Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Similar documents
Cavity Quantum Electrodynamics with Superconducting Circuits

Controlling the Interaction of Light and Matter...

Distributing Quantum Information with Microwave Resonators in Circuit QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Mechanical quantum resonators

Superconducting Qubits Lecture 4

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Strong-coupling Circuit QED

Dynamical Casimir effect in superconducting circuits

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Driving Qubit Transitions in J-C Hamiltonian

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Entanglement Control of Superconducting Qubit Single Photon System

4-3 New Regime of Circuit Quantum Electro Dynamics

Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

Superconducting Qubits

Superconducting phase qubit coupled to a nanomechanical resonator: Beyond the rotating-wave approximation

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

10.5 Circuit quantum electrodynamics

Electrical Quantum Engineering with Superconducting Circuits

Circuit QED: A promising advance towards quantum computing

Circuit QED with electrons on helium:

Superconducting Resonators and Their Applications in Quantum Engineering

Circuit quantum electrodynamics : beyond the linear dispersive regime

Condensed Matter Without Matter Quantum Simulation with Photons

Competing interests statement The authors declare that they have no competing financial interests.

Introduction to Circuit QED

Superconducting quantum bits. Péter Makk

Quantum computation and quantum optics with circuit QED

10.5 Circuit quantum electrodynamics

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Quantum Optics with Electrical Circuits: Circuit QED

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Circuits and Quantum Information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics of many-body systems

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Lecture 2, March 2, 2017

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

Preparation of macroscopic quantum superposition states of a cavity field via coupling to a superconducting charge qubit

Quantum Physics with Superconducting Qubits

Quantum computation with superconducting qubits

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Aug 2006

Lecture 6, March 30, 2017

Florent Lecocq. Control and measurement of an optomechanical system using a superconducting qubit. Funding NIST NSA/LPS DARPA.

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Lecture 2, March 1, 2018

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Andreas Wallraff (ETH Zurich)

Quantum information processing with superconducting qubits in a microwave field

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

Exploring Quantum Simulations with Superconducting Circuits

The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Theory for investigating the dynamical Casimir effect in superconducting circuits

Superconducting quantum circuit research -building blocks for quantum matter- status update from the Karlsruhe lab

Nonlinear Oscillators and Vacuum Squeezing

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

arxiv: v1 [quant-ph] 23 Oct 2014

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

光 - マグノン - マイクロ波 - 超伝導量子ビットのリンクあるいは量子ピタゴラスイッチ

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Towards new states of matter with atoms and photons

arxiv: v1 [quant-ph] 13 Dec 2017

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

Superconducting Flux Qubits: The state of the field

Quantum Many Body Physics with Strongly Interacting Matter and Light. Marco Schiro Princeton Center for Theoretical Science

Practical realization of Quantum Computation

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

arxiv:cond-mat/ v4 [cond-mat.supr-con] 13 Jun 2005

Quantum Optics and Quantum Informatics 7.5hp (FKA173) Introductory Lecture

Quantum Nonlinearities in

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

Quantum simulation with superconducting circuits

Superconducting Qubits. Nathan Kurz PHYS January 2007

THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME

Lecture 8, April 12, 2017

Quantum Optics and Quantum Informatics FKA173

Prospects for Superconducting Qubits. David DiVincenzo Varenna Course CLXXXIII

Remote entanglement of transmon qubits

Entangled Macroscopic Quantum States in Two Superconducting Qubits

Open Quantum Systems

arxiv: v1 [quant-ph] 6 Oct 2011

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Short Course in Quantum Information Lecture 8 Physical Implementations

Superconducting qubits

Transcription:

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach: What is this good for? Isolating qubits from their environment Maintain addressability of qubits Reading out the state of qubits Coupling qubits to each other Converting stationary qubits to flying qubits

Controlling Light-Matter Interactions challenging on the level of single (artificial) atoms and single photons mode-matching (controlling the absorption probability) single photon fields E 0 (small in 3D) dipole moment d (usually small ~ ea 0 ) photon/dipole interaction (usually small) What to do? confine atom and photon in a cavity (cavity QED) engineer matter/light interactions, e.g. in solid state circuits D. Walls, G. Milburn, Quantum Optics (Spinger-Verlag, Berlin, 1994)

