ECE 421/599 Electric Energy Systems 7 Optimal Dispatch of Generation. Instructor: Kai Sun Fall 2014

Similar documents
7.0 Equality Contraints: Lagrange Multipliers

G S Power Flow Solution

Module E3 Economic Dispatch Calculation

1. Introduction. Keywords: Dynamic programming, Economic power dispatch, Optimization, Prohibited operating zones, Ramp-rate constraints.

Special Instructions / Useful Data

Support vector machines

Kernel-based Methods and Support Vector Machines

Block-Based Compact Thermal Modeling of Semiconductor Integrated Circuits

LECTURE 24 LECTURE OUTLINE

Log1 Contest Round 2 Theta Complex Numbers. 4 points each. 5 points each

CS 1675 Introduction to Machine Learning Lecture 12 Support vector machines

Chapter 5 Properties of a Random Sample

An Introduction to. Support Vector Machine

Binary classification: Support Vector Machines

Point Estimation: definition of estimators

Decomposition of Hadamard Matrices

Department of Agricultural Economics. PhD Qualifier Examination. August 2011

Support vector machines II

PGE 310: Formulation and Solution in Geosystems Engineering. Dr. Balhoff. Interpolation

LINEARLY CONSTRAINED MINIMIZATION BY USING NEWTON S METHOD

Power Flow S + Buses with either or both Generator Load S G1 S G2 S G3 S D3 S D1 S D4 S D5. S Dk. Injection S G1

Multi Objective Fuzzy Inventory Model with. Demand Dependent Unit Cost and Lead Time. Constraints A Karush Kuhn Tucker Conditions.

Deterministic Constant Demand Models

X ε ) = 0, or equivalently, lim

Solution of Large Scale Economic Load Dispatch Problem using Quadratic Programming and GAMS: A Comparative Analysis

CH E 374 Computational Methods in Engineering Fall 2007

Regression and the LMS Algorithm

Economic drivers. Input and output prices Adjustment under ITQs

ECON 5360 Class Notes GMM

Feature Selection: Part 2. 1 Greedy Algorithms (continued from the last lecture)

A COMPARATIVE STUDY OF THE METHODS OF SOLVING NON-LINEAR PROGRAMMING PROBLEM

CSE 5526: Introduction to Neural Networks Linear Regression

Available Transfer Capability Calculation with Transfer based Static Security -Constrained Optimal Power Flow

Objectives of Multiple Regression

Optimal Placement of Wind Turbine DG in Primary Distribution Systems for Real Loss Reduction

Arithmetic Mean and Geometric Mean

MA/CSSE 473 Day 27. Dynamic programming

Lecture 3. Sampling, sampling distributions, and parameter estimation

Simple Linear Regression

Pinaki Mitra Dept. of CSE IIT Guwahati

Tokyo Institute of Technology Tokyo Institute of Technology

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

( ) 2 2. Multi-Layer Refraction Problem Rafael Espericueta, Bakersfield College, November, 2006

STA 108 Applied Linear Models: Regression Analysis Spring Solution for Homework #1

Mu Sequences/Series Solutions National Convention 2014

Awodiji Olurotimi.Olakunle*, Bakare Ganiyu.Ayinde**., Aliyu Usman.O.***

ECE 595, Section 10 Numerical Simulations Lecture 19: FEM for Electronic Transport. Prof. Peter Bermel February 22, 2013

Line Fitting and Regression

Big Data Analytics. Data Fitting and Sampling. Acknowledgement: Notes by Profs. R. Szeliski, S. Seitz, S. Lazebnik, K. Chaturvedi, and S.

LINEAR REGRESSION ANALYSIS

ESS Line Fitting

A conic cutting surface method for linear-quadraticsemidefinite

Payment Mechanisms for Electricity Markets with Uncertain Supply

UNIT 2 SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

On the Convexity of the System Loss Function

A novel analysis of Optimal Power Flow with TCPS

Unsupervised Learning and Other Neural Networks

Taylor s Series and Interpolation. Interpolation & Curve-fitting. CIS Interpolation. Basic Scenario. Taylor Series interpolates at a specific

Optimality Conditions for Distributive Justice

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Analysis of System Performance IN2072 Chapter 5 Analysis of Non Markov Systems

