A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM

Similar documents
GENETIC ALGORlIHMS WITH AN APPLICATION TO NONLINEAR TRANSPORTATION PROBLEMS

APPLICATION OF AUTOMATION IN THE STUDY AND PREDICTION OF TIDES AT THE FRENCH NAVAL HYDROGRAPHIC SERVICE

Designing the Human Machine Interface of Innovative Emergency Handling Systems in Cars

A L A BA M A L A W R E V IE W

Large chunks. voids. Use of Shale in Highway Embankments

Nov Julien Michel

V o l. 21, N o. 2 M ar., 2002 PRO GR ESS IN GEO GRA PH Y ,, 2030, (KZ9522J 12220) E2m ail: w igsnrr1ac1cn

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

P a g e 5 1 of R e p o r t P B 4 / 0 9

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

The Effectiveness of the «Checkpoint Tennessee» Program

Procedures for Computing Classification Consistency and Accuracy Indices with Multiple Categories

H STO RY OF TH E SA NT

Few thoughts on PFA, from the calorim etric point of view

OPTIMISATION PROCESSES IN TIDAL ANALYSIS

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Applying Metrics to Rule-Based Systems

Rotary D ie-cut System RD series. RD series. Rotary D ie-cut System

What are S M U s? SMU = Software Maintenance Upgrade Software patch del iv ery u nit wh ich once ins tal l ed and activ ated prov ides a point-fix for

W Table of Contents h at is Joint Marketing Fund (JMF) Joint Marketing Fund (JMF) G uidel ines Usage of Joint Marketing Fund (JMF) N ot P erm itted JM

EKOLOGIE EN SYSTEMATIEK. T h is p a p e r n o t to be c i t e d w ith o u t p r i o r r e f e r e n c e to th e a u th o r. PRIMARY PRODUCTIVITY.

F O R M T H R E E K enya C ertificate of Secondary E ducation

LSU Historical Dissertations and Theses

T h e C S E T I P r o j e c t

Impact of Drink-drive Enforcement and Public Education Programs in Victoria, Australia

TIDAL PREDICTION WITH A SMALL PERSONAL COMPUTER

(2009) Journal of Rem ote Sensing (, 2006) 2. 1 (, 1999), : ( : 2007CB714402) ;

Effect of Methods of Platelet Resuspension on Stored Platelets

I AM ASLEEP. 1. A nostalgia fo r Being. 2. The life force

Form and content. Iowa Research Online. University of Iowa. Ann A Rahim Khan University of Iowa. Theses and Dissertations

On the M in imum Spann ing Tree Determ ined by n Poin ts in the Un it Square

M a rtin H. B r e e n, M.S., Q u i T. D a n g, M.S., J o se p h T. J a in g, B.S., G reta N. B o y d,

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

S ca le M o d e l o f th e S o la r Sy ste m

Oscar Cubo M edina fi.upm.es)

INERTIAL SURVEY SYSTEM (ISS)

The Ability C ongress held at the Shoreham Hotel Decem ber 29 to 31, was a reco rd breaker for winter C ongresses.

The Measurement of Investment Center Managerial Performance Within Selected Diversified Industrial Firms: an Inquiry.

FKSZ2.E Drivers for Light-emitting-diode Arrays, Modules and Controllers - Component

Internet-assisted Chinese-English Dictionary Compilation

A Study of Drink Driving and Recidivism in the State of Victoria Australia, during the Fiscal Years 1992/ /96 (Inclusive)

DETERMINATION OF FIXED ERRORS IN NAVIGATIONAL (AND HYDROGRAPHIC) DECCA CHAINS

The Ind ian Mynah b ird is no t fro m Vanuat u. It w as b ro ug ht here fro m overseas and is now causing lo t s o f p ro b lem s.

