Light as a Transverse Wave.

Similar documents
Electromagnetic Waves

Lecture 15 Interference Chp. 35

Electricity & Optics

Chapter 15. Mechanical Waves

PH 222-3A Spring 2010

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference

Waves & Oscillations

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

Section 1 Simple Harmonic Motion. The student is expected to:

Oscillatory Motion and Wave Motion

The Quantum Theory of Atoms and Molecules: Waves and Optics. Hilary Term Dr Grant Ritchie

INTERFERENCE 1.1 NATURE OF LIGHT

Optics. n n. sin c. sin

WAVE OPTICS GENERAL. Fig.1a The electromagnetic spectrum

C. Incorrect! The velocity of electromagnetic waves in a vacuum is the same, 3.14 x 10 8 m/s.

Topic 4: Waves 4.3 Wave characteristics

Chapter 35. Interference

Interferometers. PART 1: Michelson Interferometer The Michelson interferometer is one of the most useful of all optical instru

Waves Review Checklist Pulses 5.1.1A Explain the relationship between the period of a pendulum and the factors involved in building one

Engineering Physics 1 Prof. G.D. Varma Department of Physics Indian Institute of Technology-Roorkee

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this.

Physical Optics 2018 Dr. Muwafaq Fadhil Al-Mishlab Third lecture [ Huygens Principle, Interference of light]

and the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P?

4. What is the speed (in cm s - 1 ) of the tip of the minute hand?

Michelson Interferometer

Single Slit Diffraction and Resolving Power. Quantum Mechanics: Blackbody Radiation & Photoelectric Effect. Physics 102: Lecture 22

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

Phase difference plays an important role in interference. Recalling the phases in (3.32) and (3.33), the phase difference, φ, is

Topic 4 &11 Review Waves & Oscillations

Waves Part 1: Travelling Waves

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

1. Types of Waves. There are three main types of waves:

TOPIC: LIGHT, ELECTROMAGNETIC WAVES, 2D AND 3D WAVEFRONTS

Measurements in Optics for Civil Engineers

Oscillations and Waves

Baccalieu Collegiate. Physics Course Outline

(Total 1 mark) IB Questionbank Physics 1

Physics 30: Chapter 5 Exam Wave Nature of Light

Standing waves [49 marks]

CHAPTER 11 VIBRATIONS AND WAVES

Chapter 16 Traveling Waves

Physics 214 Course Overview

LECTURE 11 ELECTROMAGNETIC WAVES & POLARIZATION. Instructor: Kazumi Tolich

Lecture 9: Introduction to Diffraction of Light

Week 7: Interference

Course: Physics 1. Module 3: Optics and Wave Phenomena

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 9. Reflection, Refraction and Polarization

Physics 116. Nov 3, Lecture 21 Wave optics. R. J. Wilkes 11/3/11 1

Part 2: Quantum* Mechanics

Chapter 34. Electromagnetic Waves

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

Waves Part 3: Superposition

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Re-radiation: Scattering. Electric fields are not blocked by matter: how can E decrease?

PHYS 4400, Principles and Varieties of Solar Energy Instructor: Randy J. Ellingson The University of Toledo

Chapter 10. Interference of Light

SECTION A Waves and Sound

Lecture 11: Introduction to diffraction of light

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

Larbert High School. Quanta and Waves. Homework Exercises ADVANCED HIGHER PHYSICS

Physics 1C. Lecture 12C

A 0.2 m s -1. B 10 m s -1. C 20 m s -1. D 40 m s -1

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

PHYSICS 149: Lecture 24

Skoog Chapter 6 Introduction to Spectrometric Methods

Chapter 16 Waves. Types of waves Mechanical waves. Electromagnetic waves. Matter waves

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

B.Tech. First Semester Examination Physics-1 (PHY-101F)

Electromagnetic Waves. Chapter 33 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

A beam of coherent monochromatic light from a distant galaxy is used in an optics experiment on Earth.

