Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems

Similar documents
C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

PREFACE. Julian C. Smith Peter Harriott. xvii

Biotransport: Principles

HEAT TRANSFER. PHI Learning PfcO too1. Principles and Applications BINAY K. DUTTA. Delhi Kolkata. West Bengal Pollution Control Board

AMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE. PhD Entrance Examination - Syllabus

Mass Transfer and Separation Processes

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

Contents Preface 1 Review of Mathematical Principles and Applications in Food Processing

CHEMICAL ENGINEERING

Fluid Flow, Heat Transfer and Boiling in Micro-Channels

Heat and Mass Transfer Unit-1 Conduction

PHYSICAL MECHANISM OF CONVECTION

Table of Contents. Preface... xiii

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

Name of Course: B.Tech. (Chemical Technology/Leather Technology)

University School of Chemical Technology

Contents. I Introduction 1. Preface. xiii

CONVECTION HEAT TRANSFER

PRINCIPLES AND MODERN APPLICATIONS OF MASS TRANSFER OPERATIONS

Chemical and Biological Engineering Department University of Wisconsin-Madison

APPLIED FLUID DYNAMICS HANDBOOK

Table of Contents. Foreword... xiii. Preface... xv

POSITION R & D Officer M.Tech. No. of questions (Each question carries 1 mark) 1 Verbal Ability Quantitative Aptitude Test 34

Heat processes. Heat exchange

Greenhouse Steady State Energy Balance Model

FLUID MECHANICS AND HEAT TRANSFER

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

)WILEY A John Wiley and Sons, Ltd., Publication. Introduction to Biological Physics for the Health and Life Sciences

MASS TRANSFER AND GAS ABSORPTION EQUIPMENT

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Steven W. Van Sciver. Helium Cryogenics. Second Edition. 4) Springer

Principles of Convection

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

AA210A Fundamentals of Compressible Flow. Chapter 5 -The conservation equations

CONVECTION HEAT TRANSFER

ECHE Questions Centrifugal Pumps

Thermodynamics of Atmospheres and Oceans

Part I.

Introduction to Heat and Mass Transfer. Week 12

Thermodynamics and States of Matter

: HEAT TRANSFER & EVAPORATION COURSE CODE : 4072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 70 CREDIT : 5 TIME SCHEDULE

Introduction to Chemical Engineering Thermodynamics. Chapter 7. KFUPM Housam Binous CHE 303

CHAPTER 10. States of Matter

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure

INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

Mathematical Models in the Applied Sciences

Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

Principles of Convective Heat Transfer

2. Modeling of shrinkage during first drying period

INTRODUCTION TO CATALYTIC COMBUSTION

dynamics of f luids in porous media

Introduction to Chemical Engineering Computing, 2 nd edition, Bruce A. Finlayson, Wiley (2012)

Modeling the Effect of Headspace Steam on Microwave Heating Performance of Mashed Potato

MAHALAKSHMI ENGINEERING COLLEGE

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

Radiation, Sensible Heat Flux and Evapotranspiration

Properties of Vapors

Chapter 1 Introduction and Basic Concepts

PHASE CHANGES. * melting * boiling * sublimation. * freezing * condensation * deposition. vs.

Introduction to Heat and Mass Transfer

17-P2401-IX 1/9/03 12:43 PM Page Index

AGITATION AND AERATION

Latif M. Jiji. Heat Convection. With 206 Figures and 16 Tables

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

Introduction to Heat and Mass Transfer. Week 9

UNIVERSITY OF NAIROBI

FORMULA SHEET. General formulas:

HYDRAULIC CONTROL SYSTEMS

Chapter 10. Solids and Fluids

Liquids & Solids: Section 12.3

Chapter 11. Intermolecular Forces, Liquids, and Solids

Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

ME6301- ENGINEERING THERMODYNAMICS UNIT I BASIC CONCEPT AND FIRST LAW PART-A

Mr. Bracken. Intermolecular Forces Notes #1

Chapter 13 - States of Matter. Section 13.1 The nature of Gases

Chapter 2 Mass Transfer Coefficient

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Introduction to Heat Transfer

Principles of Chemical Engineering Processes

Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

S.E. (Chemical) (Second Semester) EXAMINATION, 2011 HEAT TRANSFER (2008 PATTERN) Time : Three Hours Maximum Marks : 100

TankExampleNov2016. Table of contents. Layout

Laplace Technique on Magnetohydrodynamic Radiating and Chemically Reacting Fluid over an Infinite Vertical Surface

HEAT AND MASS TRANSFER. List of Experiments:

vector H. If O is the point about which moments are desired, the angular moment about O is given:

Mechanical Engineering Science for Medical Engineers Level: 4 Credit value: 8 GLH: 62 TQT: 80

If there is convective heat transfer from outer surface to fluid maintained at T W.