Cavity Quantum Electrodynamics D. Walls, G. Milburn, Quantum Optics (Spinger-Verlag, Berlin, 1994)

Dressed States Energy Level Diagram Atomic cavity quantum electrodynamics reviews: J. Ye., H. J. Kimble, H. Katori, Science 320, 1734 (2008) S. Haroche & J. Raimond, Exploring the Quantum, OUP Oxford (2006)

Cavity Quantum Electrodynamics (QED) alkali atoms MPQ, Caltech,... Rydberg atoms ENS, MPQ,... superconductor circuits Yale, Delft, NTT, ETHZ, NIST, semiconductor quantum dots Wurzburg, ETHZ, Stanford

Vacuum Rabi Oscillations with Rydberg Atoms Review: J. M. Raimond, M. Brune, and S. Haroche Rev. Mod. Phys. 73, 565 (2001) P. Hyafil,..., J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 93, 103001 (2004)

Vacuum Rabi Mode Splitting with Alkali Atoms R. J. Thompson, G. Rempe, & H. J. Kimble, Phys. Rev. Lett. 68 1132 (1992) A. Boca,..., J. McKeever, & H. J. Kimble Phys. Rev. Lett. 93, 233603 (2004)

Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

Proposals for Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits... a number of approaches suggested at the time: discrete LC circuits: large Josephson junctions: 3D cavities: Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001). O. Buisson and F. Hekking, in Macroscopic Quantum Coherence and Quantum Computing, edited by D. V. Averin, B. Ruggiero, and P. Silvestrini (Kluwer, New York, 2001). F. Marquardt and C. Bruder, Phys. Rev. B 63, 054514 (2001). F. Plastina and G. Falci, Phys. Rev. B 67, 224514 (2003). A. Blais, A. Maassen van den Brink, and A. Zagoskin, Phys. Rev. Lett. 90, 127901 (2003). W. Al-Saidi and D. Stroud, Phys. Rev. B 65, 014512 (2001). C.-P. Yang, S.-I. Chu, and S. Han, Phys. Rev. A 67, 042311 (2003). J. Q. You and F. Nori, Phys. Rev. B 68, 064509 (2003).

Circuit QED and its Different Realizations lumped element resonator: 3D cavity: Z. Kim et al., PRL 106, 120501 (2011) weakly nonlinear junction: H. Paik et al., PRL 107, 240501 (2011) planar transmission line resonator: I. Chiorescu et al., Nature 431, 159 (2004) A. Wallraff et al., Nature 431, 162 (2004)

Cavity QED with Superconducting Circuits A. Blais, et al., PRA 69, 062320 (2004) A. Wallraff et al., Nature (London) 431, 162 (2004)

Circuit Quantum Electrodynamics elements the cavity: a superconducting 1D transmission line resonator with large vacuum field E 0 and long photon life time 1/κ the artificial atom: a Cooper pair box with large E J /E C with large dipole moment d and long coherence time 1/γ A. Blais et al., PRA 69, 062320 (2004)

Vacuum Field in 1D Cavity E - B + + - 1 mm

Qubit/Photon Coupling Hamilton operator of qubit (2-level approx.) coupled to resonator: quantum part of gate voltage due to resonator

Jaynes-Cummings Hamiltonian Consider bias at charge degeneracy N g = 1/2 and change of qubit basis (z to x, x to -z) Use qubit raising and lowering operators Coupling term in the rotating wave approximation (RWA) Coupling strength of the Jaynes Cummings Hamiltonian Vacuum-Rabi frequency

Qubit/Photon Coupling in a Circuit

Circuit QED with One Photon A. Wallraff,, R. J. Schoelkopf, Nature (London) 431, 162 (2004)

J. Mlynek et al., Quantum Device Lab, ETH Zurich (2012)

Sample Mount ~ 2 cm M. Peterer et al., Quantum Device Lab, ETH Zurich (2012)