Maxwell s equations and EM waves. From previous Lecture Time dependent fields and Faraday s Law

No Lecture on Wed. But, there is a lecture on Thursday, at your normal recitation time, so please be sure to come!

Waves & Oscillations

Constructive vs. destructive interference; Coherent vs. incoherent interference

Chapter 35 Physical Optics: Light as a wave

Material covered. Review session Sunday, April 14, 3pm, 141 Loomis. Next week s lectures

LECTURE 32: Young's Double-Slit Experiment

Physics 102: Lecture 20 Interference. Physics 102: Lecture 20, Slide 1

Electromagnetic Radiation

Chapter 33. Electromagnetic Waves

Physics General Physics II. Electricity, Magnetism and Optics Lecture 20 Chapter Wave Optics. Fall 2015 Semester Prof.

Chapter 16 - Waves. I m surfing the giant life wave. -William Shatner. David J. Starling Penn State Hazleton PHYS 213. Chapter 16 - Waves

Properties of waves. Question. Ch 22, : Waves & interference. Question. Phase difference & interference

Get Discount Coupons for your Coaching institute and FREE Study Material at RAY OPTICS - I

INTERFERENCE OF LIGHT

Experiment 8. Fresnel Coefficients. 8.1 Introduction. References

Unit 2 - Particles and Waves - Part 2

Foundations, 1. Quantum mechanics is money

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat

Chapter 7. Interference of Light

f 1/ T T 1/ f Formulas Fs kx m T s 2 k l T p 2 g v f

Chapter 16 Waves in One Dimension

1 f. result from periodic disturbance same period (frequency) as source Longitudinal or Transverse Waves Characterized by

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

Transcription:

Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations) but it can t explain some very important phenomena like: interference diffraction polarization To explain these phenomena we adopt a new model to describe how light travels. Light, electricity and magnetism are fundamentally linked. Excited electrically charged particles radiate energy which travels as waves. The energy that radiates is called electromagnetic energy. One component is called the electric vector and another is called the magnetic vector. Each electric field is associated with it own magnetic field which together makes up what is called electromagnetic radiation. The electric component of this energy is sufficient to explain the phenomena we ll describe in this section of the course so we will only concern ourselves with this. Radiating light behaves as a wave. That means that one can think of light like one thinks of ripples in a pond. It interacts with itself in the same way. Remember that this is only a model to explain how light behaves. It is analogous to the reason that we adopt a model of rays to describe how light forms images. Light as a Transverse Wave. To model light properly we have to treat it as a transverse wave. In a transverse wave, energy propagates forward but the oscillation of the wave is perpendicular to the direction of motion. Like a wave in a rope; no part of the rope moves forward or backward, only up and down but the wave (or energy) travels longitudinally. You can move energy without transporting the media. Similarly, light doesn t push that air that it travels through.... This is different from a pressure wave that sound produces which is a longitudinal wave 21

We need to model light as a transverse wave to be able to explain polarization. Like rope, the disturbance in light travels in one direction. That direction is called the direction of polarization of the light. Sound waves, being a pressure wave, cannot be polarized. We will discuss polarization in a later lecture. Unlike the transverse wave in a rope, transverse light waves travel in all directions in three dimensions. When a pulse, like in a rope is repeated continually, then a periodic wave is formed. Light is most often a periodic wave since it arises from continually vibrating (accelerating) electrically-charged particles. Light can be modeled as a harmonic wave which is a continuous sine wave. The motion of any one point on the wave over time is called simple harmonic motion. 0 90 180 270 360 450 540 630 720 810 y = Asin p The above equation generally defines a light wave, where A is the amplitude or maximum displacement (related to intensity) and p is the phase. The phase describes what part of the cycle the transverse disturbance is in. When the phase is 0, y = 0, when the phase is 90, y = A etc The distance between the peaks of two waves is often described as a phase shift. It is measured in degrees or radians 1λ 1 2 1 4 = 360 = 2π radians When corresponding points on two different waves are moving in the same direction and are at the same point in their cycle, they are said to be in phase λ = 180 = π radians λ = 90 = π 2 radians All the points that join the crest of a wave of light emanating from a point source are in phase. Likewise the troughs are in phase In phase (peaks are lined up) 180 deg out of phase 22 1/2 wave plate

