Experiment 7: Titration of an Antacid

Similar documents
CHEM 132 Lab 11 Western Carolina University

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution and the analysis of antacid tablets

Name Partner Lab Section M Tu W Th F Chemistry 130 Experiment 6: Titration and Analysis

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION

Experiment #10: Analysis of Antacids

NOTE: YOU WILL BE USING THIS SOLUTION IN BOTH, THIS EXPERIMENT AND EXP 12B. IF YOU WASTE THE SOLUTION YOU MAY RUN OUT BEFORE YOU HAVE FINISHED EXP 12B

Chesapeake Campus Chemistry 111 Laboratory

EXPERIMENT 5 ACID-BASE TITRATION

The reaction between the metal hydroxides and the stomach acid is an acid base reaction very similar to that in the previous experiment:

Acid-Base Titration. M M V a

H 3 O + (aq) + P 2- (aq)

Volumetric Analysis: Analysis of antacid tablets Analysis of Cl - concentrations in IV solutions

Molarity of Acetic Acid in Vinegar A Titration Experiment

Acid / Base Titrations

Name: Date: AP Chemistry. Titrations - Volumetric Analysis. Steps for Solving Titration Problems

EXPERIMENT #8 Acid-Base I: Titration Techniques

Chemistry 151 Last Updated Dec Lab 10: The Neutralizing Ability of an Antacid (Titrations, Pt II)

NEUTRALIZATION TITRATION-2 TITRATION OF AN ANTACID (Exp. 4)

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

Acid-Base Titration Acetic Acid Content of Vinegar

Synthesis of Benzoic Acid

Experiment: Titration

+ H 2 O Equation 1. + NaOH CO 2 Na

TITRATION: STANDARDIZATION OF A BASE AND ANALYSIS OF STOMACH ANTACID TABLETS. Teacher Notes

Solubility of KHT and Common ion Effect

Titration with an Acid and a Base

TITRATION OF AN ACID WITH A BASE

Experiment 10. Acid Base Titration

1. The active ingredients are at best, only sparingly soluble in water. 3. The technique would have to be modified for every different antacid.

Ascorbic Acid Titration of Vitamin C Tablets

CHM111 Lab Titration of Vinegar Grading Rubric

NaOH (aq) + HCl (aq) NaCl (aq) + H 2 O (l)

PURPOSE: 1. To illustrate an oxidation-reduction titration with potassium permanganate 2. To determine the percent mass of iron in an unknown.

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid

Chemistry Determination of Mixed Acids

Experiment 8 and 9 Weak Acids and Bases: Exploring the Nature of Buffers

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

Experiment 20: Analysis of Vinegar. Materials:

TRATION: ANALYSIS OF VINE

CHEM Practice to be done before the lab. Experiment 9 Introduction to Volumetric Techniques II. Objectives

Antacid Tables. How effective is that antacid tablet? We are going to use a technique called titration to find out how effective the tabs are.

Experiment #7. Titration of Vinegar

Experiment 20-Acid-Base Titration: Standardization of KOH and Determination of the Molarity and/or Percent Composition of an Acid Solution

(b) Write the chemical equation for the dissolution of NaOH in water.

Acid-Base Titrations

Ascorbic Acid Titration of Vitamin C Tablets

Experiment 8 Introduction to Volumetric Techniques I. Objectives

Experiment 3: Acids, Bases, and Buffers

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid

Ascorbic Acid Titration of Vitamin C Tablets

POGIL LAB EXERCISE 15 HOW DO YOU STANDARDIZE AN ACID AND BASE?

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

Ascorbic Acid Titration of Vitamin C Tablets

Synthesis and Analysis of a Coordination Compound

EXPERIMENT 12B: TITRATION OF AN UNKNOWN ACID INTRODUCTION

Acid Base Titration Experiment ACID - BASE TITRATION LAB

Determination of the K a Value and Molar Mass of an Unknown Weak Acid

Titrations Worksheet and Lab

Chapter 9. Volumetric Analysis

GETTING THE END POINT TO APPROXIMATE. Two hours

Chemical Reactions: Titrations

Experiment 5E BOTTLES WITHOUT LABELS: STUDIES OF CHEMICAL REACTIONS

# 12 ph-titration of Strong Acids with Strong Bases

For this lab, you will determine the purity of the aspirin by titration and by spectrophotometric analysis.

2 burets (50 ml) Standard solution of NaOH (0.600 M) Phenolphthalein indicator

Chemistry Calibration of a Pipet and Acid Titration

When dealing with solids that one can weigh on a balance, determining the number of moles in a particular sample is simply:

Titration of an Unknown Acid

PreLAD: b. KHP is a monoprotic acid, what are the number of moles of ionizable H + in the approximately 0.25 g of KHP?