P a g e 3 6 of R e p o r t P B 4 / 0 9

Drugs other than alcohol (medicines and illicit drugs) in people involved in fatal road accidents in Spain

Network Techniques - I. t 5 4

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

EC 219 SA M PLING AND INFERENCE. One and One HalfH ours (1 1 2 H ours) Answerallparts ofquestion 1,and ONE other question.

Ge ttin g S yste m H e lp --- Th e m an C om m an d

HYDROGRAPHIC SOUNDINGS IN SURF AREAS

Introd uction to Num erical Analysis for Eng ineers

(IGBP) km 2,? PRO GR ESS IN GEO GRA PH Y. V o l. 20, N o. 4 D ec., 2001 : (2001) m m 3,

3B/16. L a force portante des fondations en coins

С-4. Simulation of Smoke Particles Coagulation in the Exhaust System of Piston Engine

A GRAPHICAL METHOD OF ADJUSTING A DOUBLY-BRACED QUADRILATERAL

A Comparison of Two Methods of Teaching Computer Programming to Secondary Mathematics Students.

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

M A T R IX M U L T IP L IC A T IO N A S A T E C H N IQ U E O F P O P U L A T IO N AN A L Y S IS

Fr anchi s ee appl i cat i on for m

Soil disturbance during continuous flight auger piling in sand

To link to this article:

THE SHARED MILK RUN THE MISSING LINK IN LEAN MANUFACTUING HOW IT WORKS. spl it - bil l mil kr un. What is it?

Strength of Pressure Vessels with Ellipsoidal Heads

Mark Schem e (Results) March GCSE Mathem atics (Linear) 1MA0 Higher (Calculator) Paper 2H

VEN DA N O VA III R EP O W ER IN G P R O JECT

University Microfilms

HYBRIDISATION OF A WAVE PROPAGATION MODEL (SWASH) AND A MESHFREE PARTICLE METHOD (SPH) FOR REAL APPLICATIONS

The Construction and Testing of a New Empathy Rating Scale

Mark Schem e (Results) Novem ber GCSE Mathem atics (Linear) 1MA0 Higher (Non-Calculator) Paper 1H

Straight Lines. Distance Formula. Gradients. positive direction. Equation of a Straight Line. Medians. hsn.uk.net

Light-absorbing capacity of phytoplankton in the Gulf of Gdańsk in May, 1987

M otor Fault D iagnosis w ith M ultisen sor Da ta Fusion

Feasibility Analysis, Dynamics, and Control of Distillation Columns With Vapor Recompression.

THE SHAPE OF THE EARTH GIVEN BY ARTIFICIAL SATELLITES

M M 3. F orc e th e insid e netw ork or p rivate netw ork traffic th rough th e G RE tunnel using i p r ou t e c ommand, fol l ow ed b y th e internal

Interpretation of Laboratory Results Using M ultidimensional Scaling and Principal C om ponent Analysis*

Alles Taylor & Duke, LLC Bob Wright, PE RECORD DRAWINGS. CPOW Mini-Ed Conf er ence Mar ch 27, 2015

Analysis and Experimental Study of Vibration System Characteristics of Ultrasonic Compound Electrical Machining

SELF-ORGANIZING TEACHING SYSTEMS

Th e E u r o p e a n M ig r a t io n N e t w o r k ( E M N )

Building Validation Suites with Eclipse for M odel-based G eneration Tools

On the convergence of solutions of the non-linear differential equation

Is sweat a suitable specimen for DUI testing?