Some Important Definitions Wavelength (λ): The distance between two adjacent crests on the wave Period (T): The time it takes for a point on a moving wave to go through one complete up and down cycle Frequency (f): The number of cycles per unit time is called the frequency. The irradiance delivered by a light wave is proportional to the square of the amplitude of the wave: Frequency Invariance 1 f = T The units for frequency in cycles per second is called the Hertz or Hz. The distance a wave moves during a period T is one wavelength, therefore: λ = V T Then it follows from the above two equations that wavelength times the frequency equals the speed: λ f = V 2 Iα A Light can be defined by its wavelength, but since it is a propagating wave, it also has a frequency. I had already stated that the speed of light changes as it goes through different media. The frequency, on the other hand, remains constant. As a consequence, the wavelength of light must change as light propagates through different media in order to satisfy the equation λf = V. When we classify colors in terms of wavelength, we use the wavelength in a vacuum (or effectively, in air). Remember that the velocity of light is equal to c/n. Combining that with the fact the frequency is constant, we can calculate just how the wavelength changes in different media. c = 8 3 10 m/s c c V =, recall that f λm = V = n n c c λm =, but the wavelength in a vacuum is, f n f λ λm = n c 3 10 λ 633 10 8 14 f =, for red light (633 nm), = = 4.74 10 Hz 9 We will use the subscript m to designate the wavelength of light in some medium other than a vacuum (or air) when red light is in the eye, the wavelength is 633 λm = = 474 nm 1.33 Even though we speak of color in terms of its wavelength (ie blue is 450 nm), it is more appropriate to speak of color in terms of its frequency. Because although the wavelength of red light changes in the eye to 474, it still appears red. We are sensitive to the frequency, which is invariant, not the wavelength 23

Comments on the Nature of Light and the Wave Model of Light When I keep repeating that the description of light as a wave is a model, it is for a reason. Light can t really be a wave since a real wave requires a medium through which to propagate, like air or water. But light travels in a vacuum. Huygens, in 1690, invented the concept of ether as a medium which fills all space to account for this, but space is indeed a vacuum so his theory fell apart. So in some cases, such as to explain how light can travel through a vacuum, we must consider light as a particle. But when you think of light as a particle of energy, how is it possible that this light can undergo partial reflection at a glass surface? Or how can identical particles suffer different fates when following the same path? This is referred to as the wave-particle duality of light, which has been partially explained by quantum theory but it is still a very confusing concept, which has never been explained fully. 24

The Principle of Superposition Waves add together by their amplitude: Same frequency In phase A 1 +A 2 A 2 A 1 Constructive interference 180 deg 180 deg out of phase Destructive interference y = A sin p + A sin p r 1 1 2 2 when the phase is the same, ( ) y = A sin p + A sin p = A + A sin p r 1 1 2 1 1 2 1 when the phase is out by 180 deg, ( ) ( ) y = A sin p + A sin p + 180 = A sin p A sin p = A A sin p r 1 1 2 1 1 1 2 1 1 2 1 25

E λ distance A The moving wave is represented by: Where: E = A sin( kx ω t + ε ) 2π k = propagation number λ ω = 2πf angular frequency [ in radians] (1) (2) ε initial phase (3) from (1) and (2), ω = f λ = V k The phase term p that was used previously is a number that varies in space and in time and can have some fixed offset. The term kx describes how the wave changes over space, the term ωt describes how the wave changes in time. The term ε describes the offset, or phase shift. Dissection of the Wave Equation: If we freeze the moving wave in time (hold t constant) then we can find the amplitude at any point in the wave by varying x. Conversely, at any point in space, we can find how the amplitude changes in time by holding x constant and varying t. When ω is positive, the wave is traveling to the right, when ω is negative, the wave is traveling to the left. The function is periodic ie: sin ( θ ) = sin ( θ ± 2π m) m = 0, ± 1, ± 2... So, if I give you the wave equation, you can determine the wavelength, the initial phase (at time and location 0) and the speed of the wave. Conversely, you should be able to develop the wave equation for any wavelength if I provide the initial phase and the direction of propagation. The intensity of a wave is the square of the amplitude of the wave equation: 2 IαA 26

