Robert W. Brodersen EECS140 Analog Circuit Design

Similar documents
MOS Transistor I-V Characteristics and Parasitics

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 3: CMOS Transistor Theory

The Devices. Devices

Introduction and Background

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOSFET: Introduction

Chapter 4 Field-Effect Transistors

Lecture 4: CMOS Transistor Theory

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistor Theory

Microelectronics Part 1: Main CMOS circuits design rules

MOS Transistor Theory

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

6.012 Electronic Devices and Circuits Spring 2005

Circuits. L2: MOS Models-2 (1 st Aug. 2013) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Lecture 12: MOSFET Devices

Device Models (PN Diode, MOSFET )

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Device Models (PN Diode, MOSFET )

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

Chapter 13 Small-Signal Modeling and Linear Amplification

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

N Channel MOSFET level 3

EE 330 Lecture 22. Small Signal Modelling Operating Points for Amplifier Applications Amplification with Transistor Circuits

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOS Transistor Properties Review

II III IV V VI B C N. Al Si P S. Zn Ga Ge As Se Cd In Sn Sb Te. Silicon (Si) the dominating material in IC manufacturing

EE105 - Fall 2005 Microelectronic Devices and Circuits

Practice 3: Semiconductors

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

ECE 342 Electronic Circuits. 3. MOS Transistors

E2.2 Analogue Electronics

The Devices. Jan M. Rabaey

EE5311- Digital IC Design

Lecture 12 CMOS Delay & Transient Response

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Lecture 5: CMOS Transistor Theory

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

The Devices: MOS Transistors

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

MOSFET Capacitance Model

Lecture 210 Physical Aspects of ICs (12/15/01) Page 210-1

Integrated Circuits & Systems

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences PROBLEM SET #3 (SOLUTION)

ECE 497 JS Lecture - 12 Device Technologies

EECS 141: FALL 05 MIDTERM 1

MOSFET Physics: The Long Channel Approximation

EKV MOS Transistor Modelling & RF Application

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

EE 560 MOS TRANSISTOR THEORY

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 2 MOS Transistor theory

ECE 438: Digital Integrated Circuits Assignment #4 Solution The Inverter

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

Section 12: Intro to Devices

Lecture 12: MOS Capacitors, transistors. Context

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EEC 116 Lecture #3: CMOS Inverters MOS Scaling. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

LEVEL 61 RPI a-si TFT Model

Microelectronics Main CMOS design rules & basic circuits

Electronic Circuits Summary

6.012 Electronic Devices and Circuits

Lecture 5: DC & Transient Response

Chapter 2 CMOS Transistor Theory. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 11: MOS Transistor

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ECE 546 Lecture 10 MOS Transistors

Bipolar Junction Transistor (BJT) - Introduction

EECS240 Spring Today s Lecture. Lecture 2: CMOS Technology and Passive Devices. Lingkai Kong EECS. EE240 CMOS Technology

Lecture 5 Review Current Source Active Load Modified Large / Small Signal Models Channel Length Modulation

Lecture 37: Frequency response. Context

Nanoscale CMOS Design Issues

Lecture 04 Review of MOSFET

EE105 - Fall 2006 Microelectronic Devices and Circuits

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

Lecture 14: Electrical Noise

ECE 546 Lecture 16 MNA and SPICE

ECE321 Electronics I

Studio 3 Review MOSFET as current source Small V DS : Resistor (value controlled by V GS ) Large V DS : Current source (value controlled by V GS )

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Semiconductor Physics Problems 2015

The Physical Structure (NMOS)

CMOS Cross Section. EECS240 Spring Today s Lecture. Dimensions. CMOS Process. Devices. Lecture 2: CMOS Technology and Passive Devices

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

SOME USEFUL NETWORK THEOREMS

Transcription:

INTRODUCTION University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science Robert. Brodersen EECS40 Analog Circuit Design ROBERT. BRODERSEN LECTURE

