Circuit quantum electrodynamics : beyond the linear dispersive regime

Similar documents
Cavity Quantum Electrodynamics with Superconducting Circuits

Circuit Quantum Electrodynamics

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Circuit QED: A promising advance towards quantum computing

Quantum computation and quantum optics with circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Aug 2006

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Introduction to Circuit QED

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

Quantum optics and quantum information processing with superconducting circuits

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics

Controlling the Interaction of Light and Matter...

Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates

Strong-coupling Circuit QED

Quantum-information processing with circuit quantum electrodynamics

Dipole-coupling a single-electron double quantum dot to a microwave resonator

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Entanglement Control of Superconducting Qubit Single Photon System

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics

Driving Qubit Transitions in J-C Hamiltonian

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Superconducting Qubits Lecture 4

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Quantum computation with superconducting qubits

Condensed Matter Without Matter Quantum Simulation with Photons

Elementary Tutorial on Loss Mechanisms in Circuit QED. Steven M. Girvin Yale University

arxiv: v1 [quant-ph] 31 May 2010

Electrical Quantum Engineering with Superconducting Circuits

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Ultrafast quantum nondemolition measurements based on a diamond-shaped artificial atom

Quantum Optics and Quantum Informatics FKA173

Superconducting Resonators and Their Applications in Quantum Engineering

Dressed relaxation and dephasing in a strongly driven two-level system

Circuit Quantum Electrodynamics: Coherent Coupling of a Single Photon to a Cooper Pair Box

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

Remote entanglement of transmon qubits

SUPPLEMENTARY INFORMATION

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

Photon shot noise dephasing in the strong-dispersive limit of circuit QED

Perturbative analysis of two-qubit gates on transmon qubits

Cavity Quantum Electrodynamics Lecture 2: entanglement engineering with quantum gates

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

arxiv: v1 [quant-ph] 6 Oct 2011

Coherent oscillations in a charge qubit

arxiv: v1 [cond-mat.supr-con] 29 Dec 2013

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Quantum simulation scheme of two-dimensional xy-model Hamiltonian with controllable coupling

Theoretical design of a readout system for the Flux Qubit-Resonator Rabi Model in the ultrastrong coupling regime

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Controllable cross-kerr interaction between microwave photons in circuit quantum electrodynamics

Towards new states of matter with atoms and photons

Superposition of two mesoscopically distinct quantum states: Coupling a Cooper-pair box to a large superconducting island

Quantum Reservoir Engineering

Stopping single photons in one-dimensional circuit quantum electrodynamics systems

Mesoscopic Shelving Readout of Superconducting Qubits in Circuit Quantum Electrodynamics

arxiv: v1 [quant-ph] 23 Oct 2014

Dynamical Casimir effect in superconducting circuits

THE RABI HAMILTONIAN IN THE DISPERSIVE REGIME

Circuit QED with electrons on helium:

Mechanical quantum resonators

Nonlinear Oscillators and Vacuum Squeezing

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

OPTICAL cavity quantum electrodynamics (QED) in the

Quantum Limits on Measurement

Introduction to Cavity QED

Quantum Many Body Physics with Strongly Interacting Matter and Light. Marco Schiro Princeton Center for Theoretical Science

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

SUPPLEMENTARY INFORMATION

Electrical quantum engineering with superconducting circuits

arxiv: v1 [cond-mat.mes-hall] 15 Jun 2010

Superconducting Qubits. Nathan Kurz PHYS January 2007

Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED

arxiv: v1 [quant-ph] 13 Dec 2017

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

Superconducting quantum bits. Péter Makk

Single photon nonlinear optics in photonic crystals

Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling

Entangled States and Quantum Algorithms in Circuit QED

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

Principle Concepts behind IBM Q D. Stancil, Quantum Computing Seminar, 15 Feb 2018

arxiv: v1 [quant-ph] 16 May 2007

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

Quantum non-demolition measurement of a superconducting two-level system

Implementation of Grover quantum search algorithm with two transmon qubits via circuit QED

