Dust attenuation in the Universe: what do we know about its variation with redshift and from galaxy to galaxy

Similar documents
The ALMA z=4 Survey (AR4S)

Dusty star-forming galaxies at high redshift (part 5)

A mid and far-ir view of the star formation activity in galaxy systems and their surroundings

Star forming galaxies at high redshift: news from Herschel

How to measure star formation rates in galaxies?

HerMES: dust attenuation and star formation activity in ultraviolet-selected samples from z 4 to 1.5

The Herschel Multi-tiered Extragalactic Survey (HerMES) The Evolution of the FIR/SMM Luminosity Function and of the Cosmic SFRD

The bolometric output of AGN in the XMM-COSMOS survey

arxiv: v1 [astro-ph.co] 5 Aug 2013

The evolution of the Galaxy Stellar Mass Function:

LePhare Download Install Syntax Examples Acknowledgement Le Phare

Dusty star-forming galaxies at high redshift (part 5)

SOFIA/HAWC+ Detection of a Gravitationally Lensed Starburst Galaxy at z = 1.03

The History of Star Formation. Mark Dickinson, NOAO

The Far-Infrared Radio Correlation in Galaxies at High Redshifts

Margherita Talia 2015 A&A, 582, 80 ELG2017. University of Bologna. m g 1

The main sequence from stars to galaxies pc kpc Mpc. Questions

High-redshift galaxies

Measuring star formation in galaxies and its evolution. Andrew Hopkins Australian Astronomical Observatory

arxiv: v1 [astro-ph.ga] 8 Jun 2015

The Cosmic History of Star Formation. James Dunlop Institute for Astronomy, University of Edinburgh

THE CONNECTION BETWEEN STAR FORMATION AND DARK MATTER HALOS AS SEEN IN THE INFRARED

Chapter 2 The Main Sequence of Star-Forming Galaxies as Seen by Herschel

Searching for the dominant mode of galaxy growth! from deep extragalactic Herschel surveys! D.Elbaz (CEA Saclay)

Galaxy Evolution at High Redshift: The Future Remains Obscure. Mark Dickinson (NOAO)

Photometric Redshifts for the NSLS

The The largest assembly ESO high-redshift. Lidia Tasca & VUDS collaboration

Evolution of Star Formation Activity of Galaxies as seen by Herschel

arxiv: v1 [astro-ph.co] 19 Nov 2012

Chien-Ting Chen! Dartmouth College

AKARI-NEP : EFFECTS OF AGN PRESENCE ON SFR ESTIMATES OF GALAXIES

arxiv: v2 [astro-ph.ga] 14 May 2018

Encoding of the infrared excess (IRX) in the NUVrK color diagram for star-forming galaxies

20x increase from z = 0 to 2!

The role of massive halos in the cosmic star formation history

Introduction and Motivation

Remember : it all started with island universes...

Dust properties of galaxies at redshift z 5-6

Occupy Dark Matter: Accessing the 99% of dusty galaxies that lie beneath the confusion noise floor. Marco Viero - Caltech

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Extragalactic Surveys: Prospects from Herschel-PACS

INVESTIGATING Hα, UV, AND IR STAR-FORMATION RATE DIAGNOSTICS FOR A LARGE SAMPLE OF z 2 GALAXIES

IRAC Deep Survey Of COSMOS

High Redshift Universe

SNAP Photometric Redshifts and Simulations

Subaru/WFIRST Synergies for Cosmology and Galaxy Evolution

Radio Quiet AGN: Black Hole & Host Galaxy Proper;es

Dust. The four letter word in astrophysics. Interstellar Emission

arxiv: v2 [astro-ph.co] 4 Sep 2013

Nearby Universe: Rapporteur

Andromeda in all colours

The star formation history of mass-selected galaxies in the COSMOS field

Highlights from the VIMOS VLT Deep Survey

A Monster at any other Epoch:

IRS Spectroscopy of z~2 Galaxies

Polycyclic Aromatic Hydrocarbon from the Magellanic Clouds

Outline. Continuum Phenomena Interstellar Dust Ionized Gas Synchrotron Radiation. Emission Line Phenomena HII Regions Photo-Dissociation Regions