EECS 40 ANALOG INTEGRATED CIRCUITS INTRODUCTION I Robert. Brodersen, 779, 40 Cory Hall, rb@eecs.berkeley.edu This course will focus on the design of MOS analog integrated circuits with extensive use of Spice for the simulations. In addition, some applications of analog integrated circuits will be covered which will include RF amplification and discrete and continuous time filtering. Though the focus will be on MOS implementations, comparison with bipolar circuits will be given. Required Text Analysis and Design of Analog Integrated Circuits, 4th Edition, P.R. Gray, P. Hurst, S. Lewis and R.G. Meyer, John iley and Sons, 00 Supplemental Texts B. Razavi, Design of Analog CMOS Integrated Circuits, McGrawHill, 00. Thomas Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 998 The SPICE Book, Andre Vladimirescu, John iley and Sons, 994 EECS 05: Microelectronic Devices and Circuits Prerequisites ROBERT. BRODERSEN LECTURE

IC Design Course Structure at Berkeley EE40 INTRODUCTION I EE05 EE40 Linear/Analog EE4 NonLinear EE4 Digital Linear Design Sensors, Transducers Interface Circuits Digital Processing Amplifiers, Filters, A/D & D/A s ROBERT. BRODERSEN LECTURE

University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science Robert. Brodersen EECS40 Analog Circuit Design Lectures on MOS DEVICE MODELS ROBERT. BRODERSEN LECTURE

Assumed Knowledge M a) KCL, KVL Kirchoff Laws b) Voltage, Current Dividers c) Thevenin, Norton Equivalents d) Port Equivalents e) Phasors, Frequency Response ROBERT. BRODERSEN LECTURE

V s i in R s + + ν in + a ν ν in Port Equivalent Circuit (Voltage in Voltage out) R in R out + ν out i out RL R in R out A ν ν in i in ν out i out ν out ν in R L i out 0 R L R S ν in 0 M i in i out V s + + ν in + a ν ν in R in R out + ν out + ν in R in + R out + a ν ν in ν out ν out a ν ν in a ν ν out a ν a ν ν R in in + R out R in ROBERT. BRODERSEN LECTURE

MOS Large Signal Equations M3 nchannel D I DS V DSAT G B V GS I DS Saturation S NMOS Linear Cutoff S G L D V DS n p n B ROBERT. BRODERSEN LECTURE

Cutoff : V GS < V T MOS Large Signal Equations (Cont.) M4 Linear : V GS > V T V DS < V DSAT V GS V T I DS k' Saturated : V GS V DS I DS > V T V DS L V V V GS T DS > V DSAT V GS V T k' ( V GS V T ) ( + λ V DS ) L ROBERT. BRODERSEN LECTURE

MOS Large Signal Equations (Cont.) M5 V T V To + γ [( φ f + V SB ) ( φ f ) ] V To Threshold Voltage @ V SB 0 φ f Fermi Potential 0.3 γ λ L Body Effect Factor Short Channel Effect idth of Device Length k' µ C ox ( V SB > 0) µ ν ε E V DS /L mobility Oxide Capacitance E ROBERT. BRODERSEN LECTURE

MOS Large Signal Equations (Cont.) M6 Body Effect : V To + γ V SB V T S G + + + + + + + + D n n γ q ε N A C ox V To 0 V BS ROBERT. BRODERSEN LECTURE

MOS Large Signal Equations (Cont.) M7 Short Channel Effect (λ): S G D X D X J Junction Depth L drawn L D Lateral Diffusion ~ 0.75 X J L L drawn L D L EFF L X D X D fv ( DS ) ROBERT. BRODERSEN LECTURE

MOS Large Signal Equations (Cont.) M8 I k' ( A ) D I k' ( B ) D ( B) I D V DS λ ( V GS V T ) L EFF Modeled as ( V GS V T ) ( + λ V DS ) L I DS ( A) I D V DS k' ( V GS V T ) dv DS L EFF dl EFF ( A) I D V DS dx D λ I D I D L EFF dv DS ROBERT. BRODERSEN LECTURE 3

MOS Large Signal Equations (Cont.) λ L EFF dx D L dv DS dx D dv DS eak function of V DS ε ( V X DS V DSAT ) D q N A Fixed ε Dielectric constant of silicon N A Substrate doping dx D dv DS ε q N A V DS V DSAT ROBERT. BRODERSEN LECTURE 3