M ultiple O rg anisations of E ven ts in M em ory

Author's personal copy

Chapter 5 Workshop on Fitting of Linear Data

Grain Reserves, Volatility and the WTO

t h e c r i m i n a l l a w (T e m p o r a r y p r o v i s i o n s ) a c t,' 1957.V t -. -.» 0 [A pr N o. L X I o f 1957.] /

A new ThermicSol product

A study of intra-urban mobility in Omaha

The Effects of Symbolic Modeling and Parent Training on Noncompliance in Hyperactive Children

DESC Technical Workgroup. CWV Optimisation Production Phase Results. 17 th November 2014

Real Gas Equation of State for Methane

(L uf engp ithecus luf engensis)

ID: V i e w A l l F i r s t 1 of 1 L a s t

(A ID S A cqu ired Imm une D eficiency Syndrom e ),, (H IV ) 580, 200, , % 10%,

Building Harmony and Success

Beechwood Music Department Staff

Sodium-Initiated Polymerization of Alpha- Methylstyrene in the Vicinity of Its Reported Ceiling Temperature

Transcription:

Hamdjatou Kane Gilbert Nkubili Département des sciences administratives Université du Quebec en Outaouais in Canada Barthelemy Ateme-Nguema Département des sciences de la gestion Université du Quebec en Abitibi-Témiscamingue in Canada A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM Introduction C om pleting projects as quickly as possible rem ains a constant preoccupation o f all m anagers (L iberatore, Pollack-Johnson 2006). The literature is replete w ith affirm ations th at the businesses able to develop new products in the shortest tim e enjoy a substantial com petitive edge (Sw ink, 2003). P ractitioners, academ ics an d o th er pro fessio n als continue to search fo r w ays, m eans and tools fo r determ ining a priori h ow m uch a p ro ject can be accelerated, based on in h eren t constraints such as b u d g et and resources. C ontem porary m anagerial em phasis on g aining com petitive advan tages obliges p ro ject m anagers to scope the costs o f acceleratin g each activ ity o f pro jects underw ay o r upcom ing. In the co n text o f resource criticality, th e cost o f acceleratio n depen ds to a large degree on the type o f resources assigned, their availability, their quantity and so on. In this article, w e pro pose a n ew approach to solving the pro blem o f reaching an optim al com prom ise b etw een d u ration and resources fo r the acceleratio n o f pro jects in a contex t o f resource criticality, in w hich the substitution o f the resources is considered.

40 Hamdjatou Kane, Gilbert Nkubili, Barthelemy Ateme-Nguema 1. Review of the literature In conventional project management, the mandate is carried out within predeterm ined constraints such as specifications, deadlines and budget. E ven though the anticipated length o f a project in planning is usually longer than the critical path (Boctor 2005), projects seldom follow the classical project m anagem ent scheme or m eet deadlines (Gerk, Q assim 2008). In order to address this deficiency, project execution tim e can be accelerated to com pensate for potential delays. B y acceleration w e m ean finishing a project sooner than originally planned. In order to accelerate a project, w e m ust have all o f the inform ation relevant to its constituent activities, including the types and quantities o f the resources involved, unit costs, durations, priority relationships and so on. The usual m ethod o f accelerating a given activity w ithin a project is to assign to it m ore resources or resources w ith expertise and/or skills greater than those initially at the disposal o f the project m anager. This o f course involves increased costs. H owever, accelerating som e project activities can bring a reduction o f indirect costs (Dodin, Elim am 2008; Evensm o and Karlsen, 2008) in the form o f salary, am ortisem ent o f equipm ent and infrastructure, and so on. Some authors have proposed accelerating projects by superim posing activities (Roem er, A hm adi 2004). This approach is used essentially in the developm ent o f new products and services. The superim position o f activities consists o f carrying out in parallel (partially or wholly) activities that w ere organized sequentially in the project plan. A nother acceleration technique involves substituting certain activities w ith one and/or several other activities. There is thus the possibility o f accelerating a project by applying the conventional approach, superimposing activities and substituting certain activities (Gerk, Qassim 2008). Several approaches have been described in the literature for solving the tim e/cost trade-off problem. However, few of these take into consideration project particularities, that is, the peculiarities o f the project resources. W e m ay cite the cut search approach proposed by K ane, A zondekon (2008) and the linear program m ing m odel proposed by A lban (2008). H owever, m ost o f these approaches are deficient and difficult to apply to large com plex projects (i.e. 100 activities or m ore). Calculation tim e in particular increases considerably. There are new m ethods better suited to solving the acceleration problem in the case o f large projects for w hich m ore than two resources are available. These require m inimal tim e for calculation. W e recom m end a m ethod based on application o f the tabu algorithm and describe in the following section the principal steps of our approach.

