk e Ts (t τ 0) do koje se moºe do i razvojem povorke delta impulsa u Furijeov red. Spektar signala s 1 (t) se dobija na osnovu spektra signala s 2 (t) jednostavnom zamenom τ 0 = 0, odnosno S 1 (f) = 1 T s S(f k T s ). Zbog hermitske simetrije spektra signala s(t) i periodi nosti spektara signala odbiraka dovoljno je posmatrati opseg u estanosti (0 f m ). Na tom opsegu S 1 (f) = f m (S(f) + S(f f m )) ( ) S 2 (f) = f m S(f) + e j2π τ 0 Ts S(f f m ) odakle sledi: S(f) = 1 1 ( S2 (f) e j2πfmτ 0 S 1 (f) ). f m 1 exp( j2πf m τ 0 )

Digitalne telekomunikacije / Digital communications Zadatak: Na slici je prikazan sistem za prenos podataka u osnovnom opsegu u estanosti. Signal s(t) na ulazu u sistem ima oblik: s(t) = a k δ(t kt ) pri emu simboli a k uzimaju vrednosti iz skupa U, U} sa jednakim verovatno ama. Predajni i prijemni ltri su denisani funkcijama prenosa: H T (f) = T, f < 1 T 0, ina e, H R (f) = 1, f < 1 2T 0, ina e Odluka o n-tom simbolu na prijemu se vr²i na osnovu odbirka signala s R (t) u trenutku t = (n + ɛ)t, gde je ɛ gre²ka u sinhronizaciji, ɛ < 1/2. Odrediti maksimalnu dozvoljenu gre²ku u sinhronizaciji ɛ max tako da je pouzdan prenos i dalje mogu. Problem: The gure depicts a system for baseband transmission of information. the input is of the form: s(t) = a k δ(t kt ) The signal s(t) at where a k takes on the values U, U} with equal probabilities. Transfer functions of the transmitting and receiving lters are given by: T, f < 1 T H T (f) = 0, elsewhere, H R (f) = 1, f < 1 2T 0, elsewhere Decision about the n'th symbol at the receiver is made based on the sample of the signal s R (t) at t = (n + ɛ)t, where ɛ is the synchronization error, ɛ < 1/2. Determine the maximal synchronization error ɛ max so that reliable transmission is still possible.

Re²enje: Ekvivalentna funkcija prenosa sistema je: a odgovaraju i impulsni odziv: pa signal s R (t) ima oblik: H(f) = H T (f)h R (f) = s R (t) = h(t) = sin( π t) T π t, T U trenutku odlu ivanja o n-tom simbolu imamo: s R ((n + ɛ)t ) = = a n sin(πɛ) πɛ T, f < 1 2T 0, ina e a k h(t kt ). a k h((ɛ + n k)t ) = + m 0 sin(π(ɛ + m)) a n m. π(ɛ + m) a k sin(π(ɛ + n k)) π(ɛ + n k) Drugi sabirak u gornjem izrazu predstavlja intersimbolsku interferenciju i nepoºeljan je pri odlu ivanju o simbolu a n. Da bi prenos informacija bio pouzdan, treba da vaºi: m 0 a n m sin(π(ɛ + m)) π(ɛ + m) < U sin(πɛ) πɛ (prag odlu ivanja je na nuli jer su simboli jednako verovatni). U najgorem slu aju imamo: I max = U sin(π(ɛ + m)) π(ɛ + m) = U sin(πɛ) 1 π m + ɛ m 0 m 0 = U sin(πɛ) ( 1 π m + ɛ + 1 ) = U sin(πɛ) 2m m ɛ π m 2 ɛ = 2 m>0 1 ²to sledi iz injenice da m 0 =. Kako maksimalna ISI divergira za sve ɛ > 0 (uslov (1) m nije zadovoljen), ne sme se dozvoliti gre²ka u sinhronizaciji, tj. ɛ max = 0. m>0 (1)

