Dark Matter, Low-Background Physics

Similar documents
The Direct Search for Dark Matter

The XENON1T experiment

Status of DM Direct Detection. Ranny Budnik Weizmann Institute of Science

Technical Specifications and Requirements on Direct detection for Dark Matter Searches

Direct Search for Dark Matter

Introduction to Class and Dark Matter

Direct Dark Matter Searches

The Search for Dark Matter with the XENON Experiment

Direct Search for Dark Matter

Shedding Light on Dark Matter from Deep Underground with XENON. Kaixuan Ni (Columbia)

Down-to-earth searches for cosmological dark matter

Status of Dark Matter Detection Experiments

A survey of recent dark matter direct detection results

XMASS: a large single-phase liquid-xenon detector

Direct Dark Matter Search with Noble Liquids

Chapter 12. Dark Matter

Enectalí Figueroa-Feliciano

LUX: A Large Underground Xenon detector. WIMP Search. Mani Tripathi, INPAC Meeting. Berkeley, May 5, 2007

WIMP Dark Matter Search with XENON and DARWIN

Whither WIMP Dark Matter Search? Pijushpani Bhattacharjee AstroParticle Physics & Cosmology Division Saha Institute of Nuclear Physics Kolkata

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Inelastic Dark Matter and DAMA

DARWIN. Marc Schumann. U Freiburg PATRAS 2017 Thessaloniki, May 19,

Recent results from PandaX- II and status of PandaX-4T

Direct dark matter search with XMASS. K. Abe for the XMASS collaboration

Overview of Direct Detection Dark Matter Experiments

Direct Detection in the next five years: Experimental challenges and Phonon Mediated Detectors

Dark Matter Searches. Marijke Haffke University of Zürich

SuperCDMS: Recent Results for low-mass WIMPS

Dark Matter search with bolometric detectors. PhD Student: Filippo Orio Dottorato in Fisica XXIII Ciclo Supervisor: prof.

WIMP Direct Detection: an outlook

DARWIN. Marc Schumann. U Freiburg LAUNCH 17 Heidelberg, September 15,

Direct dark matter search using liquid noble gases

Direct Search for Dark Matter

arxiv: v1 [physics.ins-det] 1 Nov 2011

Dark Matter Direct Detection

SuperCDMS SNOLAB: A G2 Dark Matter Search. Ben Loer, Fermilab Center for Particle Astrophysics On behalf of the SuperCDMS Collaboration

Latest Results on Direct Detection of Dark Matter WIMPs - CDMS & SuperCDMS

Dark Matter Search with XENON

Light Dark Matter and XENON100. For the XENON100 Collaboration Rafael F. Lang Columbia University

Neutrino mass and neutrino dark matter. Do non-relativistic neutrinos constitute the dark matter? Europhysics Letters 86 (2009) 59001

Toward A Consistent Picture For CRESST, CoGeNT and DAMA. Chris Kelso Fermilab and University of Chicago Cosmology on the Beach Jan.

Do WIMPs Rule? The LUX & LZ Experiments and the Search for Cosmic Dark Matter

arxiv:astro-ph/ v1 24 Jun 2004

Dark Matter Search * in China

Dark Matter. Evidence for Dark Matter Dark Matter Candidates How to search for DM particles? Recent puzzling observations (PAMELA, ATIC, EGRET)

Search for Inelastic Dark Matter with the CDMS experiment. Sebastian Arrenberg Universität Zürich Doktorierendenseminar 2010 Zürich,

Dark Matter Detection and the XENON Experiment. 1 Abstract. 2 Introduction

Direkte Suche nach Dark Matter

Direct Detection Lecture 2: Current Results

Recent results from the second CDMSlite run and overview of SuperCDMS SNOLAB project

Collaborazione DAMA & INR-Kiev. XCVIII Congresso SIF Napoli, 18 Settembre F. Cappella

Vincenzo Caracciolo for the ADAMO collaboration National Laboratory of Gran Sasso - INFN.