Consider two waves: E = A sin( k x ω t + ) 1 E 1 1 1 1 ε = A sin( k x ω t + 2) 2 2 2 2 ε The two waves are said to mutually coherent if the crest of the first wave is always a fixed distance from the crest of the second wave. This will only happen when k 1 = k 2, ω 1 = ω 2 and ε 1 - ε 2 is a constant. When two waves are mutually coherent they can interfere in the ways we described earlier. To add the waves mathematically, we must first add the amplitudes, then square the result to find the intensity. For two mutually coherent waves, we can simplify by writing: E = A sin( p ) 1 1 1 E = A sin( p ) 2 2 2 E + E = A sin( p ) + A sin( p ) 1 2 1 1 2 2 = A r sin ( p ) This equation is obtained after some algebra (which you are not responsible for) r The resultant wave has a new amplitude and a new phase but has the same frequency and wavelength coherent 2 2 2 ( ) 2 cos( ) I = E + E = A + A + A A p p 1 2 1 2 1 2 1 2 2 2 2 p1 p 2 when A1 = A2 Ar = 4A cos 2 For completeness, the phase can also be calculated using the following equation, but you will not be responsible to remember this on the exam. tan ( p ) r A1 sin p1 + A2 sin p2 = A cos p + A cos p 1 1 2 2 Example: What is the intensity of two mutually coherent waves, one with amplitude 5 and another with amplitude 13 and a phase difference between the two of 90 degrees? 180 degrees? coherent 2 2 2 ( ) 2 cos( ) I = E + E = A + A + A A p p 1 2 1 2 1 2 1 2 for 90 deg phase difference... I coherent ( ) 2 2 5 13 2 5 13 cos 90 25 169 0 194 for 180 deg phase difference... I coherent = + + = + + = ( ) = + + = + = 2 2 5 13 2 5 13 cos 180 25 169 130 64 recall that when the waves are 180 deg out of phase, then the resultant amplitude is the difference between the two waves 64 = 8 27

When the phase difference between two waves varies in time and space, the waves are said to be mutually incoherent. In this case, the instant that a wave can interact is immediately followed by an instant in which the waves have no correlation. Coherent light sources generally originate from the same light source. For example, coherent interactions are observed with lasers when the light is split and interacts with itself. This is because both waves start and emerge from the same source, the wavelength bandwidth is very narrow. Even though the initial phase might get perturbed slightly, the same changes are experienced in both paths. For incoherent light you simply add the independently calculated intensity of each of the light sources. 2 2 2 2 1 + E2 = A1 A2 I incoherent = E + The necessary condition for two sources of light to interfere is that they be mutually coherent. (i.e the crest of one wave is always a fixed distance from the crest of the other wave). In practice, these two sources must originate from the same light source. Example: What is the intensity of two incoherent waves, one with amplitude 5 and another with amplitude 13. 2 2 2 2 2 2 1 2 1 2 I incoherent = E1 + E2 = A1 + A2 = 5 + 13 = 194 28

Young s Double Slit Experiment If you take coherent light from a single light source, you can generate an interference pattern by interfering the light source with itself by passing it through two slits. single light source 29

Calculation for Young s Double-Slit Experiment The two light sources originate from the same source, and are mutually coherent. How they interfere with each other depends on the phase differences between the two at any point across the screen. The first step in computing the double slit interference pattern it to compute how the paths length will differ from each other at various parts of the screen. From the diagram we can derive the following: path sinθ = θ h x tanθ = θ t path x hx = path = h t t We need to convert the physical difference in distance to a difference in phase, since that is what is important for interference. 1 wavelength difference would be a phase difference of 2π radians. So if we convert the physical difference to number of wavelengths and multiply by 2π then we ll have the phase difference. this is the distance path 2π hx 2 π = this is the distance converted to phase λ λt path Slit separation = h θ θ x Now recall the formula for the intensity of the superposition of two mutually coherent waves coherent ( ) I = E + E 1 2 2 ( α α ) 2 2 1 2 2 1 2 cos 1 2 = A + A + A A path = A + A λ 2 2 2π hx = 2 A + 2 A cos λt 2 2 2 2 cos 2 π t Substitute in the expression for phase difference that was described above 30