The Interstellar Medium in Galaxies: SOFIA Science

Extragalactic Background Light and Cosmic Infrared Background

Physical properties of high-z star-forming galaxies with FMOS-COSMOS

Evolution of cosmic star formation in the SCUBA-2 Cosmology Legacy Survey

Star Formation Indicators

Primeval Starbursting Galaxies: Presentation of Lyman-Break Galaxies by Mauro Giavalisco. Jean P. Walker Rutgers University

arxiv: v1 [astro-ph.co] 11 Jan 2012

Mock Surveys of the Sub-millimetre Sky

15m James Clerk Maxwell Telescope (JCMT) Surface accuracy : 24 micron Pointing accuracy : 2 arcsec in Azimuth and Elevation

THE GAS MASS AND STAR FORMATION RATE

Cosmological Background Radiation and Extragalactic Gamma-ray Opacity

Measures of star formation rates from infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields

Towards a Complete Census of Extreme Starbursts in the Early Universe

arxiv: v1 [astro-ph] 4 Mar 2008

Dust Formation History with Galaxy Evolution

Far-infrared Herschel SPIRE spectroscopy reveals physical conditions of ionised gas in high-redshift lensed starbursts

Kai Noeske Keck Foundation Fellow Harvard-Smithsonian Center for Astrophysics

Molecules at High Redshift (CO in Spitzer and Herschel-selected High-z Samples) David T. Frayer (NRAO), H-ATLAS, GOODS-H, FIDEL, and Zpectrometer

GOODS-Herschel: radio-excess signature of hidden AGN activity in distant star-forming galaxies. (Affiliations can be found after the references)

Astronomy. Astrophysics. Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey

Gas Masses and Gas Fractions: Applications of the Kennicutt- Schmidt Law at High Redshift

Current Status of JINGLE

Lifecycle of Dust in Galaxies

Dusty Universe viewed by AKARI far infrared detector

High-z star formation the Herschel view

Extinction law variations and dust excitation in the spiral galaxy NGC 300

Astronomy. Astrophysics. The evolution of the dust temperatures of galaxies in the SFR M plane up to z 2,

All Radiation Backgrounds from Star-Forming Galaxies

GRB Host Galaxies and the Uses of GRBs in Cosmology

Daichi Kashino Nagoya

Star formation history in high redshift radio galaxies

Active Galactic Nuclei SEDs as a function of type and luminosity

Multi-wavelength ISM diagnostics in high redshift galaxies

Connection between AGN and Star Formation activities, or not?

Dusty star-forming galaxies at high redshift (part 7)

arxiv: v1 [astro-ph.co] 18 Jan 2013

arxiv: v1 [astro-ph.ga] 27 Mar 2018

First results from the Stockholm VIMOS Supernova Survey

Distant galaxies: a future 25-m submm telescope

arxiv: v1 [astro-ph.ga] 3 Oct 2016

Closing in on the NIRB & γ-ray Opacities

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

Transcription:

Dust attenuation in the Universe: what do we know about its variation with redshift and from galaxy to galaxy Véronique Buat (LAM, France) Barbara Lo Faro (LAM, France), Sébastien Heinis (UMD, USA), Nagisa Oi (ISAS, Japan) & Denis Burgarella (LAM, France) And many collaborators from Herschel and AKARI surveys teams and the HELP european network AKARI Herschel

General context Courtesy of D. Elbaz dust UV op5cal IR intensity wavelength log(l IR /L UV ) Both UV and IR emissions are related to recent star forma5on and to dust a7enua5on Buat+11 Wi4 & Gordon 2000

COSMOS field: Almost no counterpart of UV-rest frame selected sources in Herschel images On the need of stacking... U U band image Z = 1.5 Takeuchi+06 250 microns Less than 1% of galaxies are detected stacking Heinis+13

Are we able to see all the universe in UV? Z=1.5 Burgarella+13 Heinis+13

SFR measurements need correcnons for apenuanon IR only UV & IR combined UV only Madau & Dickinson 2014

Dust apenuanon has also an impact on M * determinanon Model: GALFORM semi- analyncal modelling Fit: SED fi]ng with standard recipes: BC03 SPS, Calze] ap. Law, exponennally declining SFR Without FIR/ submm data Mitchell+ 2013

About dust a7enua5on in the universe: outline The global amount of a7enua5on in the universe: UV and IR luminosity densi5es A7enua5on in samples of single galaxies: - UV emimng galaxies: - IR selected galaxies à A consistent picture with the stellar mass as main driver of dust a7enua5on The a7enua5on law: a universal one?à NO

About dust a7enua5on in the universe The global amount of a7enua5on in the universe: UV and IR luminosity densi5es Amount of a7enua5on for: - UV emimng galaxies: Z=1.5, 3 & 4 COSMOS field with Herschel (HERMeS data) - IR selected galaxies NEP- AKARI field, 0<z<2 The a7enua5on law: a universal one à NO