Gravitational Search Algorithm for Solving Combined Economic and Emission Dispatch

An Efficient Meta Heuristic Algorithm to Solve Economic Load Dispatch Problems

Radial Basis Function Networks

d dt d d dt dt Also recall that by Taylor series, / 2 (enables use of sin instead of cos-see p.27 of A&F) dsin

CS 2750 Machine Learning. Lecture 8. Linear regression. CS 2750 Machine Learning. Linear regression. is a linear combination of input components x

ε. Therefore, the estimate

Calculus Appendix 1: Inequality Constraints

Extreme Value Theory: An Introduction

Econometric Methods. Review of Estimation

Training Sample Model: Given n observations, [[( Yi, x i the sample model can be expressed as (1) where, zero and variance σ

Source-Channel Prediction in Error Resilient Video Coding

ALGORITHMS FOR OPTIMAL DECISIONS 2. PRIMAL-DUAL INTERIOR POINT LP ALGORITHMS 3. QUADRATIC PROGRAMMING ALGORITHMS & PORTFOLIO OPTIMISATION

Electricity Market Theory Based on Continuous Time Commodity Model

Introduction to local (nonparametric) density estimation. methods

Model Fitting, RANSAC. Jana Kosecka

Research on SVM Prediction Model Based on Chaos Theory

Linear Regression Linear Regression with Shrinkage. Some slides are due to Tommi Jaakkola, MIT AI Lab

Functions of Random Variables

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

CHAPTER 6. d. With success = observation greater than 10, x = # of successes = 4, and

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

Supervised learning: Linear regression Logistic regression

å 1 13 Practice Final Examination Solutions - = CS109 Dec 5, 2018

Unimodality Tests for Global Optimization of Single Variable Functions Using Statistical Methods

KLT Tracker. Alignment. 1. Detect Harris corners in the first frame. 2. For each Harris corner compute motion between consecutive frames

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

Qualifying Exam Statistical Theory Problem Solutions August 2005

OPTIMAL LAY-OUT OF NATURAL GAS PIPELINE NETWORK

1 Lyapunov Stability Theory

L5 Polynomial / Spline Curves

ECONOMIC OPERATION OF POWER SYSTEMS

BAL-001-AB-0a Real Power Balancing Control Performance

Basics of Information Theory: Markku Juntti. Basic concepts and tools 1 Introduction 2 Entropy, relative entropy and mutual information

Lecture 16: Backpropogation Algorithm Neural Networks with smooth activation functions

LECTURE 2: Linear and quadratic classifiers

C.11 Bang-bang Control

Singular Value Decomposition. Linear Algebra (3) Singular Value Decomposition. SVD and Eigenvectors. Solving LEs with SVD

Lecture 07: Poles and Zeros

Salih Fadıl 1, Burak Urazel 2. Abstract. 1. Introduction. 2. Problem Formulation

Transcription:

ECE 4/599 Electrc Eergy Systems 7 Optmal Dspatch of Geerato Istructor: Ka Su Fall 04

Backgroud I a practcal power system, the costs of geeratg ad delverg electrcty from power plats are dfferet (due to fuel costs ad dstaces to load ceters) Uder ormal codtos, the system geerato capacty s more tha the total load demad ad losses. Thus, there s room to schedule geerato wth capacty lmts Mmzg a cost fucto that represets, e.g. Operatg costs Trasmsso losses System relablty mpacts Ths s called Optmal ower Flow (OF) problem A typcal problem s the Ecoomc Dspatch (ED) of real power geerato

Itroducto of Nolear Fucto Optmzato Ucostraed parameter optmzato Costraed parameter optmzato Equalty costrats Iequalty costrats

Ucostraed parameter optmzato Mmze cost fucto f x x x (,,, ). Solve all local mma satsfyg two codtos (ecessary & suffcet) Codto-: Gradet vector f f f f (,,, ) 0 x x x Codto-: Hessa matrx H s postve defte Statoary pot (where f s flat all drectos) Local mmum (a pure source f vector feld). Fd the global mmum from all local mma 4

f(x,y) (cos x + cos y) 5

Mmze f(x, y)x +y y f f f (, ) ( x, y) 0 x y f x 0, y 0 H f f x xy 0 f 0 yx y 0 x 6

arameter Optmzato wth Equalty Costrats Mmze Subject to f x x x (,,, ) g ( x, x,, x ) 0 k k,,, K Itroduce Lagrage Multplers λ ~ λ K K L f λ g + Necessary codtos for the local mma of L (also ecessary for the orgal problem) k k L f g + x x x K λk k 0 L λ k g k 0 7