MOS Large Signal Equations (Cont.) M9 G I DS Ideal λi DS Longer Channel (Increasing L) S L D V DS /L is the parameter of interest C G L C OX ROBERT. BRODERSEN LECTURE 3

MOS Small Signal Model (Low Frequency) M0 M I DS G + g m ν gs D V GS r o g mbs ν bs S + V SB B I DS di DS ν gs + dv GS dv BS di DS di ν bs + DS dv DS ν ds g m g mbs /r o ROBERT. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.) M In Saturation : g m di DS k' ( V dv GS V T ) ( + λ V DS ) GS L g m + k' ( V GS V T ) L hat is V DSAT? G S V GS V T + V DSAT I DS g m V DSAT k' V DSAT k' I DS L L k' ( V GS V T ) L k' V DSAT so, L I DS k' L k' V DSAT L and from above, ROBERT. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.) M3 g mbs calculation : di DS g mbs g mb dv BS k' ( V GS V T ) ( + λ V DS ) L dv T dv BS dv T dv BS γ χ ( φ f + V SB ) 0.5 g mbs k' ( V GS V T ) ( + λ V DS ) χ L g m g mbs χ g m χ γ ( φ f + V SB ) 0.5 ROBERT. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.) M4 C ox 0.3 G g mbs χ g m 0. S n C js n D 5V 0V V BS γ 0.5 φ f 0.3 k 90e6 λ 0.0 V To 0.7 Qchannel duetovgs C ox ν gs Qchannel duetovbs C js ν bs χ C js C ox ROBERT. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.) M5 r o calculation : di DS g r mds o dv DS d d V DS k' ( V GS V T ) ( + λ V DS ) L k' r o ( V GS V T ) λ L λ I r DS o r 0 λ I DS ROBERT. BRODERSEN LECTURE 3

MOS Small Signal Model (Cont.) Comparison with Spice Level : M6 VTO V To 0.5.0V PHI φ f 0.6 GAMMA γ 0.05 0.5 LAMBDA λ 0.0 0. KP k' µ C ox nmos 50 00µ A V pmos nmos 3 ROBERT. BRODERSEN LECTURE 3

LECTURES ON SPICE Summary: g m k' I DS L g mbs χ g γ χ ( φ f + V SB ) 0.5 r 0 λ I DS g m I DS I V DS DSAT k' L m V GS V T MOS Small Signal Model (Cont.) V DSAT k' V DSAT L I DS V DSAT V DSAT V GS V T I V GS V DS T + k' L I DS k' ( V GS V T ) L V T V To + γ [( φ f + V SB ) ( φ f ) ] ROBERT. BRODERSEN LECTURE 4

LECTURES ON SPICE University of California Berkeley College of Engineering Department of Electrical Engineering and Computer Science Robert. Brodersen EECS40 Analog Circuit Design Lectures on SPICE ROBERT. BRODERSEN LECTURE 4

Spice Transistor Model : LECTURES ON SPICE SP M 3 4 nch Lµ 0µ AD( ) AS( ) PD( ) PS( ) NRD( ) parasitic resistors G area of drain S L D 3 4 ROBERT. BRODERSEN LECTURE 4

SPICE LECTURES ON SPICE SP Initial Operationg Point DC currents and Voltages Linearize Around OP Point Solve Eqn. New Operating Point No DC Converge? Yes Increment Time Analysis Types : DC op point.op DC sweeps AC & Transient No End of Time Interval Yes STOP ROBERT. BRODERSEN LECTURE 4

LECTURES ON SPICE 4 V A SP3 + V B R 4 I + R R R 3 I 4 3 G i /R i Node : ( G + G 4 ) V G V G 4 V 4 + I 0 Node : G V + ( G + G + G 3 ) V G 3 V 3 0 Node 3 : G 3 V + G 3 V 3 I 4 0 Node 4 : G 4 V G 4 V 4 + I 4 0 V V B V 3 V 4 V A ROBERT. BRODERSEN LECTURE 4

