Schedule. ECEN 301 Discussion #20 Exam 2 Review 1. Lab Due date. Title Chapters HW Due date. Date Day Class No. 10 Nov Mon 20 Exam Review.

Similar documents
4/27 Friday. I have all the old homework if you need to collect them.

Course Updates. Reminders: 1) Assignment #10 due Today. 2) Quiz # 5 Friday (Chap 29, 30) 3) Start AC Circuits

Notes on Electric Circuits (Dr. Ramakant Srivastava)

Chapter 10 AC Analysis Using Phasors

Sinusoidal Steady State Analysis (AC Analysis) Part I

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 9 Objectives

ECE 201 Fall 2009 Final Exam

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

Sinusoids and Phasors

Module 4. Single-phase AC Circuits. Version 2 EE IIT, Kharagpur 1

EE 205 Dr. A. Zidouri. Electric Circuits II. Frequency Selective Circuits (Filters) Low Pass Filter. Lecture #36

12 Chapter Driven RLC Circuits

Introduction to AC Circuits (Capacitors and Inductors)

1 Phasors and Alternating Currents

Designing Information Devices and Systems II Spring 2016 Anant Sahai and Michel Maharbiz Midterm 2

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

Sinusoidal Steady State Analysis (AC Analysis) Part II

Physics 142 AC Circuits Page 1. AC Circuits. I ve had a perfectly lovely evening but this wasn t it. Groucho Marx

BME/ISE 3511 Bioelectronics - Test Six Course Notes Fall 2016

Chapter 33. Alternating Current Circuits

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

AC Circuits Homework Set

EIT Review. Electrical Circuits DC Circuits. Lecturer: Russ Tatro. Presented by Tau Beta Pi The Engineering Honor Society 10/3/2006 1

Phasors: Impedance and Circuit Anlysis. Phasors

Chapter 10: Sinusoids and Phasors

Sinusoidal Steady-State Analysis

Ver 3537 E1.1 Analysis of Circuits (2014) E1.1 Circuit Analysis. Problem Sheet 1 (Lectures 1 & 2)

Sinusoidal Steady-State Analysis

REACTANCE. By: Enzo Paterno Date: 03/2013

ALTERNATING CURRENT

CIRCUIT ANALYSIS II. (AC Circuits)

ELEC 2501 AB. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

BME/ISE 3511 Bioelectronics - Test Five Review Notes Fall 2015

Lecture 11 - AC Power

EE292: Fundamentals of ECE

Lecture 24. Impedance of AC Circuits.

First Order RC and RL Transient Circuits

Electric Circuit Theory

Physics-272 Lecture 20. AC Power Resonant Circuits Phasors (2-dim vectors, amplitude and phase)

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

Driven RLC Circuits Challenge Problem Solutions

Module 4. Single-phase AC Circuits

ECE Spring 2015 Final Exam

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

Figure Circuit for Question 1. Figure Circuit for Question 2

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges

Sinusoidal Steady State Analysis

Chapter 3: Capacitors, Inductors, and Complex Impedance

Sinusoidal Response of RLC Circuits

UC DAVIS. Circuits I Course Outline

Chapter 31: RLC Circuits. PHY2049: Chapter 31 1

Prof. Anyes Taffard. Physics 120/220. Voltage Divider Capacitor RC circuits

C R. Consider from point of view of energy! Consider the RC and LC series circuits shown:

Chapter 6 Objectives

ECE 205: Intro Elec & Electr Circuits

Physics 116A Notes Fall 2004

Homework Assignment 11

OPERATIONAL AMPLIFIER APPLICATIONS

ALTERNATING CURRENT. with X C = 0.34 A. SET UP: The specified value is the root-mean-square current; I. EXECUTE: (a) V = (0.34 A) = 0.12 A.

To find the step response of an RC circuit

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

EECE 2510 Circuits and Signals, Biomedical Applications Final Exam Section 3. Name:

EIT Review 1. FE/EIT Review. Circuits. John A. Camara, Electrical Engineering Reference Manual, 6 th edition, Professional Publications, Inc, 2002.

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

Basics of Network Theory (Part-I)

EE40 Lecture 11 Josh Hug 7/19/2010

EE221 Circuits II. Chapter 14 Frequency Response

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

EE292: Fundamentals of ECE

ECE Circuit Theory. Final Examination. December 5, 2008

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

ECE 202 Fall 2013 Final Exam

Basic RL and RC Circuits R-L TRANSIENTS: STORAGE CYCLE. Engineering Collage Electrical Engineering Dep. Dr. Ibrahim Aljubouri

Chapter 10: Sinusoidal Steady-State Analysis

Chapter 5 Steady-State Sinusoidal Analysis

Homework 2 SJTU233. Part A. Part B. Problem 2. Part A. Problem 1. Find the impedance Zab in the circuit seen in the figure. Suppose that R = 5 Ω.