Mmze f(x, y)x +y Subject to (x-8) +(y-6) 5 g(x, y)(x-8) +(y-6) -50 y L x + y + λ[( x 8) + ( y 6) 5] f L x + λ(x 6) 0 x L y + λ(y ) 0 y L + λ ( x 8) ( y 6) 5 0 6 0 8 x Solutos (from the N-R method): λ, x4 ad y (f5) λ, x ad y9 (f5) 8

arameter Optmzato wth Iequalty Costrats Mmze Subject to : f x x x (,,, ) g ( x, x,, x ) 0 k k,,, K Itroduce Lagrage Multplers λ ~ λ K ad µ ~ µ m u ( x, x,, x ) 0 j,,, m j K L f + λ g + µ u k k j j k j m Necessary codtos for the local mma of L L f g u + + x x x x K m k j λ k µ j j 0,, Kuh-Tucker (KKT) ecessary codto L λ k g k 0 L u j 0 µ j µ u 0 µ 0 j j j k,,, K j,, m 9

Mmze f(x, y)x +y Subject to (x-8) +(y-6) 5 g(x, y)(x-8) +(y-6) -50 x+ y uxy (, ) x y 0 L x y x y x y + + λ [( 8) + ( 6) 5] + µ ( ) L x + λ (x 6) µ 0 x L y + λ ( y ) µ 0 y L ( x 8) + ( y 6) 5 0 λ L L x y < 0 µ 0 0, µ µ L µ ju j 0, µ j 0 or x y 0 µ > 0 µ y 6 0 8 f x Solutos: µ0, λ, x ad y9 (f5) µ5.6, λ-0., x5 ad y (f9) µ, λ-.8, x ad y6 (f) 0

Operatg Cost of a Thermal lat Fuel-cost curve of a geerator (represeted by a quadratc fucto of real power) C α + β + γ Icremetal fuel-cost curve: dc λ γ + β d

A real case FUELCO MAX MIN HEMIN X Y X Y X Y Ge ID RIOR ($/MBtu) (MW) (WM) (MBtu/hr) (MW) (Btu/kWh) (MW) (Btu/kWh) (Btu/kWh) (Btu/kWh) A 0.9 0 65 5 65 8760 76 9507 60 007 B 0 0.59 06 50 45 50 850 75 998 06 04 Btu/h X Y 000 $/h Btu/h $/MBtu / 000,000 $/MWh Y /000 $/MBtu Cost ($/h) 6000 5000 4000 000 000 000 0 0 50 00 50 00 50 00 (MW) Lambda ($/MWh) 0 8 6 4 0 8 6 4 0 0 50 00 50 00 50 00 (MW)

ED Neglectg Losses ad No Geerator Lmts If trasmsso le losses are eglected, mmze the total producto cost: C t g C α + β + γ subject to g Apply the Lagrage multpler method ( g + ukows to solve): g L Ct + λ( D ) L 0 L 0 λ Ct g D λ 0 D g Ct All plats must operate at equal cremetal cost dc β + γ λ d λ β γ D λ D + g β g γ γ λ β γ,, g Solve

Example 7.4 The fuel-cost fuctos for three thermal plats are C ~C $/h., ad are MW. D 800MW. Neglectg le losses ad geerator lmts, fd the optmal dspatch ad the total cost $/h λ D + g λ β γ β g γ γ 5. 5.5 5.8 800 + + + 0.008 0.0 0.08 + + 0.008 0.0 0.08 800 + 44.0555 8.5 $ / MWh 6.8889 dc λ 5.8 + 0.08 d C 500 + 5. + 0.004 400 + 5.5 + 0.006 00 + 5.8 + 0.009 C C dc λ 5.5 + 0.0 d 8.5 5. 400.0000 (0.004) 8.5 5.5 50.0000 (0.006) 8.5 5.8 50.0000 (0.009) dc λ 5.+ 0.008 d Equal cremetal cost λ C t 668.5 $ / h 4