Demonstration of conditional gate operation using superconducting charge qubits

CIRCUITS ET SIGNAUX QUANTIQUES QUANTUM SIGNALS AND CIRCUITS VISIT THE WEBSITE OF THE CHAIR OF MESOSCOPIC PHYSICS

Exploring parasitic Material Defects with superconducting Qubits

QUANTUM COHERENCE OF JOSEPHSON RADIO-FREQUENCY CIRCUITS OUTLINE

Transcription:

Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo June 23 th, 2008 Boissonneault, Gambetta and Blais, Phys. Rev. A 77 060305 (R) (2008)

1 Introduction Atom and cavity Cavity QED Charge qubit and coplanar resonator Circuit QED The linear dispersive limit Circuit VS cavity QED 2 Beyond linear dispersive Understanding the dispersive transformation The dispersive limit Dissipation in the system Dissipation in the transformed basis 3 Results Reduction of the SNR Measurement induced heat bath The case of the transmon 4 Conclusion Conclusion

Atom and cavity... Energy ω 01 = ω a Two-levels system Hamiltonian H = ωa σz σz = 2 1 0 0 1 «

Atom and cavity x y z Energy... L Two-levels system Hamiltonian H = ωa σz σz = 2 ω 01 = ω a 1 0 0 1 «Cavity Hamiltonian H = X k ω k a k a k + 1 «2

Atom and cavity x y z Energy... L Two-levels system Hamiltonian H = ωa σz σz = 2 ω 01 = ω a 1 0 0 1 «Cavity Hamiltonian H = X k ω k a k a k + 1 «2

Atom and cavity ω r = ω 1 ω 2 Energy Response κ = ω r/q... Input frequency, rf Two-levels system Hamiltonian H = ωa σz σz = 2 ω 01 = ω a 1 0 0 1 «Cavity Hamiltonian H = X k Single-mode : ω k a k a k + 1 «2 H = ω ra a

Cavity QED g

Cavity QED g Atom-cavity interaction H I = D E g(a + a)σ x g(a σ + aσ + ) g(z) = d 0 r ω V ǫ 0 sinkz

Cavity QED g Atom-cavity interaction H I = D E g(a + a)σ x g(a σ + aσ + ) Jaynes-Cummings Hamiltonian g(z) = d 0 r ω V ǫ 0 sinkz H = ωa 2 σz + ωra a + g(a σ + aσ + ) Jaynes and Cummings, Proc. IEEE 51 89-109 (1963) Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565 582 (2001) Mabuchi and Doherty, Science 298 1372-1377 (2002)

Charge qubit and coplanar resonator Classical Hamiltonian Vg ----- C g E J C J Vg C g n E J C J E C = H = 4E C (n n g) 2 E J cos δ E J = I 0Φ 0 2π e 2 CgVg, ng = 2(C g + C J ) 2e

Charge qubit and coplanar resonator Classical Hamiltonian Vg ----- C g E J C J Vg C g n E J C J E C = H = 4E C (n n g) 2 E J cos δ E J = I 0Φ 0 2π e 2 CgVg, ng = 2(C g + C J ) 2e Quantum Hamiltonian H = X n 4E C (n n g) 2 n n X n E J ( n n + 1 + h.c.) 2 Restricting to n g [0,1] : H = ω aσ z/2 Shnirman, Schön and Hermon, Phys. Rev. Lett. 79 2371 2374 (1997) Bouchiat et al., Physica Scripta T76 165-170 (1998) Nakamura, Pashkin and Tsai, Nature (London) 398 786 (1999)