A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM 41 2. Methodology The logical procedure usually used to solve the duration/cost trade-off problem is the sim ultaneous m athem atical equation approach, one equation representing tim e and the other representing project cost. The tim e taken to com plete the activities as a w hole depends on individual activity duration and on the priority relationships betw een the tasks. C ost depends on the resources assigned and o f course on the allow ed duration o f each task. This approach generally seeks to determ ine exact activity com pletion tim es and total project tim e. These m ethods differ prim arily in term s o f the optim ization techniques used to choose the activities to be accelerated and calculate by how m uch to accelerate them. A m ong these, w e m ay cite the C PM /PERT m ethod, the linear exact and non-linear program m ing techniques (Alban, 2008), the cut search approach (Kane, A zondekon 2008), and algorithm ic and heuristic techniques (Bolduc, Laporte et al. 2010). H owever, m ethods based on exact m athem atical program m ing run into difficulty as project scale (num ber o f activities or tasks) increases and the problem becom es o f the so-called N P-hard type. The solving o f this type o f problem requires com plex optim ization techniques and the tabu search is the technique that w e feel provides the best potential solution for project acceleration purposes. This algorithm technique also minimizes problem -solving time. 2.1. Mathematical model T he aim o f this m athem atical m odel is to calculated the total cost o f the project. W e describe below the param eters, the variables and the objective function o f the m odel. L et ti be the tim e (from the beginning o f the project) at w hich activity i is to begin according to the pro ject plan and let x i be the num ber o f units o f tim e by w hich activity i is accelerated. T he rem aining param eters are as follow s: d i - the norm ally expected duration o f activity i ci - th e u n it cost o f accelerating activity i ui - the m axim um n um ber o f tim e units by w hich activity i can be accelerated n - the n um ber o f activities ( 1 being the first activity and n being the last) T - th e norm ally expected duration o f the critical path o f the un-accelerated pro ject T m - the calculated pro ject duration after the m tth iteration, m = 1, 2, 3,..., M

42 Hamdjatou Kane, Gilbert Nkubili, Barthélémy Ateme-Nguema T m = T a - the optim al duration attainable by accelerating the project P (j) - the set o f activities im m ediately preceding activity j Ckj - th e norm al cost p er u n it o f tim e o f resource k assigned to activity i aki - the cost p er tim e u n it o f obtaining v ia resource k a one-tim e-unit acceleration o f activity i K ki - th e total num b er o f k resources assigned to activity i N a - the to tal num ber o f activities th at can be accelerated Kki X c kid i - the norm ally expected cost o f com pleting activity i ki=1 Kki X a tdx i - the additional cost o f accelerating activity i by x i u nits o f tim e ki=1 B - the additional budget available for accelerating the project CNET - th e n et cost o f accelerating activity i by x i units o f tim e Cn - the norm ally expected total cost o f com pleting the project Cmax = C n + B - the total cost not to be exceeded due to pro ject acceleration CaToT - the net total additional cost o f accelerating the project CaTOTm - the net additional cost o f the project at the mth iteration Objective function: Na Kki T o m inim ize C atot = a i X Xi X (a k> - Cki ) ( 1) i=1 ki Subject to: a i = 1 if i is selected for acceleration; 0 i f i is not selected for acceleration (2 ) tj > - X v (i'. j )GP ( j ) (3) t n < T is th e instant o f the end o f the last activity o f the pro ject (4) T < Tm+1 < Tm avec TM = Ta (5) 0 < x i < u i ( 6 ) x i < u i (7) ( 8 )