General Physics (PHY 2140)

Basic Electronics. Introductory Lecture Course for. Technology and Instrumentation in Particle Physics Chicago, Illinois June 9-14, 2011

EIT Quick-Review Electrical Prof. Frank Merat

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

Electrical Circuit & Network

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Physics 2112 Unit 20. Outline: Driven AC Circuits Phase of V and I Conceputally Mathematically With phasors

11. AC Circuit Power Analysis

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

Physics 212. Lecture 11. RC Circuits. Change in schedule Exam 2 will be on Thursday, July 12 from 8 9:30 AM. Physics 212 Lecture 11, Slide 1

EE221 Circuits II. Chapter 14 Frequency Response

An op amp consisting of a complex arrangement of resistors, transistors, capacitors, and diodes. Here, we ignore the details.

ENGG Fundamentals of Electrical Circuits and Machines Final Examination

09/29/2009 Reading: Hambley Chapter 5 and Appendix A

Solved Problems. Electric Circuits & Components. 1-1 Write the KVL equation for the circuit shown.

Lecture 15. LC Circuit. LC Oscillation - Qualitative. LC Oscillator

FUNDAMENTALS. Introduction. 1.1 Electric Signals. Chapter 1

Chapter 5. Department of Mechanical Engineering

EECE 2150 Circuits and Signals, Biomedical Applications Final Exam Section 3

ECE Spring 2017 Final Exam

Single Phase Parallel AC Circuits

Transcription:

Schedule Date Day lass No. 0 Nov Mon 0 Exam Review Nov Tue Title hapters HW Due date Nov Wed Boolean Algebra 3. 3.3 ab Due date AB 7 Exam EXAM 3 Nov Thu 4 Nov Fri Recitation 5 Nov Sat 6 Nov Sun 7 Nov Mon ombinational ogic 3.3 3.5 8 Nov Tue AB 0 EEN 30 Discussion #0 Exam Review

Ask Alma 5:6 6 And now behold, I say unto you, my brethren, if ye have experienced a change of heart, and if ye have felt to sing the song of redeeming love, I would ask, can ye feel so now? EEN 30 Discussion #0 Exam Review

ecture 0 Exam Review hapters 4 6, 8 EEN 30 Discussion #0 Exam Review 3

Exam 6 November (Monday Friday hapters 4 6 and 8 5 questions multiple choice (answer on bubble sheet! point each 3 long answer (show your work! 4 or 5 points each losed book! One 3x5 card allowed alculators allowed No time limit Study lecture slides and homework EEN 30 Discussion #0 Exam Review 4

Exam Review Overview. apacitors and Inductors. Measuring Signal Strength 3. Phasors 4. Impedance 5. A R ircuits 6. A Equivalent ircuits 7. D Transient Response 8. Frequency Response 9. Basic Filters 0. Op-Amps EEN 30 Discussion #0 Exam Review 5

apacitors & Inductors Passive sign convention oltage urrent Power Inductors i di( t v( t dt t i( t v ( d i( t0 t0 di( t P ( t i( t dt apacitors i t v( t i ( d v( t0 t0 i( t dv( t dt P ( t dv( t v( t dt EEN 30 Discussion #0 Exam Review 6

apacitors & Inductors Energy An instantaneous change is not permitted in: Will permit an instantaneous change in: With D source element acts as a: Inductors apacitors W ( t i( t W ( t v( t urrent oltage oltage urrent Short ircuit Open ircuit EEN 30 Discussion #0 Exam Review 7

apacitors & Inductors. What is the difference between the voltage and current behaviour of capacitors and inductors? EEN 30 Discussion #0 Exam Review 8

apacitors & Inductors. What is the difference between the voltage and current behaviour of capacitors and inductors? 5.0 0.5 4.0 0.4 3.0 0.3.0 0..0 0. 0.0 0.00.00 4.00 6.00 apacitor voltage v (t Inductor current i (t NB: neither can change instantaneously 0.0 0.00.00 4.00 6.00 apacitor current i (t Inductor voltage v (t NB: both can change instantaneously EEN 30 Discussion #0 Exam Review 9

current (A apacitors & Inductors. find the voltage v(t for a capacitor = 0.5F with the current as shown and v(0 = 0..0 0.8 0.6 0.4 0. 0.0 0.0.0.0 3.0 time (s EEN 30 Discussion #0 Exam Review 0