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion

CONVECTIVE HEAT TRANSFER

INTRODUCTION: Shell and tube heat exchangers are one of the most common equipment found in all plants. How it works?

Objectives. Conservation of mass principle: Mass Equation The Bernoulli equation Conservation of energy principle: Energy equation

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

CAMCOS Reports Day May 17, 2006

NCEES Fundamentals of Engineering (FE) Examination OTHER DISCIPLINES EXAM SPECIFICATIONS. Effective Beginning with the April 2010 Examinations

Radiation Effects on Mixed Convection Flow and Viscous Heating in a Vertical Channel Partially Filled with a Porous Medium

Fluid Mechanics. du dy

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

Name Date Class THE NATURE OF GASES

Transcription:

Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Arthur T. Johnson, PhD, PE Biological Resources Engineering Department University of Maryland College Park, MD 20742 1997

This book is dedicated to all the little children in my life who made me smile even on the grayest of days.

Table of Contents Page Foreword... xii 1 SYSTEMS CONCEPTS FOR TRANSPORT PROCESSES... 1 1.1 INTRODUCTION... 1 1.2 EFFORT VARIABLES... 4 1.3 FLOW VARIABLES... 4 1.4 RELATIONSHIPS BETWEEN FLOW AND EFFORT VARIABLES... 4 1.4.1 Power... 6 1.4.2 Resistance... 7 1.4.3 Capacity... 8 1.4.4 Inertia... 13 1.4.5 Nonlinearities... 16 1.4.6 Biological Variation... 24 1.5. SOURCES... 34 1.6 COMBINATION OF ELEMENTS... 41 1.6.1 Sources... 42 1.6.2 Resistances... 45 1.6.3 Capacity... 49 1.6.4 Inertia... 51 1.6.5 Combinations Involving Time... 54 1.6.6 Alternative Representations... 64 1.7 BALANCES... 68 1.7.1 Chemical Balances... 68 1.7.2 Force Balances... 69 1.7.2.1 Law of Laplace... 70 1.7.3 General Flow Balances... 75 1.7.3.1 Mass and Materials Balance... 78 1.7.3.2 Field Equation... 81 Solutions of the General Field Equation... 86 Other Coordinate Systems... 88 One Dimensional Flow with Distributed Constant ù& Source... 93 One Dimensional Flow with Central ù& Source... 94 One Dimensional Unsteady State Solution... 98 i

1.7.3.3 Energy Balance... 105 1.7.4 Differences Between Effort and Flow Balances... 106 1.7.5 Kirchhoff's Laws... 107 1.7.6 Visualizing Boundary Conditions... 116 1.8 SYSTEM APPLICATIONS... 121 1.8.1 Flow Through Porous Media... 122 1.8.2 Conduction Heat Transfer... 133 1.8.3 Binary Diffusion Mass Transfer... 137 1.8.4 Conduction of Electricity... 144 1.8.5 Other Transport Systems... 147 1.9 SYSTEMS APPROACH... 151 Problems... 159 References... 175 2 FLUID FLOW SYSTEMS... 176 2.1 INTRODUCTION... 176 2.2 CONSERVATION OF MASS... 180 2.2.1 Continuity Equation... 182 2.2.2 Elemental Form of Continuity Equation... 184 2.3 CONSERVATION OF ENERGY... 188 2.3.1 Potential Energy... 188 2.3.2 Kinetic Energy... 194 2.3.3 Modified Bernoulli Equation... 201 2.3.4 Energy Allocation Within the Fluid... 204 2.3.5 General Form of Energy Balance Equation... 206 2.4 MOMENTUM BALANCE... 208 2.4.1 Viscosity... 210 2.4.2 Momentum Balance in a Circular Pipe... 224 2.4.3 Flow Velocity Profile... 231 2.4.4 General Form for Momentum Balance... 233 2.4.5 Navier-Stokes Equations... 235 2.4.6 Drag Coefficient and Settling Velocity... 238 ii