ρ(l IR ) / ρ(l UV ) as a measure of <A(UV)> in the universe Burgarella, Buat et al. +13 (& Takeuchi, Buat & Burgarella+05) Herschel (IR) and op5cal surveys (UV) ρ(l IR ) / ρ(l UV ) A UV (mag) APenuaNon increases up to z=1 and then decreases

About dust a7enua5on in the universe The global amount of a7enua5on in the universe: UV and IR luminosity densi5es Dust a7enua5on in samples of single galaxies: - UV emimng galaxies: - IR selected galaxies NEP- AKARI field, 0<z<2 The a7enua5on law: a universal one à NO

EvoluNon of dust apenuanon with z: global and UV selecnon 5 AUV(mag) 4 3 2 Global ρ IR /ρ UV 1 0 UV (rest- frame) samples 0 0:2 0:4 0:6 0:8 1:0 1:2 1:4 1:6 1:8 2:0 redshift Buat+15 UV selected samples: similar to the global one measured with ρ IR / ρ UV

Study of UV selected galaxies in the COSMOS field @ z=1.5, 3 & 4 Heinis+13,+14 HerMES project UV selected Samples Based on photometric redshies (Ilbert+13) FUV restframe selections z~1.5: u-band selection (1.2<z<1.7), 41,102 galaxies z~3 : r-band selection (2.75<z<3.25), 23,774 galaxies z~4 : i-band selection (3.5<z<4), 7,713 galaxies COSMOS meeting DC June 2012 3

Adding the IR to the UV: Almost no counterpart of UV selected sources in Herschel images!! On the need of stacking... U 250 microns Z = 1.5 WE MUST STACK Less than 1% of galaxies are detected stacking COSMOS meeting DC June 2012 4

Heinis+13,+14 Z=1.5 No trend of L IR /L UV with L UV The same average L IR /L UV is measured for any cut in L IR <A UV > for galaxies < AUV > brighter (mag) than L UV 3:0 2:5 2:0 1:5 Heinis + 13 Burgarella + 13 1:0 8:0 8:5 9:0 9:5 10:0 10:5 log(l UV )L <A UV > in any UV selec5on is similar to the average a7enua5on

About dust a7enua5on in the universe The global amount of a7enua5on in the universe: UV and IR luminosity densi5es Amount of a7enua5on for: - UV emimng galaxies: - IR selected galaxies NEP- AKARI field, 0<z<2 The a7enua5on law: a universal one à NO

A 8 µm rest- frame selec5on in the NEP- AKARI deep field Buat+15 Similar selecnon in Goto+10 0.15<z<0.49 0.75<z<1.34 1.34<z<1.85 1.7<z<2.05 log(lir) 13.0 12.5 12.0 11.5 11.0 1661 1906 460 50 Photo- z from Oi+14 AKARI sources from Murata+13 PACS data for 599 sources 10.5 10.0 9.5 4077 sources Sub- selec0on around L IR * (bin=0.6 dex) 9.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 redshift

Going back to the evolunon of dust apenuanon (A UV ) with z 5 NEP AUV(mag) 4 3 2 ~2 mag APenuaNon in IR selected galaxies ~2 mag higher than the average of the universe 1 global a7enua5on from luminosity densi5es (Burgarella+13) 0 0 0:2 0:4 0:6 0:8 1:0 1:2 1:4 1:6 1:8 2:0 redshift

EvoluNon of dust apenuanon with z 5 IR selec5on AUV(mag) 4 3 2 NEP (Buat+15) Oi +16 Buat+06,08 n Choi+06 1 0 0 0:2 0:4 0:6 0:8 1:0 1:2 1:4 1:6 1:8 2:0 redshift IR selected samples : Slight increase of the apenuanon with redshie for galaxies producing the bulk of the IR energy (L * IR galaxies) UV selected samples: much lower apenuanon, similar to the global one measured with ρ IR / ρ UV

Heinis+14 Dust a7enua5on increases with M *, a universal correla5on? Garn & Best 2010 Ibar+2013, Heinis+2014, Price+2014, Panella+2015

EvoluNon of dust apenuanon with z 5 AUV(mag) 4 3 2 1 UV selec5ons If we select galaxies with the same stellar mass as in the IR selecnon Similar apenuanon 0 0 0:2 0:4 0:6 0:8 1:0 1:2 1:4 1:6 1:8 2:0 redshift

Towards a consistent model?