Solvg λ by the N-R Method g λ β γ g D λ g ( ) For a geeral case: g f( λ) ( k) df ( λ) ( k) ( k) f( λ) + ( ) λ dλ D D λ λ + λ ( k+ ) ( k) ( k) λ df ( λ) df ( λ) d ( ) ( ) ( ) dλ dλ dλ D D f( λ) ( k) ( k) g utl ( k+ ) ( k) λ λ ε 5

Apply the R-N Method Example 7.4 λ () λ 6.0 () () () γ β 6.0 5. 87.5000 (0.004) 6.0 5.5 4.6667 (0.006) 6.0 5.8. (0.009) 800 (87.5 4.6667.) () + + 659.7 () 659.7 λ + + (0.004) (0.006) (0.009) 659.7.5 6.8888 ( k) ( k) λ d ( ) dλ γ $/MWh 0.5 0 9.5 9 8.5 8 7.5 7 6.5 6 5.5 5 0 50 00 50 00 50 00 50 400 450 (MW) () λ + () () () 8.5 5. 400.0000 (0.004) 8.5 5.5 50.0000 (0.006) 8.5 5.8 50.0000 (0.009) () + + C t 6.0.5 8.5 800 (400 50 50) 0.0 668.5 $ / h 6

ED Neglectg Losses but Icludg Geerator Lmts Cosderg the maxmum (by ratg) ad mmum (for stablty) geerato lmts, Mmze Subject to C t g C g α + β + γ D (m) (max),,,, g g g L C + λ ( ) + [ µ ( ) + γ ( )] t D (max) (m) L 0 L 0 λ L 0 µ L γ 0 C 0 λ + µ γ g µ ( ) 0, µ 0 D (max) γ ( ) 0 γ 0 (m) (m) (max),,,, g (m) (max) ( µ γ 0) ( 0) (max) γ ( 0) (m) µ 4 dc d dc d dc d λ λ µ λ λ+ γ λ Excludg the plats that reach ther lmts, the other plats stll operate at equal cremetal cost 7

Example 7.6 Cosder geerator lmts ( MW) for Example 7.4, let D 975MW dc d 5.8 + 0.08 λ 50 450 50 50 00 5 D 975MW dc d 5.5 + 0.0 λ D 906MW D 800MW dc d 5. + 0.008 λ Soluto: 450MW 5MW 00MW λ9.4$/mwh C t 86.5 $/h 8

λ γ β ( k) ( k) λ d ( ) dλ γ 50 450 50 50 00 5 () λ 6.0 () () () 6.0 5. 87.5000 (0.004) 6.0 5.5 4.6667 (0.006) 6.0 5.8. (0.009) () + + 975 (87.5 4.6667.) 84.7 () 84.7 84.7 λ.6 + + 6.8888 (0.004) (0.006) (0.009) 6.0.6 9.6 () λ + () () () 9.6 5. 48.8947 (0.004) 9.6 5.5 05.6 (0.006) 9.6 5. 8 86.84 (0.009) () + + >, so let 450 (max) 975 ( 450 05.6 86.84). 84 9 7 ().8947.8947 λ 0.68 +.8889 (0.006) (0.009) () λ + () () () 450 9.6 0.68 9.4 9.4 5.5 5 (0.006) 9.4 5.8 00 (0.009) () + + 975 (450 5 00) 0. 0 9

Solve the optmal dspatch for D 550MW C 500 + 5. + 0.004 C 400 + 5.5 + 0.006 C 00 + 5.8 + 0.009 dc d 50 450 50 50 00 5 5.8 + 0.08 λ or 0 or 0 or 0 Ut Commtmet roblem (mxed-teger optmzato) 0 dc d 5.5 + 0.0 λ Soluto : 80MW Soluto : 40MW 0 dc d 5. + 0.008 λ 70MW 00MW λ7.54$/mwh C t 4676 $/h 0MW 0MW λ8.0$/mwh C t 4584 $/h 0 Soluto : Soluto 4: 0MW 400MW 40MW 0MW 0MW 50MW λ9.58$/mwh λ8.5$/mwh C t 47785 $/h C t 45 $/h 0

Trasmsso Loss Whe trasmsso dstaces are very small ad load desty the system s very hgh Trasmsso losses may be eglected All plats operate at equal cremetal producto cost to acheve optmal dspatch of geerato However, a large tercoected etwork ower s trasmtted over log dstaces wth low load desty areas Trasmsso losses are a major factor affectg the optmal dspatch.