Dark Matter. and TPC Technologies

Direct Detection of Dark Matter with LUX

Background and sensitivity predictions for XENON1T

Direct detection: results from liquid noble-gas experiments

Esperimenti bolometrici al Gran Sasso: CUORE e CRESST

arxiv: v1 [physics.ins-det] 4 Nov 2017

Cryodetectors, CRESST and Background

Effective theory of dark matter direct detection. Riccardo Catena. Chalmers University of Technology

The EDELWEISS DM search Phase II to Phase III

Direct Dark Matter Searches. General Overview LUX-ZEPLIN Hans Kraus, Oxford

arxiv: v1 [astro-ph.co] 7 Nov 2012

Status of the XENON100 Dark Matter Search

Status of the ANAIS experiment at Canfranc

Signatures in Directional Dark Matter Searches Asymmetries and the Diurnal Variation. J.D. Vergados University of Ioannina, Ioannina, Greece.

Recent Progress from the DEAP-3600 Dark Matter Direct Detection Experiment

arxiv: v1 [astro-ph.im] 6 Dec 2010

Direct dark matter search using liquid noble gases

Nuclear Recoil Techniques for the Detection of Dark Matter

Cryogenic Detectors Direct Dark Matter Search. Dark Matter

Latest results of EDELWEISS II

Dark Matter - III. Workshop Freudenstadt September 30, GRK 1694: Elementarteilchenphysik bei höchster Energie und höchster Präzision

Dark Matter Detection with XENON100 Accomplishments, Challenges and the Future

No combined analysis of all experiments available

Dark Matter and the XENON Experiment

Can the DAMA annual modulation be explained by Dark Matter?

The XMASS experiment. Y. Kishimoto for the XMASS collaboration March 24 th, 2014 Recontres de Moriond, Cosmology

arxiv: v1 [astro-ph.co] 5 Oct 2011

Dark Matter -- Astrophysical Evidences and Terrestrial Searches

Measurements of liquid xenon s response to low-energy particle interactions

Darkside and the future Liquid Argon Dark Matter program

Search for Weakly Interacting Massive Particles with CDMS and XENON

Axion search with Dark Matter detector

June 10 morning session 9:00-

Measurement of 39 Ar in Underground Argon for Dark Matter Experiments

CDMS and SuperCDMS. SLAC Summer Institute - CDMS. August 2, 2007 Blas Cabrera Co-Spokesperson CDMS & Spokesperson SuperCDMS

New Physics Results from DarkSide-50. Masayuki Wada Princeton University on behalf of the DarkSide-50 Collaboration Feb

Detectors for astroparticle physics

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

Neutrino and Dark Matter Detections via Atomic Ionizations at sub-kev Sensitivities

Searches for Low-Mass WIMPs with CDMS II and SuperCDMS

Status of the EDELWEISS Dark Matter search

Quest for Dark Matter by direct detection experiments with noble liquids

Germanium-phobic exothermic Dark Matter and the CDMS-II Silicon excess

China JinPing underground Laboratory (CJPL) and China Darkmatter Experiment (CDEX) Qian Yue Tsinghua University Mar.24, 2011

DUSEL NATIONAL LAB ROLE ESSENTIAL FOR SNOLAB AND DUSEL EXPERIMENTS SLUO

Background Characterization and Rejection in the LZ Detector. David Malling Brown University IDM 2012 July 25, 2012

Prospects for WIMP Dark Matter Direct Searches with XENON1T and DARWIN

Transcription:

Dark Matter, Low-Background Physics RHUL Jocelyn Monroe Nov. 6, 2012

1. Evidence (Astrophysical Detection) 2. Candidates, Properties 3. Direct Detection (Particle Physics)

1 st Observation: 1930s Fritz Zwicky (Kitt Peak) Virial Theorem: kinetic energy potential energy implies 400x more mass than visible!

Confirmation: 1980s Vera Rubin Rotation velocity v(r) of spiral galaxies (M. Kamionkowski, astro-ph/9809214) implies 0x more mass than visible!

WMAP Cosmic Microwave Background WMAP

CMB Acoustic Spectrum Baryons compress photon-baryon plasma at recombination, photons exert pressure, competition gives rise to pressure wave

BBN D. H. Perkins, Particle Astrophysics (2004)

BBN lines = predicted light element abundances vs. baryon density boxes = observed abundances (1, 2 sigma) vertical band = CMB measure of baryon density (PDG)

Bullet Cluster (NASA/Chandra/Magellan/Hubble)

The Standard Model of Cosmology E. Komatsu et al., Astrophys. J. Suppl 192 (2011) 18 Dark Matter is ~23% of the universe.