A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM 43 W ith: t 1 = 0 is th e start o f the first activity o f the project t i > 0 V i K ki K ki K k K k K ki C NET = Z Ckr\d r - X )+Z = Z CUd i -Z CkiX +Z = ki=1 ki ki ki ki ( 9 ) K U K ki Z c kid i + x Z k - c n ) ki ki N Kti C =ZZ c A ( 1 0 ) i =1 ki = 1 T he problem am ounts to m inim izing the total pro ject duration w hile rem aining w ithin the lim its o f additional budget B. Tm (expected pro ject duration b ased on the critical path) is calculated using the C PM m ethod. The objective function for m inim izing Tm according to T < Tm+1 < Tm T consists o f choosing an activity on the critical path and accelerating it by one u n it o f tim e. H aving established the m ethod o f calculating pro ject duration and cost, our goal is to find a new approach to optim izing the solution to the problem o f finding the best tra d e -o ff betw een pro ject com pletion tim e and cost, w ith the aim o f obtaining the g reatest decrease in tim e at the low est cost. It is at this stage th at w e use the tabu m ethod to determ ine the project-accelerating option th at costs the least. In the follow ing section, w e present the approach based on the tabu algorithm. 2.2 The tabu algorithm The "tabu" algorithm is a local-search m eta-heuristic that explores the neighbourhood beyond the optim um solution obtained (X u et al. 2009). This search m ethod uses an iterative process to shift from the current solution tow ards a neighbouring solution that achieves a superior goal. In order to avoid futile cycles, that is, exploration o f solutions sim ilar to those previously exam ined, the search generates a "tabu" list o f shifts and solutions explored in previous iterations (Liu et al. 2010). In order to im prove the efficiency o f the iterative process, the tabu algorithm m aintains a follow-up o f the local inform ation as well as o f the search process itself (Bolduc et al. 2010). The other principles o f search w ith tabu, nam ely aspiration, intensification and diversification, are treated in detail in works published by Glover (1989; 1990) and by Glover and Laguna (1997).

44 Hamdjatou Kane, Gilbert Nkubili, Barthelemy Ateme-Nguema In each iteration, o u r tabu algorithm first explores the entire solutions space (the project plan as a w hole) and thus defines the zone in w hich it w ill subsequently intensify the search for the activity to be accelerated. The activity configuration schem e, duration and the total cost of the pro ject are th en updated, based on acceleration o f the activity thus identified. The process is stopped w hen the conditions regarding project duration relative to predefined budgetary constraints are m et o r w hen it has been determ ined th at no activity w ithin the predefined zone o f search can be accelerated to obtain a desirable result (Figure l). Figure 1. The project acceleration algorithm with Tabu

A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM 45 3. Applications In ord er to validate the proposed pro ject acceleration algorithm, w e perform ed tests on real projects involving num erous activities (over 1 0 0 ). T he pro ject includes 172 activities requiring four different types o f resource. Figures 2 a and 2b show the pro ject netw ork, w hile T able 1 in appendix provides the tim e and resource-associated costs for each activity. Figure 2a. The project network Source: Doerner et al. 2008.

46 Hamdjatou Kane, Gilbert Nkubili, Barthelemy Ateme-Nguema Figure 2b. The project network Source: Doerner et al. 2008. 4. Results W e used M A T L A B 6.0 to im plem ent o u r algorithm. The results obtained show th at the pro ject can be accelerated w ith m inim al increases in cost. F urtherm ore, the calculation tim e w as relatively short. The expected project duration before acceleration w as 83 w eeks for a total cost o f $1,483,600. W e defined the norm al u n it cost o f each resource arbitrarily and set the unit cost o f acceleration 50% higher (see Table 1 in appendix).