Charge qubit and coplanar resonator Classical Hamiltonian Vg ----- C g E J C J Vg C g n E J C J E C = H = 4E C (n n g) 2 E J cos δ E J = I 0Φ 0 2π e 2 CgVg, ng = 2(C g + C J ) 2e Energie [Arb. Units] EJ/4EC=0.1 EJ 0 0.2 0.4 0.6 0.8 1 Gate charge, n g = C g V g /2e Quantum Hamiltonian H = X n X n 4E C (n n g) 2 n n E J ( n n + 1 + h.c.) 2 Restricting to n g [0,1] : H = ω aσ z/2 Shnirman, Schön and Hermon, Phys. Rev. Lett. 79 2371 2374 (1997) Bouchiat et al., Physica Scripta T76 165-170 (1998) Nakamura, Pashkin and Tsai, Nature (London) 398 786 (1999)

Charge qubit and coplanar resonator

Charge qubit and coplanar resonator L r C r Classical Hamiltonian H = Φ2 2L r + 1 2 CrV 2 ω r = s 1 L rc r

Charge qubit and coplanar resonator L r C r Classical Hamiltonian H = Φ2 2L r + 1 2 CrV 2 ω r = s 1 L rc r Quantum Hamiltonian r ωr V = (a + a), 2C r H = ω r a a + 1 «2 r ωr Φ = i (a a) 2L r Quantum Fluctuations in Electrical Circuits, M. H. Devoret, Les Houches Session LXIII, Quantum Fluctuations p. 351-386 (1995).

Circuit QED Measurement output C g E J CJ Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator

Circuit QED Measurement output C g E J CJ Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator Parameters g : Qubit-cavity interaction ω a : Qubit frequency ω r : Resonator frequency = ω a ω r : Detuning H = ωa 2 σz + ωra a + g(a σ + aσ + ) Blais et al., Phys. Rev. A 69 062320 (2004) Wallraff et al., Nature 431 162 (2004) Wallraff et al., Phys. Rev. Lett. 95 060501 (2005) Leek et al., Science 318 1889 (2007) Schuster et al., Nature 445 515 (2007) Houck et al., Nature 449 328 (2007) Majer et al., Nature 449 443 (2007)

Circuit QED C g E J CJ Parameters g : Qubit-cavity interaction ω a : Qubit frequency ω r : Resonator frequency = ω a ω r : Detuning H = ωa 2 σz + ωra a + g(a σ + aσ + ) Blais et al., Phys. Rev. A 69 062320 (2004) Wallraff et al., Nature 431 162 (2004) Wallraff et al., Phys. Rev. Lett. 95 060501 (2005) Leek et al., Science 318 1889 (2007) Schuster et al., Nature 445 515 (2007) Houck et al., Nature 449 328 (2007) Majer et al., Nature 449 443 (2007)

The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator

The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Linear dispersive H D = (ω a + χ ) σz 2 + (ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull Valid if n n crit., where n crit. = 1/4λ 2. Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator 2CP T ransmi ssio n (arb. units) κ Δ ~ 2π 1GHz 2χ κ Phase -2χ κ ωr CP ωr + CP ω a

The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Linear dispersive H D = (ω a + χ ) σz 2 + (ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull Valid if n n crit., where n crit. = 1/4λ 2. Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator 2CP T ransmi ssio n (arb. units) κ Δ ~ 2π 1GHz 2χ κ Phase -2χ κ ωr CP ωr + CP ω a

The linear dispersive limit Jaynes-Cummings H = ω ra a+ω a σ z 2 +g(a σ +aσ + ) Small parameter λ = g/ Measurement output Linear dispersive H D = (ω a + χ ) σz 2 + (ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull Qubit control and readout ~ 10 GHz Atom: super conducting charge qubit Cavity: super conducting 1D transmission line resonator Valid if n n crit., where n crit. = 1/4λ 2. Rabi π-pulse Wallraff et al., Phys. Rev. Lett. 95 060501 (2005) 2CP T ransmi ssio n (arb. units) κ ωr CP Δ ~ 2π 1GHz ωr + CP ω a 2χ κ Phase -2χ κ Averaged 50000 times. SNR for single-shot is 0.1.