current (A apacitors & Inductors. find the voltage v(t for a capacitor = 0.5F with the current as shown and v(0 = 0..0 0.8 0.6 0.4 current i(t i 0 t 0 in 4 intervals t 0 t : 0. 0.0 t 0.0.0.0 3.0 time (s 0 t v( t 0 t id v(0 EEN 30 Discussion #0 Exam Review

current (A apacitors & Inductors. find the voltage v(t for a capacitor = 0.5F with the current as shown and v(0 = 0..0 voltage v(t in 4 intervals : 0.8 0.6 0.4 0. v 0 t 0 d 0 0 t t 0 0.0 0.0.0.0 3.0 time (s t ( d v( t 0 v( t v( t 0 t id v(0 EEN 30 Discussion #0 Exam Review

current (A apacitors & Inductors. find the voltage v(t for a capacitor = 0.5F with the current as shown and v(0 = 0..0 0.8 0.6 0.4 voltage v 0 t v(t in 4 intervals t 0 0 t : 0. 0.0 0.0.0.0 3.0 time (s t 3 t t EEN 30 Discussion #0 Exam Review 3

current (A voltage ( apacitors & Inductors. find the voltage v(t for a capacitor = 0.5F with the current as shown and v(0 = 0. 3.5.0 0.8 0.6 0.4 0. 0.0 0.0.0.0 3.0 time (s 3.0.5.0.5.0 0.5 0.0 0.0.0.0 3.0 4.0 time (s NB: The final value of the capacitor voltage after the current source has stopped charging the capacitor depends on two things:. The initial capacitor voltage. The history of the capacitor current voltage v(t in 4 intervals v 0 t 0 t 0 t t t 3 t : EEN 30 Discussion #0 Exam Review 4

Measuring Signal Strength 3. ompute the rms value of the sinusoidal current i(t = I cos(ωt EEN 30 Discussion #0 Exam Review 5

EEN 30 Discussion #0 Exam Review 6 Measuring Signal Strength 0 cos( cos( ( cos ( / 0 / 0 / 0 0 I I d I I d I d I d i T i T rms Integrating a sinusoidal waveform over periods equals zero cos( ( cos t t 3. ompute the rms value of the sinusoidal current i(t = I cos(ωt

Measuring Signal Strength 3. ompute the rms value of the sinusoidal current i(t = I cos(ωt i rms T T 0 i ( d 0 / I cos ( d 0 / I cos( d The RMS value of any sinusoid signal is always equal to 0.707 times the peak value (regardless of phase or frequency I I I 0 0 / I cos( d EEN 30 Discussion #0 Exam Review 7

Phasors 4. compute the phasor voltage for the equivalent voltage v s (t v (t = 5cos(377tπ/4 v (t = 5cos(377tπ/ v (t v (t ~ ~ v s (t ~ EEN 30 Discussion #0 Exam Review 8

Phasors 4. compute the phasor voltage for the equivalent voltage v s (t v (t = 5cos(377tπ/4 v (t = 5cos(377tπ/ v (t v (t ~ ~. Write voltages in phasor notation ( ( j j 5e 5 5e j j / 4 4 / v s (t ~ 5 EEN 30 Discussion #0 Exam Review 9

Phasors 4. compute the phasor voltage for the equivalent voltage v s (t v (t = 5cos(377tπ/4 v (t = 5cos(377tπ/ v (t v (t ~ ~ ( j onvert to 5 4 rectangula r :. Write voltages in phasor notation. onvert phasor voltages from polar to rectangular form (see Appendix A ( j onvert to 5 rectangula r : v s (t ~ ( j 5 cos 0.6 j5 sin 4 j0.6 4 ( j 5 cos 4.49 j5 sin j3.88 EEN 30 Discussion #0 Exam Review 0

Phasors 4. compute the phasor voltage for the equivalent voltage v s (t v (t = 5cos(377tπ/4 v (t = 5cos(377tπ/ v (t v (t ~ ~. Write voltages in phasor notation. onvert phasor voltages from polar to rectangular form (see Appendix A 3. ombine voltages v s (t ~ S ( j ( j ( j 5.0 j4.49 EEN 30 Discussion #0 Exam Review

Phasors 4. compute the phasor voltage for the equivalent voltage v s (t v (t v (t = 5cos(377tπ/4 v (t = 5cos(377tπ/ ~. Write voltages in phasor notation. onvert phasor voltages from polar to rectangular form (see Appendix A 3. ombine voltages 4. onvert rectangular back to polar v (t ~ S ( j onvert 5.0 to polar : j4.49 r (5.0 (4.49 8.98 tan 4.49 5.0 v s (t ~ S ( j 6 8.98 6 EEN 30 Discussion #0 Exam Review