2.5 FRICTION LOSSES IN PIPES... 243 2.5.1 Pipe Losses... 244 2.5.2 Minor Losses... 257 2.5.2.1 Loss Coefficients... 257 2.5.2.2 Entrance Length... 260 2.5.2.3 Pipe Discharge... 262 2.5.3 Fluid System Impedance... 266 2.5.3.1 Compliance... 266 2.5.3.2 Inertance... 276 2.5.3.3 Resistance... 278 2.5.3.4 Time Relationships... 281 2.5.4 NonIsothermal Flow... 282 2.5.5 Elastic Tubes... 285 2.5.5.1 Pulsating Flow... 285 2.5.5.2 Steady Flow... 293 2.5.6 Bifurcations... 297 2.5.7 Compressible Flow... 300 2.5.7.1 Sonic Velocity... 300 2.5.7.2 Pressure Drop and Maximum Flow Rate... 303 2.5.7.3 Viscosity and Density Dependence... 310 2.5.7.4 Compression Heating... 313 2.5.8 Fluid Flow in Plants... 314 2.5.9 Deposition of Suspended Particles... 317 2.6 NON-NEWTONIAN FLUID FLOW... 329 2.6.1 Rheological Properties... 329 2.6.2 Pipe Flow... 341 2.6.2.1 Velocity Profiles... 343 2.6.2.2 Kinetic Energy... 345 2.6.2.3 Friction Losses... 347 2.7 OPEN CHANNEL FLOW... 357 2.8 DESIGN PROCEDURE FOR PUMP SPECIFICATION... 363 Problems... 391 Design Problems... 408 References... 422 iii

3 HEAT TRANSFER SYSTEMS... 425 3.1 INTRODUCTION... 425 3.2 CONDUCTION... 430 3.2.1 Thermal Conductivity... 431 3.2.2 Thermal Conductance... 438 3.2.2.1 Clothing... 438 3.2.2.2 Fur and Feathers... 449 3.2.3 Multidimensional Conduction... 453 3.2.4 Unsteady State Conduction... 462 3.3 CONVECTION... 462 3.3.1 Convection Coefficients... 466 3.3.1.1 Dimensionless Numbers... 468 3.3.1.2 Forced Convection Equations... 478 3.3.1.3 Natural Convection Equations... 494 3.3.1.4 Mixed Convection... 502 Cylinders... 504 Spheres... 504 Fruits... 507 3.3.1.5 Inaccuracies... 512 3.3.1.6 Convection with Viscous Dissipation... 518 3.3.1.7 Boiling and Condensation... 520 3.3.2 Convection Thermal Resistance... 521 3.3.3 Theoretical Relationships Among Parameters... 527 3.4 RADIATION... 530 3.4.1 Black Body Radiation... 533 3.4.1.1 Shape Factors... 535 3.4.1.2 Spectral Distribution... 545 3.4.2 Real Surfaces... 549 3.4.3 Radiation Exchange Among Gray Bodies... 556 3.4.4 One Body Completely Enclosed in Another... 560 3.4.5 Radiation Through Absorbing Gases... 564 3.4.6 Radiation Coefficient... 570 3.4.7 Solar Flux... 573 iv

3.5 HEAT GENERATION... 576 3.5.1 Diffuse Heat Production... 576 3.5.2 Temperature Dependence... 577 3.5.3 Biological Heat Production... 580 3.5.3.1 Microbial Systems... 581 3.5.3.2 Human and Animal Heat Production... 591 Basal Metabolic Rate... 591 Food Ingestion... 595 Muscular Activity... 598 3.5.3.3 Living Plants... 603 3.5.3.4 Stored Fruits and Vegetables... 604 3.5.3.5 Ecological Scale... 610 3.5.4 Non-Biological Heat Production... 612 3.5.4.1 Microwaves and Other Electromagnetically- Induced Heat... 613 3.5.5 Conduction with Heat Generation... 615 3.5.5.1 Constant Rate of Heat Production... 617 3.5.5.2 Temperature Dependent Heat Production... 622 3.6 HEAT STORAGE... 626 3.6.1 Specific Heats... 627 3.6.2 Flow Systems... 635 3.6.3 Convection Determination... 637 3.6.4 Heat Storage in Biological Systems... 641 3.6.5 Thermal Capacity... 643 3.7 MIXED MODE HEAT TRANSFER... 645 3.7.1 Heat Exchangers... 645 3.7.1.1 Heat Exchanger Types... 646 Change of State... 646 Parallel Flow... 649 Counter Flow... 650 Cross Flow... 653 3.7.1.2 Heat Transferred... 654 All Inlet and Outlet Temperatures Known... 654 v