Statisti ka teorija telekomunikacija / Statistical theory of communications Zadatak: Neka su h 0 (t), h 1 (t), h 2 (t),... vremenske funkcije denisane sa h n (t) = n h(t), pri emu je: 1, 0 t < T h(t) = 0, ina e Neka je..., a 1, a 0, a 1,...} niz nezavisnih slu ajnih promenljivih, raspodeljenih prema Poasonovoj raspodeli sa parametrom λ. Odrediti srednju vrednost i autokorelaciju slu ajnog procesa X(t), denisanog na slede i na in: X(t) = h ak (t kt ). Da li je ovaj proces stacionaran u ²irem smislu? Problem: Let h 0 (t), h 1 (t), h 2 (t),... be functions dened by h n (t) = n h(t), where: 1, 0 t < T h(t) = 0, elsewhere. Let..., a 1, a 0, a 1,...} be a sequence of independent random variables with Poisson distribution with parameter λ. Find the mean and the autocorrelation function of the random process X(t), dened by: X(t) = Is this process wide-sense stationary? h ak (t kt ).

Re²enje: Slu ajne promenljive a k imaju Poasonovu raspodelu: P[a k = n] = e λ λn, n 0, 1, 2,...}, n! ija srednja vrednost i varijansa se mogu lako izra unati: E[a k ] = np[a k = n] = e λ = e λ λ n=1 n λn λ n 1 (n 1)! = e λ λ = λ E[a 2 k] = n 2 P[a k = n] = e λ = e λ λ = λ 2 + λ n! = e λ m=0 (m + 1) λm (m)! = e λ λ m=0 D[a k ] = E[a 2 k] E[a k ] 2 = λ. n=1 n λn n! λ m m! = e λ λe λ n 2 λn n! = e λ λ m=0 n λn 1 (n 1)! n=1 m λm (m)! + e λ λ m=0 λ m (m)! Posmatrajmo sada slu ajni proces X(t). U svakom intervalu kt t < (k +1)T proces X(t) je jednak nekoj od funkcija h n (t), izabranoj prema Poasonovoj raspodeli, tj. sa verovatno om P[a k = n]. Rezonovanje je isto za svaki interval, pa nadalje moºemo posmatrati prvi: 0 t < T. Srednja vrednost procesa X(t) je: E[X(t)] = P[a 0 = n]h n (t) = P[a 0 = n]nh(t) = E[a 0 ] h(t) = E[a 0 ] = λ. Srednja vrednost je dakle konstantna (ne zavisi od t). Prilikom izra unavanja autokorelacije procesa X, posmatra emo dva slu aja. 1. Kada t i t + τ pripadaju istom "signalizacionom" intervalu, tj. 0 t, t + τ < T : R X (t, t + τ) = E[X(t)X(t + τ)] = = P[a 0 = n]h n (t)h n (t + τ) P[a 0 = n]n 2 h(t)h(t + τ) = E[a 2 0] = λ + λ 2. 2. Kada t i t + τ pripadaju razli itim intervalima, tj. 0 t < T, T t + τ < 2T (moºe se uzeti da t + τ pripada bilo kom drugom intervalu, zaklju ak e biti isti): R X (t, t + τ) = E[X(t)X(t + τ)] = = m=0 m=0 P[a 0 = n, a 1 = m]h n (t)h m (t + τ T ) P[a 0 = n]p[a 1 = m]nmh(t)h(t + τ T ) = E[a 0 ]E[a 1 ] = λ 2.

Dakle, R X (t, t + τ) = λ 2 + λ λ 2, kada t i t + τ pripadaju istom sign. intervalu, kada t i t + τ pripadaju razli itim sign. intervalima. Funkcija R X (t, t + τ) je za ksno τ periodi na po t sa periodom T, kao ²to se moglo i o ekivati. Za 0 τ < T jedna njena perioda je: R X (t, t + τ) = Za τ > T, R X (t, t + τ) = λ 2 i ne zavisi od t. λ 2 + λ, t [0, T τ) λ 2, t [T τ, T ). Kao ²to se vidi iz gornjeg, R X (t, t + τ) zavisi od t pa proces X nije stacionaran u ²irem smislu.