Phasors 4. compute the phasor voltage for the equivalent voltage v s (t v (t v (t v s (t v (t = 5cos(377tπ/4 v (t = 5cos(377tπ/ ~ ~ ~ S ( j v S ( t. Write voltages in phasor notation. onvert phasor voltages from polar to rectangular form (see Appendix A 3. ombine voltages 4. onvert rectangular back to polar 5. onvert from phasor to time domain 8.98 6 8.98 cos 377 t 6 Bring ωt back NB: the answer is NOT simply the addition of the amplitudes of v (t and v (t (i.e. 5 5, and the addition of their phases (i.e. π/4 π/ EEN 30 Discussion #0 Exam Review 3

Phasors 4. compute the phasor voltage for the equivalent voltage v s (t v (t = 5cos(377tπ/4 v (t = 5cos(377tπ/ v (t ~ v (t v s (t ~ ~ S ( j v S ( t 8.98 6 8.98 cos 377 t 6 Im 4.49 π/6 s(jω Re 5.0 EEN 30 Discussion #0 Exam Review 4

Impedance Impedance: complex resistance (has no physical significance will allow us to use network analysis methods such as node voltage, mesh current, etc. apacitors and inductors act as frequency-dependent resistors i(t i(t i(t v s (t ~ R v R (t v s (t ~ v (t v s (t ~ v (t I(jω s (jω ~ (jω EEN 30 Discussion #0 Exam Review 5

Impedance Impedance of resistors, inductors, and capacitors I(jω Im ω Phasor domain s (jω ~ (jω π/ R Re -π/ -/ω R R R ( j R ( j j ( j j EEN 30 Discussion #0 Exam Review 6

Impedance 5. find the equivalent impedance ( EQ ω = 0 4 rads/s, = 0uF, R = 00Ω, R = 50Ω, = 0mH R EQ R EEN 30 Discussion #0 Exam Review 7

Impedance 5. find the equivalent impedance ( EQ ω = 0 4 rads/s, = 0uF, R = 00Ω, R = 50Ω, = 0mH R R EQ EQ R R R (/ j (/ j R j R j(0 50 (0 50 j5.9 j9.6 9.8 (.37 4 0 6 (50 EEN 30 Discussion #0 Exam Review 8

Impedance 5. find the equivalent impedance ( EQ ω = 0 4 rads/s, = 0uF, R = 00Ω, R = 50Ω, = 0mH R EQ R EQ R 00 j 9.8 j(0 4 (0 (.37.9 j9.6 EQ 0.9 j90.38 EQ 36. 0.73 EQ 9.8 (.37 NB: at this frequency (ω the circuit has an inductive impedance (reactance or phase is positive EEN 30 Discussion #0 Exam Review 9

A R ircuits A ircuit Analysis. Identify the A sources and note the excitation frequency (ω. onvert all sources to the phasor domain 3. Represent each circuit element by its impedance 4. Solve the resulting phasor circuit using network analysis methods 5. onvert from the phasor domain back to the time domain EEN 30 Discussion #0 Exam Review 30

A R ircuits 6. find i a (t and i b (t v s (t = 5cos(500t, R = 00Ω, R = 75Ω, = 0.5H, = uf R v s (t ~ i a (t i b (t R EEN 30 Discussion #0 Exam Review 3

A R ircuits 6. find i a (t and i b (t v s (t = 5cos(500t, R = 00Ω, R = 75Ω, = 0.5H, = uf R. Note frequencies of A sources v s (t ~ i a (t i b (t R Only one A source - ω = 500 rad/s EEN 30 Discussion #0 Exam Review 3

A R ircuits 6. find i a (t and i b (t v s (t = 5cos(500t, R = 00Ω, R = 75Ω, = 0.5H, = uf R. Note frequencies of A sources. onvert to phasor domain v s (t ~ i a (t i b (t R R s (jω ~ I a (jω I b (jω R EEN 30 Discussion #0 Exam Review 33

A R ircuits 6. find i a (t and i b (t v s (t = 5cos(500t, R = 00Ω, R = 75Ω, = 0.5H, = uf R. Note frequencies of A sources. onvert to phasor domain 3. Represent each element by its impedance s (jω ~ I a (jω I b (jω R s v s ( t ( j 5 cos( 5 0 t 5e j0 j / j R R 00 j(500(0.5 j750 R R 75 / j(500 (0 j667 6 EEN 30 Discussion #0 Exam Review 34