Cryostate for temperatures down to 0.02 K Microwave control & measurement equipment ~ 20 cm

A Circuit QED Lab at ETH Zurich

How to Measure Single Microwave Photons

Resonant Vacuum Rabi Mode Splitting... with one photon (n=1): very strong coupling: forming a 'molecule' of a qubit and a photon first demonstration in a solid: A. Wallraff et al., Nature (London) 431, 162 (2004) this data: J. Fink et al., Nature (London) 454, 315 (2008) R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)

Resonant Vacuum Rabi Mode Splitting... with one photon (n=1): very strong coupling: vacuum Rabi oscillations forming a 'molecule' of a qubit and a photon first demonstration in a solid: A. Wallraff et al., Nature (London) 431, 162 (2004) this data: J. Fink et al., Nature (London) 454, 315 (2008) R. J. Schoelkopf, S. M. Girvin, Nature (London) 451, 664 (2008)

Read-Out... of superconducting qubits

Qubit Read Out QUBIT OFF ON READOUT 0 1 0 1 QUBIT OFF ON READOUT 0 1 QUBIT OFF ON READOUT 0 1

Dispersive Approximation of the J-C Hamiltonian Jaynes-Cummings Hamiltonian Unitary transformation with and Results in dispersive approximation up to 2 nd order in g A. Blais, et al., PRA 69, 062320 (2004)

Non-Resonant (Dispersive) Interaction cavity frequency shift qubit detuned by from resontaor A. Blais et al., PRA 69, 062320 (2004) A. Wallraff et al., Nature (London) 431, 162 (2004) D. I. Schuster et al., Phys. Rev. Lett. 94, 123062 (2005) A. Fragner et al., Science 322, 1357 (2008)

Dispersive Read-Out A. Blais et al., PRA 69, 062320 (2004)

Qubit-Readout (Averaged) single-shot measurements: averaged measurements (8 10 4 ): Conventional HEMT 0 1 1 0 P. Kurpiers, Y. Salathe et al, ETH Zurich (2013) R. Vijay et al., PRL 106, 110502 (2011)

Improved using a Quantum Limited Amplifier averaged measurements (8 10 4 ): single-shot measurements: Conventional HEMT 0 1 1 0 quantum limited amp P. Kurpiers, Y. Salathe et al, ETH Zurich (2013) R. Vijay et al., PRL 106, 110502 (2011)

Single-Shot Single-Qubit Readout averaged measurements (8 10 4 ): single-shot measurements: Conventional HEMT 0 1 1 0 Parametric Amplifier 1 0 1 0 P. Kurpiers, Y. Salathe et al, ETH Zurich (2013) R. Vijay et al., PRL 106, 110502 (2011)

Statistics of Integrated Single-Shot Readout Integration time Σ 2922 1 0 P. Kurpiers, Y. Salathe et al, ETH Zurich (2013)

Near Quantum-Limited Parametric Amplifier Measured Gain Coherent Pump in signal fix pump tone! out Circuit QED implementation: in out SQUID(-array) provides required nonlinearity Eichler et al., EPJ Quantum Technology 1, 2 (2014) Eichler et al., Phys. Rev. Lett. 107, 113601 (2011) Caves, Phys. Rev. D 26, 1817 (1982) Yurke and Buks, J. Lightwave Tech. 24, 5054 (2006) Castellanos-Beltran et al., Nat. Phys. 4, 929 (2008)

The Lamb and AC-Stark Shifts M. Brune et al., Phys. Rev. Lett. 72, 3339 (1994) A. Blais et al., PRA 69, 062320 (2004)

Measurements of the Lamb and Quantized Stark Shifts A. Fragner et al., Science 322, 1357 (2008)

Measurement of the Lamb Shift A. Fragner et al., Science 322, 1357 (2008)

Quantum AC-Stark Shift and Lamb Shift populate resonator with small coherent field (Poisson distribution of photon number) spectroscopic measurement of qubit line shape qubit frequencies ac-stark shifted by quantized cavity field D. Schuster et al., Nature 445, 515 (2007) A. Fragner et al., Science 322, 1357 (2008)