Dark Matter Candidates interaction strengths strong e.m. weak HEPAP/AAAC DMSAG Subpanel (2007) gravity masses neutrino? electron t-quark

Axions

WIMP Number Density D. H. Perkins, Particle Astrophysics (2004)

WIMP Mass Range D. H. Perkins, Particle Astrophysics (2004)

WIMP-Nucleon Scattering Event Rate Spin Independent: scatters coherently off of the entire nucleus A: σ~a 2 D. Z. Freedman, PRD 9, 1389 (1974) Spin Dependent: only unpaired nucleons contribute to scattering amplitude: σ~ J(J+1) kinematics: v/c ~ 1E-3! M χ = 0 GeV σ SI = 1E-44 cm 2

Ionization Direct Detection Experiments Signal: χn χn χ Scintillation χ Heat Backgrounds: n N n N γ e - γ e - N N + α, e - ν N ν N

DRIFT ArDM Xenon0 LUX WARP ZeplinIII IGEX Newage Ionization! Picasso COUPP CDMS Edelweiss CoGeNT DMTPC Heat! DEAP/CLEAN XMASS ANaIS Scintillation! KIMS Dama/LIBRA CRESST CRESSTII ROSEBUD

Backgrounds In dark matter experiments... N photon,000 scattering events background radon,000 decay events background neutron 1,000 scattering events background Anything else that does this can fake a dark matter signal! neutrino 0 scattering events background 1 event smallest dark matter scattering signal?

EM Backgrounds (D. McKinsey) Gamma ray interaction rate is proportional to (# of electrons in detector) x (gamma ray flux) Typical count rate = 0 events/s/kg =,000,000 events/day/kg in a good lead shield, rate drops to 0 events/day/kg Best dark matter detectors: sensitive to 0.01 events/day/kg (σ~1e-44 cm 2 )

U and Th Decay Backgrounds can t shield a detector from U and Th inside, recoiling progeny and associated betas can fake nuclear recoils

Neutron Backgrounds μ N γ Cosmic muons spall neutrons: ~ -4 neutrons/ (0 GeV μ)/ gm/cm 2 μ N* n D.-M. Mei, A. Hime, PRD73:053004 (2006) eg. Study for CDMS-II Detector neutron flux: -8 - - /cm 2 /s (range for depth)

ν Backgrounds can t shield a detector from coherent elastic scattering of solar neutrinos Φ(B 8 ) = 5.86 x 6 cm -2 s -1 ν Z ν N N 0 events/ton-year = ~ -46 cm 2 limit unless you measure the direction! JM, P. Fisher, PRD76:033007 (2007)

Backgrounds photon,000 scattering events background the best experiments are here radon,000 decay events background neutron 1,000 scattering events background neutrino 0 scattering events background 1 event smallest dark matter scattering signal? Jocelyn Monroe October 13, 2012

CDMS (material thanks to E. Figuroa) Phonon side: 4 quadrants of phonon sensors for energy & position (timing) -3V Transition Edge Sensors, operated at ~40 mk on Ge and Si crystals, in Soudan arxiv:0907.1438v1 arxiv:0912.3592v1 0V h + e - Detector re-design a la EDELWEISS to reduce surface backgrounds x 4 Charge side: 2 concentric electrodes (inner & outer) energy (& veto) 3 (7.6 1 cm Ge: 250 g Si: 0 g Ionization/Phonon yield vs. E recoil (kev)

Xenon0 (S1) Two-Phase liquid Xenon TPC, operated in LNGS (S2) S1 [PE] 5 15 20 25 30 35 0.4 arxiv: 14.2549v2 log (S2/S1)-ER mean 0.2 S2 : primary scintillation S1 : amplified, drifted ionization signal both read out with PMTs 0-0.2-0.4-0.6-0.8-1 -1.2 (E. Aprile) 20 30 Energy [kevnr] 40 50

Experimental Procedure 1. using calibration data, define background and signal regions 2. using calibration data, define a region with zero expected background events nuclear recoil energy (any events in the blind region are signal candidates)

Experimental Procedure theorist: what model explains this rate? see a signal or set a limit? 3. measure event parameters in WIMP search data set 4. blind analysis: open the box! experimentalist: 5. measure number of events