EEN 30 Discussion #0 Exam Review 35 A R ircuits 6. find i a (t and i b (t v s (t = 5cos(500t, R = 00Ω, R = 75Ω, = 0.5H, = uf 0 ( 0 ( 0 ( ( ( K at b : R b a R b b b a R I I I I I I j j j R s (jω ~ R I a (jω I b (jω 667 750 75 00 j j R R 4. Solve using network analysis Mesh current s b R a s b a R a R s I I I I I j j j ( ( 0 ( ( ( K at a :

A R ircuits 6. find i a (t and i b (t v s (t = 5cos(500t, R = 00Ω, R = 75Ω, = 0.5H, = uf R 4. Solve using network analysis Mesh current s (jω ~ I a (jω I b (jω R I I a a ( 00 j667 I ( j667 ( j667 I (75 j83 b b 5 0 I I 0.003 0.09 0.97.49 A A EEN 30 Discussion #0 Exam Review 36

A R ircuits 6. find i a (t and i b (t v s (t = 5cos(500t, R = 00Ω, R = 75Ω, = 0.5H, = uf R 5. onvert to Time domain s (jω ~ I 0.003 0.97 A I R a (jω I (jω i ( t 3.cos(500 t 0.97 ma b I i ( t 0.09.49 A 9 cos(500t.49 ma EEN 30 Discussion #0 Exam Review 37

A Equivalent ircuits Thévenin and Norton equivalent circuits apply in A analysis Equivalent voltage/current will be complex and frequency dependent I Thévenin Equivalent Source oad Norton Equivalent I I T (jω T oad I N (jω N oad EEN 30 Discussion #0 Exam Review 38

A Equivalent ircuits omputation of Thévenin and Norton Impedances:. Remove the load (open circuit at load terminal. ero all independent sources oltage sources short circuit (v = 0 urrent sources open circuit (i = 0 3. ompute equivalent impedance across load terminals (with load removed 3 a 3 a s (jω 4 4 T b b NB: same procedure as equivalent resistance EEN 30 Discussion #0 Exam Review 39

A Equivalent ircuits omputing Thévenin voltage:. Remove the load (open circuit at load terminals. Define the open-circuit voltage ( oc across the load terminals 3. hose a network analysis method to find oc node, mesh, superposition, etc. 4. Thévenin voltage T = oc 3 a 3 a s (jω 4 s (jω 4 T b NB: same procedure as equivalent resistance b EEN 30 Discussion #0 Exam Review 40

A Equivalent ircuits omputing Norton current:. Replace the load with a short circuit. Define the short-circuit current (I sc across the load terminals 3. hose a network analysis method to find I sc node, mesh, superposition, etc. 4. Norton current I N = I sc 3 a 3 a s (jω 4 s (jω 4 I N b NB: same procedure as equivalent resistance b EEN 30 Discussion #0 Exam Review 4

A Equivalent ircuits 7. find the Thévenin equivalent ω = 0 3 Hz, R s = 50Ω, R = 50Ω, = 0mH, = 0.uF R s v s (t ~ R v EEN 30 Discussion #0 Exam Review 4

A Equivalent ircuits 7. find the Thévenin equivalent ω = 0 3 Hz, R s = 50Ω, R = 50Ω, = 0mH, = 0.uF R s. Note frequencies of A sources Only one A source - ω = 0 3 rad/s v s (t ~ R v EEN 30 Discussion #0 Exam Review 43

A Equivalent ircuits 7. find the Thévenin equivalent ω = 0 3 Hz, R s = 50Ω, R = 50Ω, = 0mH, = 0.uF R s. Note frequencies of A sources. onvert to phasor domain v s (t ~ R v s (jω ~ s D EEN 30 Discussion #0 Exam Review 44

A Equivalent ircuits 7. find the Thévenin equivalent ω = 0 3 Hz, R s = 50Ω, R = 50Ω, = 0mH, = 0.uF s. Note frequencies of A sources. onvert to phasor domain 3. Find T Remove load & zero sources T R R S S S 50 ( j ( j (/ j (/ j j j65.44 8.33 0.98 EEN 30 Discussion #0 Exam Review 45

A Equivalent ircuits 7. find the Thévenin equivalent ω = 0 3 Hz, R s = 50Ω, R = 50Ω, = 0mH, = 0.uF s (jω ~ s T (jω. Note frequencies of A sources. onvert to phasor domain 3. Find T Remove load & zero sources 4. Find T (jω Remove load NB: Since no current flows in the circuit once the load is removed: T 8.33 0.98 T S EEN 30 Discussion #0 Exam Review 46