A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM 47 I f w e also suppose th at any activity can be accelerated w ithout lim its and th at w e have at o u r disposal a budgetary increase o f up to 2 0 % w ith w hich to accelerate the project, w e can obtain a reduction in pro ject duration from 83 to 47 weeks at an additional cost o f $293,450. This is a 43.3% reduction o f project time for a cost increase o f 19.77%. The algorithm achieved this result by carrying out 113 iterations, which required about 3 seconds o f calculation time. T hese results indicate th at the algorithm is effective and could be used on a daily basis by professionals to accelerate large-scale projects involving relatively large num bers o f tasks. Variation de la durée vs coût 1800000 g. 1700000 Û. = 1600000 1500000 o 1400000 1300000 La durée totale du projet Figure 3. Cost variation VERSUS project duration Conclusion In th is study, w e have presented the results obtained using a new tool developed to solve the problem o f finding the optim al trad e-o ff betw een project duration and cost in the context o f resource criticality. The tool we have developed applies principles o f tab u search to optim ize the process o f identifying project activities to be accelerated. U sing o u r pro ject acceleration algorithm on projects previously treated using other approaches, we dem onstrated that the tool identifies the same solutio n o r in som e cases a b etter solution and w ith a shorter calculation tim e. T his w ork thus proposes a new avenue to explore w ith m ore in-depth studies for the im provem ent o f pro ject m anagem ent.

48 Hamdjatou Kane, Gilbert Nkubili, Barthelemy Ateme-Nguema Appendix Duration, acceleration and associated resource costs of activities (corresponding to arrows in the CPM/PERT diagram) for the project Act. Path Pqte di ui Ck1 Ck2 Ck3 Ck4 ak1 ak2 ak3 ak4 1 (1,2) --- 2 1 700 700 700 700 1050 1050 1050 1050 2 (1,3) --- 2 900 900 900 900 1350 1350 1350 1350 3 (1,4) --- 3 2 600 600 600 600 900 900 900 900 4 (2,5) 1 2 l 600 600 600 600 900 900 900 900 5 (2,7) 1 2 1 100 100 100 100 150 150 150 150 6 (3,5) 2 2 1 700 700 700 700 1050 1050 1050 1050 7 (3,6) 2 4 3 400 400 400 400 600 600 600 600 8 (3,8) 2 5 4 100 100 100 100 