All Inlet and Outlet Temperatures Not Known... 659 3.7.1.3 Fouling Factors... 670 3.7.1.4 Heat Exchanger Specification... 671 3.7.2 Transient Heat Transfer... 687 3.7.2.1 Dimensionless Numbers... 690 3.7.2.2 Heisler Charts... 691 Chart Use... 696 Composite Shapes... 699 Interior Fluid... 705 3.7.2.3 Sterilization of Food and Medical Devices... 714 3.7.3 Extended Surfaces... 727 3.8 CHANGE OF PHASE... 736 3.8.1 Change of State... 736 3.8.1.1 Freezing... 737 Freezing Point Depression... 739 Chilling... 742 Freezing Time... 747 3.8.1.2 Evaporation... 754 3.8.1.3 Sublimation... 756 3.8.2 Heat of Solution... 762 3.8.3 Phase Changes... 764 3.9 HEAT SYSTEM DESIGN... 766 Problems... 769 Design Problems... 787 References... 798 4 MASS TRANSFER... 804 4.1 INTRODUCTION... 804 4.2 MASS BALANCE... 807 vi

4.3 MOLECULAR DIFFUSION... 808 4.3.1 Fick's Laws... 810 4.3.2 Mass Diffusivity... 820 4.3.2.1 Gas Diffusivities... 821 4.3.2.2 Liquid Diffusivities... 829 4.3.2.3 Solid Diffusivities... 840 4.3.2.4 Porous Solids... 843 4.3.2.5 Knudsen Diffusion... 847 4.3.2.6 Food and Biological Materials... 857 4.3.3 Diffusion Through Membranes and Films... 860 4.3.3.1 Nonporous Membranes... 861 Partition Coefficient... 863 Diffusion... 867 Permeability... 868 4.3.3.2 Porous Membranes... 877 Ultrafiltration Membranes... 881 4.3.3.3 Osmotic Pressure... 886 Reverse Osmosis Mass Transfer... 894 4.3.3.4 Ionic Equilibria... 911 4.3.3.5 Skin Permeability... 917 4.3.3.6 Drug Delivery... 919 4.3.4 Diffusion Resistance... 929 4.4 CONVECTION... 933 4.4.1 Analogies with Heat Transfer... 934 4.4.2 Packed Beds... 942 4.5 MASS GENERATION... 952 4.5.1 Enzymatic Reactions... 953 4.5.1.1 Enzyme-Substrate Kinetics... 955 4.5.1.2 Immunoassays... 959 4.5.1.3 Biosensors... 961 4.5.2 Plant Root Nutrient Uptake... 968 vii

4.5.3 Bacterial Growth Rate... 969 4.6 MASS STORAGE... 970 4.6.1 Mass Storage in Solution... 970 4.6.2 Mass Capacitance 980 4.7 MIXED-MODE MASS TRANSFER... 981 4.7.1 Extended Surfaces... 981 4.7.2 Simultaneous Diffusion and Convection... 986 4.7.3 Dispersion... 991 4.7.3.1 Static Dispersion... 994 4.7.3.2 Dispersion in Flowing Fluid... 996 4.7.3.3 Taylor Dispersion... 997 4.7.3.4 Turbulent Dispersion in Pipes... 1000 4.7.3.5 Atmospheric Dispersion... 1002 Odor... 1012 4.7.3.6 Dispersion Within Soil... 1015 4.7.3.7 Dispersion Impedances... 1017 4.7.4 Unsteady-State Mass Transfer... 1021 4.7.5 Mass Exchangers... 1026 4.8 SIMULTANEOUS HEAT AND MASS TRANSFER... 1030 4.8.1 Psychrometrics... 1031 4.8.1.1 Ideal Atmosphere... 1031 4.8.1.2 Saturated Water Vapor Pressure... 1036 4.8.1.3 Measurements of the Amount of Water in the Air... 1039 4.8.1.4 Temperature Measures... 1041 4.8.1.5 Enthalpy... 1044 4.8.1.6 Psychrometric Charts... 1050 Sensible Heating or Cooling... 1053 Adiabatic Saturation... 1056 Mixing... 1057 Dehumidification... 1061 Ventilation... 1061 4.8.2 Drying... 1077 4.8.2.1 Moisture Content... 1083 4.8.2.2 Equilibrium Moisture Content... 1085 viii

4.8.2.3 Drying Rate... 1091 Constant Rate Drying... 1091 Sweating... 1094 Falling Rate Drying... 1096 Thick Layer Drying... 1097 Thin Layer Drying... 1100 4.8.2.4 Shrinkage... 1102 4.9 DESIGN OF MASS TRANSFER SYSTEMS... 1113 Problems... 1117 Design Problems... 1141 References... 1141 5 LIFE SYSTEMS... 1156 References... 1158 ix