A Equivalent ircuits 7. find the Thévenin equivalent ω = 0 3 Hz, R s = 50Ω, R = 50Ω, = 0mH, = 0.uF s T s (jω ~ D T (jω ~ D T S T 8.33 0.98 EEN 30 Discussion #0 Exam Review 47

D Transient Response Transient response of a circuit consists of 3 parts:. Steady-state response prior to the switching on/off of a D source. Transient response the circuit adjusts to the D source 3. Steady-state response following the transient response R v s t = 0 R D Source Switch Energy element EEN 30 Discussion #0 Exam Review 48

D Transient Response D Steady-State Initial condition x(0: D steady state before a switch is first activated x(0 : right before the switch is closed x(0 : right after the switch is closed Final condition x( : D steady state a long time after a switch is activated R R t = 0 t v s R R 3 v s R R 3 Initial condition Final condition EEN 30 Discussion #0 Exam Review 49

D Transient Response D Steady-State Remember capacitor voltages and inductor currents cannot change instantaneously apacitor voltages and inductor currents don t change right before closing and right after closing a switch v (0 v (0 i (0 i (0 EEN 30 Discussion #0 Exam Review 50

D Transient Response D Steady-State 8. find the initial and final current conditions at the inductor i s = 0mA t = 0 i s i R EEN 30 Discussion #0 Exam Review 5

D Transient Response D Steady-State 8. find the initial and final current conditions at the inductor i s = 0mA. Initial conditions assume the current across the inductor is in steady-state. t = 0 i s i R i s i NB: in D steady state inductors act like short circuits, thus no current flows through R EEN 30 Discussion #0 Exam Review 5

D Transient Response D Steady-State 8. find the initial and final current conditions at the inductor i s = 0mA. Initial conditions assume the current across the inductor is in steady-state. i s i i (0 i s 0mA EEN 30 Discussion #0 Exam Review 53

D Transient Response D Steady-State 8. find the initial and final current conditions at the inductor i s = 0mA. Initial conditions assume the current across the inductor is in steady-state.. Throw the switch t = 0 i s i R i R NB: inductor current cannot change instantaneously EEN 30 Discussion #0 Exam Review 54

D Transient Response D Steady-State 8. find the initial and final current conditions at the inductor i s = 0mA. Initial conditions assume the current across the inductor is in steady-state.. Throw the switch t = 0 i s i R i R i (0 i (0 0mA NB: polarity of R NB: inductor current cannot change instantaneously EEN 30 Discussion #0 Exam Review 55

D Transient Response D Steady-State 8. find the initial and final current conditions at the inductor i s = 0mA t = 0. Initial conditions assume the current across the inductor is in steady-state.. Throw the switch 3. Final conditions i s i R i ( 0A NB: in D steady state inductors act like short circuits EEN 30 Discussion #0 Exam Review 56

D Transient Response Solving st order transient response:. Solve the D steady-state circuit: Initial condition x(0 : before switching (on/off Final condition x( : After any transients have died out (t. Identify x(0 : the circuit initial conditions apacitors: v (0 = v (0 Inductors: i (0 = i (0 3. Write a differential equation for the circuit at time t = 0 Reduce the circuit to its Thévenin or Norton equivalent The energy storage element (capacitor or inductor is the load The differential equation will be either in terms of v (t or i (t Reduce this equation to standard form 4. Solve for the time constant apacitive circuits: τ = R T Inductive circuits: τ = /R T 5. Write the complete response in the form: x(t = x( [x(0 - x( ]e -t/τ EEN 30 Discussion #0 Exam Review 57

D Transient Response 9. find v c (t for all t v s =, v (0 = 5, R = 000Ω, = 470uF R v s t = 0 i(t v (t EEN 30 Discussion #0 Exam Review 58

D Transient Response 9. find v c (t for all t v s =, v (0 = 5, R = 000Ω, = 470uF v s t = 0 i(t R v (t. D steady-state a Initial condition: v (0 b Final condition: v ( v ( t 0 v (0 5 NB: as t the capacitor acts like an open circuit thus v ( = v S v ( v S EEN 30 Discussion #0 Exam Review 59

D Transient Response 9. find v c (t for all t v s =, v (0 = 5, R = 000Ω, = 470uF R. ircuit initial conditions: v (0 v s t = 0 i(t v (t v (0 v 5 (0 EEN 30 Discussion #0 Exam Review 60