Ilbert+13 Heinis+14 L IR /L UV for each M star M star A stellar mass distribunon at different z Béthermin+12 A SFR for each M star MOCK CATALOGUE For each Bernhard+14 M star at any z SFR = SFR(IR)+SFR(UV) =k IR L IR +K UV L UV L IR /L UV à L IR & L UV

5 Model of Bernhard+14 4 AUV(mag) 3 2 1 0 0 0:2 0:4 0:6 0:8 1:0 1:2 1:4 1:6 1:8 2:0 redshift

About dust a7enua5on in the universe The global amount of a7enua5on in the universe: UV and IR luminosity densi5es Amount of a7enua5on for single galaxies: - UV emimng galaxies: - IR selected galaxies à A consistent model based on stellar mass to reproduce the a7enua5on found in UV and IR selected samples

About dust a7enua5on in the universe The global amount of a7enua5on in the universe: UV and IR luminosity densi5es Amount of a7enua5on for: - UV selected galaxies: Z=1.5, 3 & 4 COSMOS field with Herschel (HERMeS data) - IR selected galaxies NEP- AKARI field, 0<z<2 Wi4 & Gordon 00

Absolute and differen5al a7enua5on F(λ) Dust Differen5al a7enua5on characterized by the a7enua5on curve A(λ)/E(B- V) Combined effects of dust proper5es, complex geometry, stellar popula5ons. Amount of obscura5on constrained by the energy budget between dust and stellar emission A UV L IR / L UV robust es5mator of A UV λ 1 λ 2 Cosmology school Kielce july 201 Wavelength

A7enua5on ex5nc5on Attenuation in a galaxy, stars and dust are mixed MW ExNncNon curve along one ligne of sight, depends on dust propernes only Wi4 & Gordon 2000 APenuaNon law for extended objects depends on dust propernes and dust- stars geometry

Subaru/MUSYC broad and intermediate band filters (Cardamone+10) +IRAC & MIPS data (Dickinson+03) +GOODS- Herschel/PACS data 751 galaxies, 236 galaxies detected with MIPS,

Count 80 70 160 60 50 δ = - 0.27 +/- 0.17 140 120 E b = 1.6 +/- 0.4 40 100 30 20 10 Slope SMC LMC2 0-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1-0.0 0.1 0.2 delta CC00 Count 200 180 80 60 40 20 LMC2 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Close to the values of the LMC2 ex5nc5on curve Bump amplitude MW Bumps confirmed in ~20% of the global sample and ~40-50 % of galaxies observed in mid and far IR SMC A(λ) k(λ) = E(B V ) + E b λ 2 γ 2 (λ 2 λ 2 0 ) + λ 2 γ 2 Calze] law λ λ V E b = 1.6 +/- 0.4 δ = - 0.27 +/- 0.17 δ LMC C00 C00: Starburst law, Calze]. 00 Z~2 Buat+11,12

Kriek & Conroy 13 : Shallower curves and A bump also found by weaker bumps for large Kriek & Conroy 13 on ssfr composite 0.5<z<2 SEDs: Shallower curves and weaker bumps for large ssfr Scoville+15 W(Hα) ssfr Scoville+15 Zeimann+15: Emission line galaxies: Shallower curves than Calze] s one, steepening when M* increases z~2 Z~2 Reddy+15

Salmon+15, CANDELS data, 1.5<z<3 galaxies detected with MIPS/24 µm δ= (0.62±0.05) log(e B- V )+0.26±0.02

(Very) tentative conclusion? An apenuanon curve Calze] like or steeper (LMC like) with bumps @ 215 nms present in >20% of galaxies flapening when the ssfr and E(B- V) increases? BUT Likely to be also dependent on the selecnon of the targets (UV (first selecnon) + IR data if any ) Going from a UV- op5cal/ir selec5on to a far- IR selec5on - - > A more complicated situa5on!