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

Titration of HCl with Sodium Hydroxide

Chemistry 1B Experiment 17 89

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

Experiment 5 Titration of Acids and Bases

Experimental Procedure. Lab 406

STUDYING CHEMICAL REACTIONS BY TITRATION ANALYSIS

Acids and Bases. How does ph affect biological solutions? Introduction. Prelab Preparation Review Section 2.3 on acids and bases in your textbook.

Experiment 2: Analysis of Commercial Bleach Solutions

EXPERIMENT #9 PRELAB EXERCISES. Redox Titration (Molarity Version) Name Section. 1. Balance the following redox reaction under acidic conditions.

Unit 13 Acids and Bases

8 Titration of Acids and bases

Acidity of Beverages Lab

The Thermodynamics of the Solubility of Borax

LAB 8: DETERMINATION OF ACETIC ACID CONTENT IN VINEGAR

experiment7 Explaining the difference between analyte and standard solutions. Know the definition of equivalence point.

Experiment 8 - Chemical Changes

Potentiometric Determination of the pka and the Equivalent Weight of a Weak Acid

K a Acid Dissociation Constant Minneapolis Community and Technical College Principles of Chemistry II, C1152 v.9.13

Analysis of Hypochlorite in Bleach

6 Acid Base Titration

Objectives To prepare a dilute solution of a weak acid. To prepare a buffer of a specific ph value.

Pre-lab: Read section 9.9 (pages ) on acid-base titrations in the textbook. Complete the attached pre-lab by Tuesday, June 2.

Safety Note: Safety glasses and laboratory coats are required when performing this experiment

Experiment 4, Calculation of Molarity of H 3 PO 4 by Titration with NaOH Chemistry 201, Wright College, Department of Physical Science and Engineering

Determination of the Equivalent Weight and Ionization Constant of a Weak Acid

O H 3 O 1 1 A. O 1 1 OH (K w

Examples of Strong Acids: Strong Acid Formula Common Source Hydrochloric Acid HCl Stomach Acid

Transcription:

1 Experiment 7: Titration of an Antacid Objective: In this experiment, you will standardize a solution of base using the analytical technique known as titration. Using this standardized solution, you will determine the acid neutralizing power of a commercially available antacid tablet. Introduction An understanding of the properties of acids and bases is an essential part of understanding chemical reactions (see Tro, pp 168-171). In aqueous solutions, a compound that produces H + ions upon dissolution is termed an acid. A compound that produces OH ions when dissolved in water is called a base. The reaction of an acid and base is a neutralization reaction, the products of which are a salt and water. In an aqueous solution, virtually all of the OH ions present will react with all of the H + ions that are present: H + (aq) + OH (aq) H 2 O (l) Because this reaction is essentially quantitative, it is possible to determine the concentration of an acid or base in an aqueous solution with high accuracy. When a solution of hydrochloric acid, HCl, is exactly neutralized with a solution of sodium hydroxide, NaOH, the number of moles of NaOH used will equal the number of moles of HCl originally present. The following relationship then holds true: moles NaOH = moles HCl (M NaOH )(V NaOH in liters) = (M HCl )(V HCl in liters) Eq. 1 where M = concentration in molarity and V= volume. If three of the above quantities are known, the fourth can be calculated. In order to determine when a solution has been exactly neutralized, an acid-base indicator is used that changes color in a certain ph range (ph is a scale used to measure acidity). This color change is termed the endpoint of the titration. Because the ph of a neutral solution is 7, an indicator that changes color near this ph should be used for an acid-base titration. Phenolphthalein indicator changes color in the range ph = 8.3 10.0 and can be used to determine when the correct amount of base has been added to an acidic solution to exactly neutralize it. Standardization of a Sodium Hydroxide Solution In order to determine the concentration of an acidic or basic solution, it is necessary to know the number of moles of acid or base that are required to neutralize it. This quantity can be calculated by accurately weighing a solid sample of an acid or a base, dissolving it in water and titrating this solution; that is, adding the solution of unknown concentration to it until the endpoint has been reached (see Tro, pp 171-173). It is difficult to accurately weigh sodium hydroxide since it is hygroscopic (absorbs water readily from air). A solution of NaOH is usually standardized using an acid known as a primary standard. A primary standard must satisfy the four following criteria:

2 1. Solid compound that is not hygroscopic and can be easily handled 2. Is available in very pure form 3. Stable 4. Has a medium to high molecular weight For this experiment, a solution of NaOH, which has an approximate concentration of 0.1 M, will be standardized using potassium acid phthalate, KHPh. The molecular weight of KHPh is 204.23 g/mole, and it has one acidic proton, which will react quantitatively with OH : OH (aq) + KHPh (aq) H 2 O (l) + KPh (aq) For the highest accuracy, a sample size is chosen such that it will consume as large a volume of the base as possible without exceeding the capacity of the buret. If a 25 ml buret is used, the amount of KHPh is chosen such that it will require approximately 20 ml of 0.1 M NaOH solution to reach the endpoint. Thus, about 0.002 moles, or 0.4 g, of KHPh is needed. At the endpoint, the number of moles of NaOH equals the number of moles of KHPh used: M NaOH = moles KHPh Eq. 2 V NaOH in liters or M NaOH = g, KHPh x 1000 ml/l Eq. 3 204.23 g/mole ml, NaOH Once the NaOH solution has been standardized, it can be used to determine the acid neutralizing capacity of an antacid tablet. Determination of the Acid Neutralizing Capacity of an Antacid Tablet The stomach has an acidic interior generated by dilute HCl, stomach acid, which insures proper digestion. When the acidity of the stomach becomes high enough to cause discomfort, brought about by the ingestion of certain types of food, an antacid preparation can be taken to neutralize the excess stomach acid. The active ingredient in every antacid is a base, the most common being metal hydroxides, metal carbonates or a mixture of the two. Table 1 lists the active ingredients in several commercial brands of antacid. Table 1. Brands of antacid tablets and their major ingredients Brand Name Major ingredient Recommended dose Alka-Seltzer NaHCO 3 1 or 2 tablets Gaviscon Al(OH) 3 ; MgCO 3 2 tablets Phillips' Magnesia Mg(OH) 2 2-4 tablets Maalox Al(OH) 3 ; Mg(OH) 2 2 tablets Walgreens brand CaCO 3 ; Mg(OH) 2 2-4 tablets Tums CaCO 3 2-4 tablets

3 The acid neutralizing capacity of a tablet is the amount of hydrochloric acid that it can neutralize. It is the quantity that is referred to in some advertisements when it is stated that the tablet neutralizes x times its weight in stomach acid. This capacity can be determined by a technique called back-titration. A known amount of antacid is dissolved in an excess of HCl, and then the excess acid is back-titrated with standardized NaOH solution. When the endpoint is reached, the number of moles of acid that was added to the antacid sample is equal to the number of moles of base present, NaOH plus the antacid. Therefore, the number of moles of HCl that was neutralized by the antacid is equal to the total number of moles of HCl added minus the number of moles that were neutralized by the NaOH: moles acid neutralized = (moles of HCl added) (moles of NaOH required for back-titration) where M = molarity and V = volume in liters. = (M HCl x V HCl ) (M NaOH x V NaOH ) Eq. 4

4 Procedure Water and NaOH solutions can absorb carbon dioxide, CO 2, gas from the air, which will react with water to form carbonic acid, H 2 CO 3. Prepare approximately 250 ml of CO 2 -free water by boiling on a hot plate for 5 minutes. CAUTION: Set the boiling water well back from the bench edge to avoid accidents and burns. Allow the water to cool in a beaker, covered with a watchglass. Study TECH sections II.E and F. Always handle the buret with care as it is quite expensive. Your buret must be scrupulously clean. A dirty buret can be identified by water drops adhering to the interior walls. If your buret is dirty, remove the stopcock, and using a brush, scrub the buret thoroughly from both ends with soap and water. Rinse with tap water followed by distilled water. Pour approximately 150 ml of NaOH solution into a dry 250 ml beaker (avoid undue exposure of the base solution to air by keeping the storage bottle tightly capped). Sodium hydroxide is corrosive! The buret must be rinsed out with the solution being used before it is filled to prevent dilution of the solution. In this case, three small, successive portions of NaOH solution should be used to thoroughly rinse down the sides of the buret. The buret is filled to a point above the "0" ml mark with NaOH solution. In order to fill the tip of the buret with liquid, the solution is drained out of the bottom until the meniscus lies between the "0" and "1" ml marks. The initial buret reading can now be recorded to the nearest 0.01 ml. If you have any doubts as to your ability to read the buret correctly, ask your instructor to check your initial reading. Standardization of NaOH solution Accurately weigh out a sample of approximately 0.3-0.4 g of primary standard potassium hydrogen phthalate, KHPh, which has been previously dried at 120 C. Do not use more than 0.4 g. To obtain an accurate mass, weigh the sample on weighing paper, slide it into a clean (but not necessarily dry) 250 ml Erlenmeyer flask and reweigh the paper to account for any KHPh that may remain on it. Label the flask with the corresponding mass for identification. Dissolve the KHPh sample in about 50 ml of CO 2 -free water and add 2-3 drops of 1% phenolphthalein indicator. Begin adding the approximately 0.1 M sodium hydroxide solution from the buret while continuously swirling the flask contents. Do not open the stopcock completely. As the endpoint nears, a pink color will appear at the point where the NaOH mixes with the flask contents. This color will disappear with subsequent swirling. Placing a white piece of paper under the flask will aid in observing the color change. When the color persists for 30 seconds after swirling, the endpoint has been reached. The color will fade after some time due to absorption of CO 2 from the air. If a deep pink color results, the endpoint has been overrun. Just prior to the endpoint, the flask walls should be rinsed down with a stream of distilled water from your wash bottle. It is possible to add half-drops of solution from the buret. Open the stopcock until a drop just forms at the tip of the buret. Touch the drop to the side of the flask and wash it down with distilled water. When the endpoint is reached, record the final buret reading to the nearest 0.01 ml. Refill the buret so that you do not run out of NaOH solution in the middle of the next titration. Weigh two more 0.3-0.4 g samples of KHPh into two separate 250 ml Erlenmeyer flasks. Dissolve one of these samples in about 50 ml of CO 2 -free water and