LECTURES ON SPICE SP4 G +G 4 G 0 G 4 0 V 0 G G +G +G 3 G 3 0 0 0 V 0 0 G 3 G 3 0 0 V 3 0 G 4 0 0 G 4 0 V 4 0 0 0 0 0 0 I V B 0 0 0 0 I 4 V A Current src G F V C B R I E Votlage src Total # of EQNS Nn + n v + n l n # of circuit nodes n v # of independent voltage srcs n l # of inductors ROBERT. BRODERSEN LECTURE 4

Matrix Solution LECTURES ON SPICE SP5 A x b we need Solve by Gaussian Elimination (0) denotes iteration step e e e 3 a a a 3 a a a 3 a 3 a 3 a 33 x x x 3 b b b 3 Eliminate a,a 3 ( ) e e ( ) e e 0 ( ) a e a ( ) e 3 e 3 0 ( ) a 3 e a xxx 0 xx 0 xx ROBERT. BRODERSEN LECTURE 4

LECTURES ON SPICE SP6 Then eliminate a 3 () ( ) e ( ) e ( ) e 3 ( ) e ( ) e e 3 ( ) ( ) a 3 ( ) e ( ) a xxx 0 xx 00x Upper triangular matrix can be solved ( ) a ( ) a ( ) 0 a ( ) a 3 ( ) a 3 x x b ( ) b ( ) 0 0 a 33 x 3 ( ) b 3 ( ) b x 3 3 ( ) a 33 b ( ) ( x a ( ) 3 x 3 ) ( ) a b ( 0 ) x a ( 0 ) ( 3 x 3 a x ) a Solution ROBERT. BRODERSEN LECTURE 4

Accuracy LECTURES ON SPICE SP7 A Can t divide by 0 or small numbers, so pivoting is used to reorder eqn s (Basically renumbering nodes). Puts maximum values on diagonal. R Ω R 0kΩ.000 V V 0 G 0k + G If the computer only has 4 digits of precision then we get, Actually, V V 000V, 0000V, V V 0 V V V + V 0 V, V ROBERT. BRODERSEN LECTURE 4

To control accuracy LECTURES ON SPICE SP8.options PIVTOL <values> (0 8 ) This sets the allowable range of conductance values. *ERROR* : Maximum entry...at STEP... is less than PIVTOL Probably means you have an incorrect element or floating node ROBERT. BRODERSEN LECTURE 4

Solution of the DC equations with nonlinear models LECTURES ON SPICE SP9 I D I S e I G G V V D V TH + I A I G Need to find this point I A G I G V D I D I D,G I D ROBERT. BRODERSEN LECTURE 4

NewtonRaphson Iteration : LECTURES ON SPICE SP0 Make guess of next operation point in iteration Start at initial guess and linearize diode eqn. + I A G G D0 V D (0) I D0 ROBERT. BRODERSEN LECTURE 4

LECTURES ON SPICE SP Current value I D0 Solution finds this point Slope of G D0 I D V D Solve for V D, becomes V D () Linearize at this point Find new point ROBERT. BRODERSEN LECTURE 4

LECTURES ON SPICE Convergence SP Keep iterating until all voltages and currents are within a a tolerance value. () i V n ε Vn node voltage n at iteration i REL( V) max V ( i + ) () i ( n, V n ) + ABS( V) The convergence check is : ( i + ) V n () i V n ε Vn REL( V) 0 4 (Default 0 3 ROBERT. BRODERSEN LECTURE 4 ) ABS( V) 0 6 (Default 50µV ) ABS(V) should be at least two orders of magnitude below required accuracy. These values would give part in 0 4 accuracy down to 00µV resolution

SP3 Current convergence is broken into two types; MOS and NOT MOS MOS 6 ABSMOS ABSOLUTE( 0 ) RELMOS RELATIVE( 0.5) NOTMOS 9 ABSI ABSOLUTE( 0 ) RELI RELATIVE( 0.0) ITL # of steps in iteration (00) hen you get *ERROR* no convergence in DC analysis and the last node voltages Then it hasn t converged in 00 times something is probably wrong with your netlist ROBERT. BRODERSEN LECTURE