Herschel Extragalactic Legacy Project FP7/SPaCE P.I. Seb Oliver A census of galaxy popula5ons and their star forma5on history from the local to the distant universe «UlNmate «source extracnon in all the cosmological Herschel fields (including HerMES and H- ATLAS surveys), UV to radio complementary data photo- z, SFR, M * for all the sources

Project&Aim% Lo Faro et al. In prep TO&INVESTIGATE&THE&DUST&ATTENUATION&PROPERTIES&OF&IR8 SELECTED&GALAXIES&AT&LOW&AND&HIGH8z&& THROUGH%THE%CHARAZTERIZATION%OF%THE%DETAILED%SHAPE,%FROM%FARRUV%TO%NIR,%OF% THEIR%ATTENUATION%CURVES% Strategy% PHENOMENOLOGICAL&SED&MODELLING&& Physically- mo5vated INCLUDING&ENERGY&BALANCE&(stellar%SED%% SED modelling modeled%consistently%with%dust%reprocessed% IR%SED)%(CIGALE&8&Noll&et&al,2009,&Ciesla CIGALE, MAGPHYS (like) +2015,&MAGPHYS& &Da&Cunha&et&al.2008)% cigale.lam.fr UV- to- FIR SED fimng (Lo&Faro,&Buat&et&al.)& Data&Sample:&WP9&reference&sample% ON THEORETICAL&MODELING&BASED&ON&RT& COMPUTATIONS& Radia5on transfer SED modelling (GRASIL& &SILVA&ET&AL.~1998,2001)% GRASIL adlibitum.oats.inaf.it/silva/grasil/grasil.html WELL&KNOWN&SAMPLE&FOR&WHICH&A&WEALTH&OF&DATA&IS&AVAILABLE&&&& RT8based&soluVons&have&been&already&computed&in&detail% High8z&dust&obscured&normal&star&forming&(U)LIRGs&(Lo% Z~1 LIRGs and Z~2 ULIRGs) (from Lo Faro+13,15). Faro%et%al.%2013,2015)%[10%z~1%LIRGs%and%21%z~2%(U)LIRGs]% nearby&(u)lirgs&from&goals&(armus%et%al.%2009)%sample%

The apenuanon laws considered in the work Charlot & Fall 2000 and Magphys recipes = 10 7 years Calze] and Calze] modified laws A(λ) k(λ) = E(B V ) + E b λ 2 γ 2 (λ 2 λ 2 0 ) + λ 2 γ 2 + f ap λ λ V δ δ=- 0.13 Courtesy of Barbara Lo Faro

Comparison of different apenuanons curves: SED modelling with Cigale, Magphys and Grasil Lo Faro+16: (in prep)

IR luminous galaxies (LIRGs and ULIRGs): a flaper apenuanon curve, not only in UV, not reproduced by starburst like apenuanon curves. For the whole sample of ULIRGs <δ ISM > -0.4

Chevallard et al. 2013: APenuaNon in opncal- NIR 0.55<λ<1.6 μm CompilaNon of RadiaNve Transfer modeling results All predict a grayer apenuanon for an increasing apenuanon δ ISM - n ISM

How do these ``fla7er a7enua5on curves affect the NIR- to- FIR SED? DBPL free ap curve Calze] (2000) Extra a7enua5on in The NIR! A larger amount of a7enua5on at longer wavelengths (NIR) than allowed by Calze](2000) ap. law. (Mitchell (2013), Da Cunha(2010)) à Affects the determina5on of the stellar mass

As a consequence impact on the posinon of the «Main Sequence» Lo Faro+2015

Few words to conclude The absolute amount of a7enua5on: well determined when far- IR data are available A good and universal (?) correlanon with the stellar mass: reconcile UV and IR selecnons The differen5al a7enua5on: depends on the apenuanon curve which is not universal, may flapen for IR bright galaxies and galaxies with a large ssfr, dust apenuanon. more work and stansncs is needed, varianon with the ISM propernes, redshie, ssfr

Conclusion: an apenuanon curve Calze] like or steeper (SMC like) with bumps present in >20% of galaxies BUT, not so simple

Fi]ng the full SED with Cigale

k(λ) = Parametriza5on of the a7enua5on curve A(λ) E(B V ) + E b λ 2 γ 2 (λ 2 λ 0 2 ) + λ 2 γ 2 Calzetti et al. (2000) UV bump Fitzpatrick & Massa formalism λ λ V δ power law δ E b

Dust attenuation L IR /L FUV versus M * for UV selected galaxies Heinis+14 Lyman- Break Galaxies Alvarez- Marquez et al. 2015 100 Z=3 Z=1.5 Z=3 Z=4 L IR /L FUV 10 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 log(m * [M O ]) A (L IR /L FUV, M * ) correla5on which does not seem to vary with z Consistent results found by Panella+14 for a mass selecnon

L IR measured by fi]ng Dale & Helou (2002) templates on SPIRE data UV selected galaxies à LIRGs and sub- LIRGs Flat distribu5on of L IR /L UV versus L UV Heinis+13,14