5 repeat the titration procedure. Dissolve the last sample, and titrate it as well. Your three determinations should not differ by more than 0.002 M (use equation 3 to do this calculation). In the case of poor precision, an additional sample may be run if there is time. Use an average of these molarities for analyzing the antacid in the next part of the experiment. Back-titration of an antacid Choose a brand and obtain 2 antacid tablets. Avoid touching them with your fingers as much as possible. Record the brand name, cost per package and number of tablets per package. Weigh each tablet separately on weighing paper to the nearest 0.001 g. Transfer each tablet to a 250 ml Erlenmeyer flask and label the flasks with the corresponding masses. If you are analyzing Walgreens brand tablets, add approximately 19 ml of standardized HCl from the 50 ml dispensing buret to a flask containing one of the antacid tablets. If you are analyzing Tums tablets, add approximately 12 ml of standardized HCl to a flask containing one of the antacid tablets. Record precisely how much acid was added using the initial and final readings of the buret. Also, be sure to record the exact molarity of the HCl solution written on the label of the bottle. Hydrochloric acid is corrosive! Rinse down the inner walls of the flask with 40-50 ml of distilled water, and swirl the flask. You may need to crush the tablet with a glass stirring rod to allow the reaction to go to completion, but be sure to rinse all the solution and particles off the rod before removing it. The tablet may contain an insoluble binder and filler that will not dissolve; however, be certain that no large chunks or chips of the tablet remain. Carbonate ions in the sample will react with the HCl and produce CO 2. The CO 2 can be driven off by heating the contents of the flask just to boiling: 2 H + (aq) + CO 3 2- (aq) H 2 CO 3 (aq) heat CO 2 (g) + H 2 O (l) Adjust the hot plate to maintain a gentle boil for exactly 5 minutes. Remove from the heat and allow the flask to cool until it is comfortable to hold. Add 8 drops of phenolphthalein to the flask and swirl to mix; then rinse down the sides of the flask with your wash bottle. If the solution is pink at this point, more acid must be added from the buret, 1 ml at a time, until the color disappears. Titrate the solution, as in the first part of the experiment, to the pale pink endpoint using the standardized NaOH solution. Refill your buret and repeat the entire procedure with the other antacid tablet. When you have finished all the titrations, drain the NaOH from your buret into the sink, rinse it thoroughly with distilled water and return it to your instructor. Clean up your bench area and sink. You will be asked to compare the weight and cost effectiveness of the two brands of antacid tablets. Before you leave the laboratory, find a student who tested the brand that you did not test and exchange data with him/her.

6 Calculations Questions 1. Calculate the average molarity of the NaOH solution from your three standardization trials. 2. Calculations to determine the effectiveness of the antacid Calculate the average number of moles of HCl neutralized per antacid tablet. Calculate the number of moles of HCl neutralized per gram of antacid (weight effectiveness). Calculate the average cost of the antacid tablet that would be needed to neutralize 1.00 mole of HCl (cost effectiveness). 3. The HCl concentration in a hyperacidic stomach is 0.030 M. The volume of liquid in the stomach is 450 ml. How many tablets of the antacid that you analyzed would have to be taken to bring the concentration of HCl in the stomach to a more normal level of 0.00030 M? Show your work. 1. Using data from a student who analyzed the other brand of antacid, evaluate and compare the two brands on the basis of weight and cost effectiveness. 2. Refer to Table 1 to identify the major basic ingredients contained in the antacid brands that were titrated. Write equations for the reactions of these two active ingredients with acid, H +. 3. If a student overshot the endpoint during the back-titration of an antacid tablet, and the final color of the titrated solution was bright pink instead of pale pink, what would be the effect on the cost effectiveness calculated for the tablet? Explain. 4. List possible sources of error in this experiment and for each, indicate whether the effect would be an erroneously high or low value for the neutralization capacity of the antacid.