Circuit VS cavity QED Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r 3 10 7 10 7 5 10 3 Hood et al., Science 287 1447 (2000) Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565 582 (2001) Blais et al., Phys. Rev. A 69 062320 (2004)

Circuit VS cavity QED Motivation Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r 3 10 7 10 7 5 10 3 Hood et al., Science 287 1447 (2000) Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565 582 (2001) Blais et al., Phys. Rev. A 69 062320 (2004) Circuit QED is harder than cavity QED on the dispersive limit (n crit. is smaller)

Circuit VS cavity QED Motivation Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r 3 10 7 10 7 5 10 3 Hood et al., Science 287 1447 (2000) Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565 582 (2001) Blais et al., Phys. Rev. A 69 062320 (2004) Circuit QED is harder than cavity QED on the dispersive limit (n crit. is smaller) The SNR is low, we want to measure harder... how does higher order terms affect measurement?

Circuit VS cavity QED Motivation Symbol Optical cavity Microwave cavity Circuit ω r/2π or ω a/2π 350 THz 51 GHz 10 GHz g/π 220 MHz 47 khz 100 MHz g/ω r 3 10 7 10 7 5 10 3 Hood et al., Science 287 1447 (2000) Raimond, Brune and Haroche, Rev. Mod. Phys. 73 565 582 (2001) Blais et al., Phys. Rev. A 69 062320 (2004) Circuit QED is harder than cavity QED on the dispersive limit (n crit. is smaller) The SNR is low, we want to measure harder... how does higher order terms affect measurement? Must consider higher order corrections in perturbation theory

Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +)

Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H

Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H X θ n = arctan(2g n/ )

Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H Diagonalization Rotation around Y axis In all subspaces E n E 0 = { g,0 } E n = { g, n, e, n 1 } { g n, e n } X θ n = arctan(2g n/ ) Z Z D θ n D H n D X X

Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H Diagonalization Rotation around Y axis In all subspaces E n E 0 = { g,0 } E n = { g, n, e, n 1 } { g n, e n } The qubit is now part photon and vice-versa X θ n = arctan(2g n/ ) Z Z D θ n D H n X X D

Understanding the dispersive transformation J-C : block diagonal H = ω ra a + ω aσ z/2 + g(a σ + aσ +) 1x1 block : H 0 = ω ai/2 Z θ n H n 2x2 blocks : H n = 2 σn z + g nσ n x Total Hamiltonian H = H 0 H 1 H 2 H Diagonalization Rotation around Y axis In all subspaces E n E 0 = { g,0 } E n = { g, n, e, n 1 } { g n, e n } The qubit is now part photon and vice-versa X θ n = arctan(2g n/ ) 2g n/ Z D Z θ n D H n X X D

The dispersive limit Dispersive limit Jaynes-Cummings hamiltonian H = ω ra a + ω a σ z 2 + g(a σ + aσ + ) Exact transformation : D Small parameter λ = g/ 4λ 2 n 1

The dispersive limit Dispersive limit Jaynes-Cummings hamiltonian H = ω ra a + ω a σ z 2 + g(a σ + aσ + ) Exact transformation : D Small parameter λ = g/ 4λ 2 n 1 Result at order λ H D = (ω a + χ ) σz 2 +(ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull T ransmi ssio n (arb. units) κ ωr CP 2CP Δ ~ 2π 1GHz ωr + CP ω a 2χ κ Phase -2χ κ

The dispersive limit Dispersive limit Jaynes-Cummings hamiltonian H = ω ra a + ω a σ z 2 + g(a σ + aσ + ) Exact transformation : D Small parameter λ = g/ 4λ 2 n 1 Result at order λ 2 H D = (ω a + χ ) σz 2 + [ωr + (χ ζa a)σ z ]a a χ = χ(1 λ 2 ), ζ = λ 2 χ The cavity pull decrease : CP = χ ζ a a Result at order λ H D = (ω a + χ ) σz 2 +(ωr + χσz )a a Lamb shift (χ = gλ = g 2 / ) Stark shift or cavity pull T ransmi ssio n (arb. units) κ 2CP Δ ~ 2π 1GHz 2χ κ Phase -2χ κ ωr CP ωr + CP ω a