Teorija informacija / Information theory Zadatak: Kaskadno je povezano n istih nezavisnih binarnih kanala sa uslovnim verovatno ama P [0 0] = 1 u, P [1 0] = u, P [0 1] = v, P [1 1] = 1 v, gde je u < 1/2 i v < 1/2. Ako se u kaskadnu vezu kanala simboli 0 ili 1 ²alju sa verovatno ama 1/2, odrediti verovatno u gre²ke optimalnog odlu ivanja o pojedina nom simbolu poslatom kroz vezu. Problem: A channel is formed by concatenating n identical independent binary channels with transition probabilities P [0 0] = 1 u, P [1 0] = u, P [0 1] = v, P [1 1] = 1 v, where u < 1/2 and v < 1/2. If symbols 0 or 1 are fed to the input of this channel with probabilities 1/2, nd the probability of error achieved by the optimum receiver when a single symbol is transmitted.

Re²enje: Ako je X = Y 0 simbol na ulazu u vezu kanala, a Y k simbol na izlazu iz k-tog kanala u vezi, vaºi P [Y k = 0] = P [Y k 1 = 0]P [0 0] + P [Y k 1 = 1]P [0 1], P [Y k = 1] = P [Y k 1 = 0]P [1 0] + P [Y k 1 = 1]P [1 1], za k 1,..., n}. Odavde matrica uslovnih verovatno a pojedina nog kanala u vezi [ ] [ ] P [0 0] P [1 0] 1 u u Π = = P [0 1] P [1 1] v 1 v i vektor verovatno a simbola na izlazu iz k-tog kanala u vezi p k = [ P [Y k = 0] P [Y k = 1] ] zadovoljavaju jedna inu p k = p k 1 Π. Uzastopnom primenom prethodnog izraza, dobija se p k = p 0 Π k, odakle sledi da je Π n matrica uslovnih verovatno a cele veze. Neka su matrice [ ] Π k ak b = k. Kako je Π k = Π k 1 Π, elementi prethodnih matrica zadovoljavaju diferencne jedna ine c k d k a k = (1 u)a k 1 + vb k 1, b k = ua k 1 + (1 v)b k 1, c k = (1 u)c k 1 + vd k 1, d k = uc k 1 + (1 v)d k 1, a sabiranjem prve dve i druge dve od njih, dobija se a k + b k = a k 1 + b k 1 = 1, c k + d k = c k 1 + d k 1 = 1, gde poslednje jednakosti induktivno slede iz a 0 = 1, b 0 = 0, c 0 = 0 i d 0 = 1. Zamenom b k = 1 a k u prvu jedna inu, sledi da je a k = (1 u v)a k 1 + v = λa k 1 + v, gde je λ = 1 u v. Uzastopnom primenom prethodne jedna ine dobija se a 1 = λa 0 + v = λ + v, a 2 = λa 1 + v = λ(λ + v) + v = λ 2 + (λ + 1)v, a 3 = λa 2 + v = λ(λ 2 + (λ + 1)v) + v = λ 3 + (λ 2 + λ + 1)v,. a n = λ n + (λ n 1 + λ n 2 + + 1)v = λ n + λn 1 λ 1 v,

²to nakon sreživanja postaje a n = v u + v + u u + v (1 u v)n, odakle je i Na sli an na in se dobija i b n = c n = d n = u u + v u u + v (1 u v)n. v u + v v (1 u v)n u + v u u + v + v u + v (1 u v)n. Matrica uslovnih verovatno a cele veze, tj. od X do Y = Y n, jeste Π n = [ v + u u+v u+v v v u+v u+v (1 u v)n u (1 u v)n u u u+v + u+v v u+v u+v (1 u v)n (1 u v)n ]. Kako su verovatno e simbola na predaji jednake, optimalni prijemnik odlu uje po maksimalnoj verodostojnosti, ˆx(y) = arg max P [Y = y X = x], x pa, s obzirom da je u + v < 1, tj. a n > c n i d n > b n, vaºi ˆx(0) = 0, ˆx(1) = 1, odnosno ˆx(y) = y. Verovatno a gre²ke odlu ivanja jeste P E = P [ˆx(Y ) X] = = P [Y X] = = P [X = 0]P [Y = 1 X = 0] + P [X = 1]P [Y = 0 X = 1] = = 1 2 (1 (1 u v)n ) i ako je u + v > 0, P E 1/2 kada n, jer svaki novi kanal u vezi smanjuje pouzdanost prenosa.