The Low Background Frontier Scalability of Detector Technology 0"%!"#$!12-3*41%564''%0*-7841%(-9. / :;!=. :;!=< :;!== :;!=@ :;!=? :;!=> Many Results Here, Only 2 strongest shown limit, excludes this region allowed region Dark Matter!"#$#%&&'()&%&* +,-.'()&%&*!"#$#%&&'()&%%* Direct Detection Parameter Space -/0/+1"2# 13! +1"2#7'#=,"24!56&& +1"2#7'089:;8<'2; +1"2#7'>=?<=9=>'2; :; : :;. :; <!"#$%#&''%()*+,-. / Complementary with High-Energy Frontier 1 event/ kg/day 1 event/ 0 kg/day 1 event/ 0 kg/ 0 days need 0-00 dark matter events to measure mass, cross section New Techniques for Backgrounds

Spin-Independent Cross Section: Latest Experiment Results E. Aprile et al., arxiv:1207.5988 1 event/ kg/day 1 event/ 0 kg/day tonne-scale detectors likely required for discovery

Spin-Independent Cross Section: Latest Theory Results O. Buchmuller et al., arxiv:1207.7315 We are Here We are Here CAVEAT: many more exotic models (Asymmetric DM, Dark Forces Models, Magnetic Inelastic DM, Sterile Nus + Freeze-In, Isospin-Violating DM, Emergent DM and L# models...

3 is a lot of σ -24 cm 2 : σ(neutron-a elastic scattering) -28 cm 2 : σ(total inelastic pp at TeVatron) Not to Scale -35 cm 2 : σ(gg H) at LHC (Standard Model) -39 cm 2 : σ(single top) at TeVatron -40 cm 2 : σ(ν QE) at MINOS -45 cm 2 : σ(ν-e Elastic) for solar ν σ(dm coherent scattering)? -48 cm 2

Direct Dark Matter Signals? DAMA/Libra COGENT arxiv:02.4703 N Z N CRESST-II arxiv:19.0702 CDMS arxiv:0912.3592v1 arxiv:19.2589 dark matter? backgrounds?

Indirect Dark Matter Signals? PAMELA arxiv:08.4995? Fermi LAT arxiv:0905.0025 ATIC dark matter? local astrophysics?

Annual Modulation June-December event rate asymmetry ~2-% Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986) Eur. Phys. J. C56:333-355 (2008) DAMA/Libra positive result, >8σ, inconsistent with many expts CoGeNT modulation result, 2.8σ, ~consistent with DAMA/Libra J. Collar, STSI (2011), arxiv:16.0650v1 Events/30 days 140 120 0 80 CoGeNT: 442 days, 0.5-3.0 kev ee 42 days 60 0 0 200 300 400 500 Days Since Dec 3, 2009 CoGeNT (dashed line) DAMA (solid line)

Annual Modulation June-December event rate asymmetry ~2-% Drukier, Freese, Spergel, Phys. Rev. D33:3495 (1986) Eur. Phys. J. C56:333-355 (2008) DAMA/Libra positive result, >8σ, inconsistent with many expts BUT... CDMS modulation search not consistent with CoGeNT or DAMA/Libra (98.3% CL) arxiv:1203.1309 Events/30 days 140 120 0 80 CoGeNT: 442 days, 0.5-3.0 kev ee 42 days 60 0 0 200 300 400 500 Days Since Dec 3, 2009 CoGeNT (dashed line) CDMS (solid points)

Directional Detection The Dark Matter Wind blows from Cygnus search for a dark matter source Simulated Dark Matter Sky Map simulated reconstructed dark matter sky map: search for anisotropy astro-ph/0609115 Unambiguous proof: Correlation of WIMP-induced nuclear recoil signal with galactic motion

Directional Detection Events /kg / day 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 0 20406080 Recoil Kinetic Energy (kev) 0 120140160180 200-1 -0.8-0.6-0.4-0.2 0 0.20.40.60.8 1 Cos(! LAB ) recoiling nucleus Daily direction modulation: asymmetry ~ 20-0% in forward-backward event rate. Spergel, Phys. Rev. D36:1353 (1988)

Directionality Around the World DRIFT: in Boulby (UK) S. Burgos et al., Astropart. Phys. 28, 409 (2007) NEWAGE: in Kamioka (JP), first directional dark matter limit! K. Miuchi, et al., Phys.Lett.B654:58-64 (2007) MiMAC-He3: ILL/Modane (FR) D. Santos, et al., J. Phys. Conf. Ser. 65, 0212 (2007) DMTPC: in WIPP (US) CCD readout D. Dujmic, et al., NIM A 584:337 (2008)