Calculato of Trasmsso Losses I V cosφ L I R R V cosφ R V cos φ V R+jX I D L B V V I I I R + I R + I + I R L R + V cos cos φ V φ cosα cos β + + V cos φ V cosφ R R R +jx R +jx I R +jx D I β L I + + α B B B I

More geeral loss formulas: Quadratc form Kro s loss formula L L g j g g g g B j j B B B j j 0 00 j B j, B 0 ad B 00 are Loss coeffcets or B-coeffcets. See Chapter 7.7 for detals of calculatg B-coeffcets Chages wth power flows but usually assumed costat ad estmated for a power-flow base case

Ecoomc Dspatch Icludg Losses Cost fucto g g t C C dc d β + γ Icremetal fuel cost Subject to g L D L g g g B B B j j 0 00 j g L B B j j j 0 Icremetal trasmsso loss,, (m) (max) g 4

Usg Lagrage Multplers g g g g L C ( ) ( ) ( ) where D L (max) (max) (m) (m) g g g B B B L j j 0 00 j g g t C C L 0 λ L 0 dc d g g g g D L D j j 0 j L dc + λ(0 + ) 0 d B B B L + λ λ 00 L dc d ealty factor: L L,, g dc d β + γ g L B B j j j 0 g BB,, j j j 0 g 5

BB j j 0 j g g ( B) B ( B ) j j 0 j j B B B B g 0 B B B B0 g g g B g Bg B B g g 0g Solve λ ad (~ g ) for the optmal dspatch: g g g g B B B D L D j j 0 00 j Check equalty costrats: If < (m), let (m) If > (max), let (max) Remove that from the equatos Use the N-R Method: f( ) g D L ( B ) ( B ) 0 j j j B df ( ) f( ) ( ) d ( k) ( k) ( k) ( k) D L f( ) ( k) ( k) ( k) D L df ( ) ( ) d g ( k) ( k) df ( ) g ( ) d 6

Ital ad (0) (0) ( B ) ( B ) 0 j j j B ( B ) ( k) ( k) ( k) 0 j j j ( k) ( B ) B f( ) ( k) ( k) ( k) D L g g g g ( k) ( k) ( k) ( k) ( k) D Bjj B0 B00 j g ( B ) B B 0 j j ( k) ( B ) j ( k) ( k) df ( ) g ( ) d g ( k) ( k) Utl (k) <ε 7

Example 7.7 Solve the optmal dspatch of three thermal plats a power system. The total system load s 50MW. The base for per ut values s 00MVA. C 00 7.0 0.008 $ / h C 80 6. 0.009 $ / h C 40 6.8 0.007 $ / h 0 MW 85 MW 0 MW 80 MW 0 MW 70 MW 0.08 0.08 0.079 L(pu) (pu) (pu) (pu) (oly B 0) L 00 00 00 0.0008 0.0008 0.00079 MW 0.08( ) 0.08( ) 0.079( ) 00 MW 8

( k) ( k) ( B ) (0) λ 8.0 g g B ( k) ( B ) g 0 MW 85 MW 0 MW 80 MW 0 MW 70 MW () () () 8.0 7.0 5.6 MW (0.008 0.80.0008) 8.0 6. 78.59 MW (0.008 0.80.0008) 8.0 6.8 7.575 MW (0.007 0.80.00079) 0.0008(5.6) 0.0008(78.59) () L 0.00079(7.575).886 () 50.8864 (5.6 78.59 7.575) 48.9 () 7.6789 (4) (4) (4) 7.6789 7.0 5.0907 MW (0.008 7.6790.0008) 7.6789 6. 64.7 MW (0.009 7.6790.0008) 7.6789 6.8 5.4767 MW (0.007 7.6790.00079) 0.0008(5.0907) 0.0008(64.7) (4) L (4) 0.00079(5.4767).699 0.000 () ( ) 5.494 () 48.9 0.55 5.494 Ct 59.65 $/h 9