D Transient Response 9. find v c (t for all t v s =, v (0 = 5, R = 000Ω, = 470uF R 3. Write differential equation (already in Thévenin equivalent at t = 0 v s t = 0 i(t v (t v S R i v R ( t ( t R dv ( t dt K : v v v ( t ( t ( t 0 v v S S EEN 30 Discussion #0 Exam Review 6

D Transient Response 9. find v c (t for all t v s =, v (0 = 5, R = 000Ω, = 470uF R 4. Find the time constant τ v s t = 0 i(t v (t R (000(470 0 6 0.47 K S F v S EEN 30 Discussion #0 Exam Review 6

D Transient Response 9. find v c (t for all t v s =, v (0 = 5, R = 000Ω, = 470uF R 5. Write the complete response x(t = x( [x(0 - x( ]e -t/τ v s t = 0 i(t v (t v ( t v ( v (0 v ( e t / (5 e t / 0.47 7e t / 0.47 EEN 30 Discussion #0 Exam Review 63

EEN 30 Discussion #0 Exam Review 64 Frequency Response Frequency Response H(jω: a measure of how the voltage/current/impedance of a load responds to the voltage/current of a source ( ( ( j j j H S ( ( ( j I j I j H S I ( ( ( j I j j H S

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF R v s (t R EEN 30 Discussion #0 Exam Review 65

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF R. Note frequencies of A sources v s (t R Only one A source so frequency response H (jω will be the function of a single frequency EEN 30 Discussion #0 Exam Review 66

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF. Note frequencies of A sources. onvert to phasor domain R = R v s (t R s ~ =/jω D =R EEN 30 Discussion #0 Exam Review 67

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF = R. Note frequencies of A sources. onvert to phasor domain 3. Solve using network analysis Thévenin equivalent =/jω T EEN 30 Discussion #0 Exam Review 68

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF = R. Note frequencies of A sources. onvert to phasor domain 3. Solve using network analysis Thévenin equivalent s ~ =/jω T T ( j S ( j T EEN 30 Discussion #0 Exam Review 69

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF T ~ T ( j S T T ( j D ( j. Note frequencies of A sources. onvert to phasor domain 3. Solve using network analysis Thévenin equivalent 4. Find an expression for the load voltage T ( S j ( j T D D D D EEN 30 Discussion #0 Exam Review 70

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF T 5. Find an expression for the frequency response T ~ D H ( j S ( j ( j D D EEN 30 Discussion #0 Exam Review 7

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF T 5. Find an expression for the frequency response T ~ D H ( j 0 D 4 0 3 00 0 j D 0 /( j 4 D /( j 0 5 D 5 0 3 0 /( j 0 5 0 00 arctan 0 EEN 30 Discussion #0 Exam Review 7

Frequency Response 0. compute the frequency response H (jω R = kω, R = 0kΩ, = 0uF T 5. Find an expression for the frequency response ook at response for low frequencies (ω = 0 and high frequencies (ω = 0000 T ~ 00 D H ( j arctan 0 0 ω = 0 H ( j 0.905 0.0907 H ( j ω = 0000 0.00 EEN 30 Discussion #0 Exam Review 73

Basic Filters Electric circuit filter: attenuates (reduces or eliminates signals at unwanted frequencies ow-pass High-pass 0.0 0. 0 0 0. 0 0. ω 0.0 0. 0 0 0. 0 0. ω Band-pass Band-stop 0.0 0.00 0.00. ω 0.0 0. 0 0 0. 0 0. ω EEN 30 Discussion #0 Exam Review 74

Basic Filters Resonant Frequency Resonant Frequency (ω n : the frequency at which capacitive impedance and inductive impedance are equal and opposite (in nd order filters n Impedances in series Impedances in parallel v i (t v o (t v i (t v o (t EEN 30 Discussion #0 Exam Review 75

Basic Filters Resonant Frequency Resonant Frequency (ω n : the frequency at which capacitive impedance and inductive impedance are equal and opposite (in nd order filters Impedances in series i (jω EQ =0 o (jω j EQ 0 j o ( j 0 EEN 30 Discussion #0 Exam Review 76

Basic Filters Resonant Frequency Resonant Frequency (ω n : the frequency at which capacitive impedance and inductive impedance are equal and opposite (in nd order filters Impedances in parallel j j i (jω o EQ = ( j ( j i o (jω EQ / 0 EEN 30 Discussion #0 Exam Review 77

Basic Filters ow-pass Filters ow-pass Filters: only allow signals under the cutoff frequency (ω 0 to pass ow-pass R st Order v i (t v o (t 0.0 0. 0 0 0. 0 0 ω. ω 0 ω ω 3 v i ( t cos( cos( cos( t 3 t t H (jω v o ( t cos( t v i (t R nd Order v o (t EEN 30 Discussion #0 Exam Review 78