Spin-Dependent Cross Section: Latest Experiment Results 2 ) (cm 2 2 ) (cm ) (cm NEWAGE limit (Kamioka) K. Miuchi et al., Phys.Lett.B686:11-17 (20) DMTPC limit (surface, 38 gm-day)! p! p! p -32-34 -36 DMTPC L surface DMTPC, L sensitivity at WIPP directional searches DRIFT sensitivity, Astropart.Phys. 25 (2012) 397 S. Ahlen et al., Phys. Lett. B 695 (2011) -38-40 cmssm theory 2 3 WIMP mass (GeV) Theory region: Rozkowski et al JHEP 07 (2007) 075 Ellis et al PRD63 (2001) 065016

Spin-Dependent Cross Section: Latest Experiment Results 2 ) (cm NEWAGE limit (Kamioka) K. Miuchi et al., Phys.Lett.B686:11-17 (20) DMTPC limit (surface, 38 gm-day) S. Ahlen et al., Phys. Lett. B 695 (2011)! p -32-34 -36-38 -40 cmssm theory 2 DMTPC L surface 3 directional searches DRIFT sensitivity, Astropart.Phys. 25 (2012) 397 1D results COUPP PRL.6, 021303 (2011) SIMPLE arxiv:16.3014 PICASSO arxiv:1202.1240 WIMP mass (GeV) Theory region: Rozkowski et al JHEP 07 (2007) 075 Ellis et al PRD63 (2001) 065016

Spin-Dependent Cross Section: Latest Experiment Results 2 ) (cm NEWAGE limit (Kamioka) K. Miuchi et al., Phys.Lett.B686:11-17 (20) DMTPC limit (surface, 38 gm-day) S. Ahlen et al., Phys. Lett. B 695 (2011) 1m 3 at WIPP (DMTPCino) projected sensitivity! p -32-34 -36-38 -40 cmssm theory 2 DMTPC L surface 3 WIMP mass (GeV) directional searches DRIFT sensitivity, Astropart.Phys. 25 (2012) 397 1D results COUPP PRL.6, 021303 (2011) SIMPLE arxiv:16.3014 PICASSO arxiv:1202.1240 Theory region: Rozkowski et al JHEP 07 (2007) 075 Ellis et al PRD63 (2001) 065016

Global SI Dark Matter Programme, Sensitivity Reach 2018 2016 results: 2012-2 Proposed Being designed Under construction/in operation Current results -1 CYGNUS (Directional) LZ CLEAN EURECA Stage-II SuperCDMS-0 XENON-1T DEAP-3600 LUX EDELWEISS III miniclean XMASS COUPP-60 SuperCDMS- Xenon-0 ZEPLIN III EDELWEISS II CDMS II 1 Spin-independent sensitivity (x 2-46 cm 2 ) completed present future NB: projected sensitivities (all except green) assume zero background.

Backup Slides

Setting a Limit 1. The theoretical dark matter interaction rate is: dr de R = c1 R 0 E 0 r c2 E R exp E 0 r E R = nuclear recoil energy, E 0 = dark matter particle energy 2. Experiments measure: R 0 = 2v0 π N0 (ρ D /m D ) A σ 0 exposure σ A = σ 0 F 2 (E R,A)I c, F 2 (E I c = A 2 R,A) =nuclear f orm f actor, 3. vary σ A until (90% of the time) theory predicts observed rate σ W N = µ1 σ W N 2 1 2 σ A A 4. Normalize to to compare limits: µ A µ = m D m target (m D + m target ) Jocelyn Monroe October 31, 2007

... in the Presence of Background σ A step 3: vary until (90% of the time) theory predicts observed maximum gap between background events S. Yellin, Phys. Rev. D66:032005 (2002) Yellin gap method: a way to make a zero-background measurement over a restricted range of an experiment s acceptance (zero signal too) Jocelyn Monroe October 31, 2007

SI vs. SD Savage et al., arxiv:0808.3607 (nuclear form factor) Ellis et al., arxiv:0808.3607 Nuclear physics uncertainties are important!

Scale Parameters

SN1A Data