Dissipation in the system κ γ ϕ γ 1 Model for dissipation Coupling to a bath H κ = R p 0 gκ(ω)[b κ(ω) + b κ(ω)][a + a]dω H γ = R p 0 gγ(ω)[b γ(ω) + b γ(ω)]σ xdω Parameters κ : Rate of photon loss γ 1 : Transverse decay rate

Dissipation in the system κ γ ϕ Energie [Arb. Units] EJ/4EC=0.1 δn g γ 1 0 0.2 0.4 0.6 0.8 1 Gate charge, n g = C g V g /2e Model for dissipation Coupling to a bath H κ = R p 0 gκ(ω)[b κ(ω) + b κ(ω)][a + a]dω H γ = R p 0 gγ(ω)[b γ(ω) + b γ(ω)]σ xdω Parameters κ : Rate of photon loss γ 1 : Transverse decay rate

Dissipation in the system κ γ ϕ Energie [Arb. Units] EJ/4EC=0.1 δn g γ 1 0 0.2 0.4 0.6 0.8 1 Gate charge, n g = C g V g /2e Model for dissipation Coupling to a bath H κ = R p 0 gκ(ω)[b κ(ω) + b κ(ω)][a + a]dω H γ = R p 0 gγ(ω)[b γ(ω) + b γ(ω)]σ xdω Dephasing H ϕ = ηf(t)σ z Parameters κ : Rate of photon loss γ 1 : Transverse decay rate γ ϕ : Pure dephasing rate

Dissipation in the transformed basis Z H n θ n γ 1 γ ϕ X

Dissipation in the transformed basis Z θ n γ 1 γ ϕ H n X Transformation of system-bath hamiltonian a D a + λσ + O `λ2 D σ σ + λaσ z + O `λ2 D σ z σz 2λ(a σ + aσ + ) + O `λ2 Z D Z D H n θ n γ ϕeff γ γ ϕeff γ γ, X X D

Dissipation in the transformed basis Z D Z Z θ n γ 1 H γ ϕ D n H n X Transformation of system-bath hamiltonian a D a + λσ + O `λ2 D σ σ + λaσ z + O `λ2 D σ z σz 2λ(a σ + aσ + ) + O `λ2 Method Transform the system-bath hamiltonian Trace out heat bath and cavity degrees of freedom (Gambetta et al., Phys. Rev. A 77 012112 (2008)) θ n γ ϕeff γ γ ϕeff γ γ, X X D

Dissipation in the transformed basis Z D Z Z θ n γ 1 H γ ϕ D n H n X Transformation of system-bath hamiltonian a D a + λσ + O `λ2 D σ σ + λaσ z + O `λ2 D σ z σz 2λ(a σ + aσ + ) + O `λ2 Method Transform the system-bath hamiltonian Trace out heat bath and cavity degrees of freedom (Gambetta et al., Phys. Rev. A 77 012112 (2008)) New rates (assuming white noises) θ n γ ϕeff γ γ γ, X X D γ = γ 1 ˆ1 2λ 2 ` n + 1 2 + γκ + 2λ 2 γ ϕ n γ = 2λ 2 γ ϕ n γ κ = λ 2 κ γ ϕeff

Reduction of the SNR Parameters for the SNR Number of measurement photons SNR Num. phot.

Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ SNR κ Num. phot.

Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η κ η Num. phot. SNR

Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull κ η Num. phot. Info per phot. SNR

Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull Mixing rate : γ +γ = γ 1 ˆ1 2λ 2 ` n + 1 2 +γκ+4λ 2 γ ϕ n SNR κ η Num. phot. Info per phot. Mixing rate

Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull Mixing rate : γ +γ = γ 1 ˆ1 2λ 2 ` n + 1 2 +γκ+4λ 2 γ ϕ n SNR κ η Num. phot. Info per phot. Mixing rate SNR 15 10 5 Cooper-Pair Box Linear With corrections Conclusion SNR levels off with non-linear effects! Explains low experimental SNR Applies to all dispersive homodyne measurement 0 0.0 0.1 0.2 0.3 0.4 0.5 n/n crit. /2π = 1.7 GHz, g/2π = 170 MHz κ/2π = 34 MHz, γ 1 /2π = 0.1 MHz γ ϕ = 0.1 MHz, η = 1/80 n crit. = 1/4λ 2 = 25

Reduction of the SNR Parameters for the SNR Number of measurement photons Output rate : κ Fraction of photons detected : η Info per photon : cavity pull Mixing rate : γ +γ = γ 1 ˆ1 2λ 2 ` n + 1 2 +γκ+4λ 2 γ ϕ n SNR Conclusion κ η Num. phot. Info per phot. Mixing rate SNR levels off with non-linear effects! Explains low experimental SNR Applies to all dispersive homodyne measurement SNR 15 10 5 Cooper-Pair Box Linear With corrections Transmon 0 0.0 0.1 0.2 0.3 0.4 0.5 n/n crit. /2π = 1.7 GHz, g/2π = 170 MHz κ/2π = 34 MHz, γ 1 /2π = 0.1 MHz γ ϕ = 0.1 MHz, η = 1/80 n crit. = 1/4λ 2 = 25

Measurement induced heat bath Mixing rates Downward rate : γ ( n) Upward rate : γ ( n) Heat bath with temperature T( n) = ( ω r/k B )/log(1 + 1/ n) σ z -1 1 0-1 0 5 10 15 Time [µs]

Measurement induced heat bath Mixing rates Downward rate : γ ( n) Upward rate : γ ( n) Heat bath with temperature T( n) = ( ω r/k B )/log(1 + 1/ n) σ z σ z -1 1 0-1 1 0-1 0 5 10 15 Time [µs] Increasing power

Measurement induced heat bath Mixing rates Downward rate : γ ( n) Upward rate : γ ( n) Heat bath with temperature T( n) = ( ω r/k B )/log(1 + 1/ n) σ z σ z σ z 1 0-1 1 0-1 1 0-1 0 5 10 15 Time [µs] Increasing power

The case of the transmon ----- C g Vg E J C J Energie [Arb. Units] EJ/4EC=0.1 EJ 0 0.2 0.4 0.6 0.8 1 Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A 76 042319 (2007)

The case of the transmon ----- C g C g Vg E J C J Vg C S Energie [Arb. Units] EJ/4EC=0.1 EJ 0 0.2 0.4 0.6 0.8 1 Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A 76 042319 (2007)

The case of the transmon ----- C g C g C g Vg E J C J Vg C S Vg C S Energie [Arb. Units] EJ/4EC=0.1 EJ 0 0.2 0.4 0.6 0.8 1 Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A 76 042319 (2007)

The case of the transmon ----- C g C g C g Vg E J C J Vg C S Vg C S Energie [Arb. Units] EJ/4EC=0.1 EJ 0 0.2 0.4 0.6 0.8 1 Gate charge, n g = C gv g/2e Koch et al., Phys. Rev. A 76 042319 (2007)

Conclusion Main results Simple model describing the physics of measurement Side-effect of measuring harder : you heat your qubit (even with photons that can t be directly absorbed) Side-effect of measuring harder : each photon you add carries less information than the previous one Measuring harder bigger SNR Coming soon The transmon (3 level system) (Koch et al., Phys. Rev. A 76 042319 (2007)) Taking advantage of the non-linearity Comparison with experiments More information : Boissonneault, Gambetta and Blais, Phys. Rev. A 77 060305 (R) (2008) FQRNT