According to the equation, the maxima will occur when the argument for the cosine is 0, +/-2π, or when: hx 0, 1, 2... λ t = ± ± m is a counter. These types of counters are or when mλt something you will see frequently in the x =, m = 0, ± 1, ± 2... h lecture on physical optics The equation is a good example of one equation with four variables. If you know three of them, then you can figure out the fourth. Say you have a laser and need to know the wavelength, then you generate the interference pattern with a pair of pinholes at a known distance and you can determine it. It is a very powerful technique. These wavelengths are very short, yet with the right equipment, you can indirectly measure any light wavelength with a normal ruler. Example: An aperture with a 0.1 mm slit spacing gives a separation between maxima of 1 cm for a wavelength of 500 nm when the screen is held at a distance of 2 meters 9 mλt 1 500 10 2 x = = 0 for m=0, for m = 1, x = = 0.01 = 1 cm 3 h 0.1 10 Notice that wavelength is one of the factors governing the distance between maxima. So when the wavelength is longer, the peaks are further apart. This can be seen in a white light double slit interferogram. (I will show a slide of this in the class) 31

Other Methods to Generate Interference Patterns. Lloyd s mirror The distance between the two mutually coherent sources is 2x. S interference x S mirror Fresnel s double prism S 1 S interference S 2 32

Uses of Interference: Interference patterns can be used to make measurements of distances to a very fine scale. Michelson Interferometer (this will be demonstrated in class): screen wavetrain from S M1,BS wavetrain from S BS,M2 S BS mirror 1 light from single source S M1 S mirror 2 beamsplitter S BS,M2 S M1,BS Demo: E+25+60 Physics demos 33

VS203B Lecture Notes Spring, 2011 Topic: Thin Film Interference Thin Film Interference When light hits a surface, it can be absorbed, transmitted or reflected. Light can reflect off any interface where there is a change in refractive index. The rule for reflection is that when the index of refraction after the interface is higher then the index of refraction before the interface then the light, upon reflection, undergoes a 180 degree phase shift. When the index of refraction after the interface is less than the index before the interface, then there is no phase shift in the reflected light. Incident wave Reflected wave (180 phase shift) n 1 <n 2 n 1 n 2 Incident wave Reflected wave (no phase shift) n 1 >n 2 n 1 n 2 When light hits a material that has multiple layers, each layer can reflect light. The light reflected from any one of these layers might interfere with the light that has reflected off any of the other layers. Each layer creates its own image of a point source. These sources will be mutually coherent because they all arise from a single original source. The condition for interference is that the difference in distance between the sources of light (from the reflections) be within the coherence length of the light. Diversion: Coherence Length. Defined as the length in space over which the light has a predictable phase. A laser, for example, has a long coherence length. Although there are random fluctuations in phase over time they occur after the waves have traveled some meters in distance. A incandescent bulb on the other hand, has tremendously fast variations so the phase is predictable over only a very short period of space. Consider the double slit experiment: The interference arises from the difference in path lengths between the two mutually coherence sources of light. For high angles, the path difference can be come very large (multiple wavelengths). For a laser, which has a long coherence length, the two beams will still retain a fixed phase difference between them. For a normal light source, there will be so much difference in distance between the two waves that there will have been time for random phase jumps to occur. So the two sources are essentially mutually incoherent. The path difference must be within the coherence length for interference to occur. For a laser, the coherence length is on the order of meters. For an incandescent light bulb, the coherence length is only a few micrometers. For the sun, the coherence length is on the order of millimeters. For some lasers, the coherence length can be many kilometers. 34