150 150 150 150 9 (4,6) 3 2 1600 1600 1600 1600 2400 2400 2400 2400 10 (4,8) 3 2 l 3000 3000 3000 3000 4500 4500 4500 4500 11 (5,12) 4;6 6 5 700 700 700 700 1050 1050 1050 1050 12 (6,9) 7;9 3 2 900 900 900 900 1350 1350 1350 1350 13 (6,12) 7;9 2 1 600 600 600 600 900 900 900 900 14 (7,9) 5 4 3 600 600 600 600 900 900 900 900 15 (8,9) 8;10 2 1 100 100 100 100 150 150 150 150 16 (8,10) 8;10 5 4 700 700 700 700 1050 1050 1050 1050 17 (8,11) 8;10 6 5 400 400 400 400 600 600 600 600 18 (<M3) 11; 14;15 4 3 100 100 100 100 150 150 150 150 19 (10,16) 16 3 2 1600 1600 1600 1600 2400 2400 2400 2400 20 (11,15) 17 4 3 3000 3000 3000 3000 4500 4500 4500 4500 21 (12,14) 11;13 2 1 700 700 700 700 1050 1050 1050 1050 22 (13,18) 18 2 1 900 900 900 900 1350 1350 1350 1350 23 (14,17) 21 2 600 600 600 600 900 900 900 900 24 (14,20) 21 3 2 600 600 600 600 900 900 900 900 25 (15,18) 19 2 l 100 100 100 100 150 150 150 150 26 (15,19) 20 3 2 700 700 700 700 1050 1050 1050 1050 27 (16,19) 19 2 1 400 400 400 400 600 600 600 600 28 (17,24) 23 6 5 100 100 100 100 150 150 150 150 29 (18,21) 25 5 4 1600 1600 1600 1600 2400 2400 2400 2400 30 (18,22) 22;25 2 1 3000 3000 3000 3000 4500 4500 4500 4500 31 (19,23) 26;27 3 2 700 700 700 700 1050 1050 1050 1050 32 (20,22) 24 l 0 900 900 900 900 1350 1350 1350 1350 33 (21,28) 29 2 600 600 600 600 900 900 900 900 34 (22,27) 30;32 3 2 600 600 600 600 900 900 900 900 35 (23,26) 31 4 3 100 100 100 100 150 150 150 150 36 (24,25) 28 3 2 700 700 700 700 1050 1050 1050 1050 37 (25,29 36 2 1 400 400 400 400 600 600 600 600 38 (25,30) 36 5 4 100 100 100 100 150 150 150 150 39 (26,30) 35 2 1 1600 1600 1600 1600 2400 2400 2400 2400 40 (26,31) 35 2 1 3000 3000 3000 3000 6000 4500 4500 4500 41 (26,32) 35 2 1 3000 3000 3000 3000 4500 4500 4500 4500 42 (27,31) 35 4 3 700 700 700 700 1050 1050 1050 1050 43 (28,29) 34 5 4 900 900 900 900 1350 1350 1350 1350 44 (29,35) 33 3 2 600 600 600 600 900 900 900 900 45 (30,33) 37;43 4 3 600 600 600 600 900 900 900 900 46 (31,36) 38;39 2 1 100 100 100 100 150 150 150 150 47 (32,34) 40;42 2 700 700 700 700 1050 1050 1050 1050 48 (32,36) 41 3 2 400 400 400 400 600 600 600 600 49 (33,38) 41 5 4 100 100 100 100 150 150 150 150 50 (34,37) 45 2 1 1600 1600 1600 1600 2400 2400 2400 2400 Table 1