Basic Filters High-Pass Filters High-pass Filters: only allow signals above the cutoff frequency (ω 0 to pass High-pass st Order 0.0 0. 0 0 0. 0 0 v i (t R v o (t ω. ω 0 ω ω 3 v i ( t cos( cos( cos( t 3 t t H H (jω v o ( t cos( t 3 v i (t R nd Order v o (t EEN 30 Discussion #0 Exam Review 79

Basic Filters Band-Pass Filters Band-pass Filters: only allow signals between the passband (ω a to ω b to pass 0.0 Band-pass ω ω a ω. ω 3 ω b 0.00 0.00 v i (t R nd Order v o (t v i ( t cos( cos( cos( t 3 t t H B (jω v o ( t cos( t EEN 30 Discussion #0 Exam Review 80

Basic Filters Band-Stop Filters Band-stop Filters: allow signals except those between the stopband (ω a to ω b to pass Band-stop nd Order 0.0 ω ω. a ω ω 3 ω b 0. 0 0 0. 0 0 v i (t R v o (t v i ( t cos( cos( cos( t 3 t t H N (jω v o ( t cos( cos( t 3 t EEN 30 Discussion #0 Exam Review 8

Op-Amps Open-oop Mode Open-oop Model: an ideal op-amp acts like a difference amplifier (a device that amplifies the difference between two input voltages i v v v in i i i o v o v v v in R in R out A O v in v o NB: op-amps have near-infinite input resistance (R in and very small output resistance (R out v o A A O O v in ( v v A O open-loop voltage gain EEN 30 Discussion #0 Exam Review 8

Op-Amps losed-oop Mode ircuit Diagram A Inverting Amplifier R S v S R F v o v o A R R v F S S v S Summing Amplifier R S v S R S v S R Sn v Sn R F v o v o N A On n N RF n Rn v Sn v Sn EEN 30 Discussion #0 Exam Review 83

Op-Amps losed-oop Mode ircuit Diagram A Noninverting Amplifier R S R v S R F v o v o A v S R R F S v S oltage Follower v o v o A v s v s EEN 30 Discussion #0 Exam Review 84

Op-Amps losed-oop Mode ircuit Diagram A Differential Amplifier v R S R S v R F R F v o v o R R F S v v S S EEN 30 Discussion #0 Exam Review 85

Op-Amps losed-oop Mode ircuit Diagram A Ideal Integrator R S v S F v o (t v t o vs ( d R S F Ideal Differentiator v S S R F v o (t v o R F S dvs ( t dt EEN 30 Discussion #0 Exam Review 86

Op-Amps. find an expression for the gain F = /6 F, R = 3Ω, R = Ω, S = /6 F F v s (t R i F (t R v v o (t i (t i (t i S (t S i in v EEN 30 Discussion #0 Exam Review 87

Op-Amps. find an expression for the gain F = /6 F, R = 3Ω, R = Ω, S = /6 F s (jω I (jω Node a Node b I F (jω F =/jω F v I (jω I S (jω S I in v o (jω a. Transfer to frequency domain. Apply K at nodes a and b S F a o F o I a K at a : I F a F I o 0 0 S NB: v = v and I in = 0 a 3 j 6 o j 6 S 3 EEN 30 Discussion #0 Exam Review 88

Op-Amps. find an expression for the gain F = /6 F, R = 3Ω, R = Ω, S = /6 F s (jω I (jω Node a Node b I F (jω F =/jω F v I (jω I S (jω S I in v o (jω. Transfer to frequency domain. Apply K at nodes a and b a a o I o K at b : S I S o S I in 0 0 0 0 a o j 6 0 EEN 30 Discussion #0 Exam Review 89

Op-Amps. find an expression for the gain F = /6 F, R = 3Ω, R = Ω, S = /6 F s (jω I (jω I F (jω F =/jω F v I (jω I S (jω S I in v o (jω. Transfer to frequency domain. Apply K at nodes a and b 3. Express o in terms of s 5 j 3 j a 3 3 j a o o 0 S o 6 j5 S 6 EEN 30 Discussion #0 Exam Review 90

Op-Amps. find an expression for the gain F = /6 F, R = 3Ω, R = Ω, S = /6 F s (jω I F (jω F =/jω F v o (jω. Transfer to frequency domain. Apply K at nodes a and b 3. Express o in terms of S 4. Find the gain ( o / S I (jω I (jω I S (jω S I in v o S 6 j5 6 EEN 30 Discussion #0 Exam Review 9