A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM 49 Table l(continued) Act. Path Pqte di Ui Ck1 Ck2 Ck3 Ck4 ak1 ak2 ak3 ak4 51 (35,38) 47 4 3 3000 3000 3000 3000 4500 4500 4500 4500 52 (35,39) 44 2 1 700 700 700 700 1050 1050 1050 1050 53 (35,40) 44 2 1 200 200 200 200 300 300 300 300 54 (36,37) 44 3 2 900 900 900 900 1350 1350 1350 1350 55 (37,42) 46;48 2 1 600 600 600 600 900 900 900 900 56 (38,41) 50;54 5 4 600 600 600 600 900 900 900 900 57 (39,41) 49;51 2 1 100 100 100 100 150 150 150 150 58 (40,42) 52 3 2 700 700 700 700 1050 1050 1050 1050 59 (41,43) 53 2 1 700 700 700 700 1050 1050 1050 1050 60 (42,69) 57 2 1 400 400 400 400 600 600 600 600 61 (43,44) 55;58 4 3 200 200 200 200 300 300 300 300 62 (43,45) 59 2 1 700 700 700 700 1050 1050 1050 1050 63 (43,46) 59 3 2 900 900 900 900 1350 1350 1350 1350 64 (43,53) 59 1 0 600 600 600 600 900 900 900 900 65 (43,88) 59 3 2 600 600 600 600 900 900 900 900 66 (44,47) 59 2 1 100 100 100 100 150 150 150 150 67 (44,500 61 4 3 700 700 700 700 1050 1050 1050 1050 68 (44,52) 61 3 2 400 400 400 400 600 600 600 600 69 (45,49) 61 4 3 100 100 100 100 150 150 150 150 70 (46,51) 62 2 1 1600 1600 1600 1600 2400 2400 2400 2400 71 (46,54) 63 2 1 3000 3000 3000 3000 4500 4500 4500 4500 72 (47,48) 63 3 2 700 700 700 700 1050 1050 1050 1050 73 (47,49) 66 2 1 200 200 200 200 300 300 300 300 74 (48,55) 66 1 0 900 900 900 900 1350 1350 1350 1350 75 (49,55) 72 3 2 600 600 600 600 900 900 900 900 76 (50,56) 69;73 4 3 600 600 600 600 900 900 900 900 77 (51,56) 67 2 1 100 100 100 100 150 150 150 150 78 (51,57) 70 4 3 700 700 700 700 1050 1050 1050 1050 79 (52,58) 70 3 2 700 700 700 700 1050 1050 1050 1050 80 (52,59) 68 5 4 400 400 400 400 600 600 600 600 81 (53,59) 68 4 3 200 200 200 200 300 300 300 300 82 (54,60) 64 2 1 1600 1600 1600 1600 2400 2400 2400 2400 83 (55,61) 71 1 0 3000 3000 3000 3000 4500 4500 4500 4500 84 (56,61) 74;75 2 1 700 700 700 700 1050 1050 1050 1050 85 (57,61) 76;77 3 2 900 900 900 900 1350 1350 1350 1350 86 (57,62) 78 2 1 600 600 600 600 900 900 900 900 87 (58,63) 78 5 4 600 600 600 600 900 900 900 900 88 (59,66) 79 2 1 100 100 100 100 150 150 150 150 89 (59,81) 80;81 4 3 700 700 700 700 1050 1050 1050 1050 90 (60,96) 80;81 3 2 600 600 600 600 900 900 900 900 91 (61,64) 82 4 3 400 400 400 400 600 600 600 600 92 (62,64) 83;84;85 2 1 100 100 100 100 150 150 150 150 93 (62,65) 86 3 2 1600 1600 1600 1600 2400 2400 2400 2400 94 (63,66) 86 2 1 3000 3000 3000 3000 4500 4500 4500 4500 95 (64,67) 87 2 1 700 700 700 700 1050 1050 1050 1050 96 (64,87) 91;92 3 2 900 900 900 900 1350 1350 1350 1350 97 (65,67) 91;92 2 1 700 700 700 700 1050 1050 1050 1050 98 (65,84) 93 3 2 600 600 600 600 900 900 900 900 99 (66,68) 93 4 3 100 100 100 100 150 150 150 150 100 (67,112) 94 5 4 600 600 600 600 900 900 900 900 101 (67,113) 95;97 2 1 100 100 100 100 150 150 150 150 102 (68,112) 95;97 4 3 700 700 700 700 1050 1050 1050 1050 103 (68,113) 99 3 2 400 400 400 400 600 600 600 600 104 (69,70) 99 4 3 100 100 100 100 150 150 150 150 105 (69,71) 60 2 1 1600 1600 1600 1600 2400 2400 2400 2400 106 (69,73) 60 2 1 3000 3000 3000 3000 4500 4500 4500 4500 107 (69,74) 60 1 0 700 700 700 700 1050 1050 1050 1050 108 (69,88) 60 3 2 900 900 900 900 1350 1350 1350 1350 109 (70,72) 60 4 3 100 100 100 100 150 150 150 150

Hamdjatou Kane, Gilbert Nkubili, Barthelemy Ateme-Nguema 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 Table (continued) Path Pqte di u Ck1 Ck2 Ck3 Ck4 (70,88) 104 2 600 600 600 600 900 900 900 900 (71,74) 104 3 2 600 600 600 600 900 900 900 900 (72,77) 105 2 100 100 100 100 150 150 150 150 (73,78) 109 2 700 700 700 700 1050 1050 1050 1050 (74,75) 106 4 3 400 400 400 400 600 600 600 600 (74,76) 107; 111 2 100 100 100 100 150 150 150 150 (75,790 3 2 700 700 700 700 1050 1050 1050 1050 (76,79) 2 400 400 400 400 600 600 600 600 (77,99) 2 100 100 100 100 150 150 150 150 (78,80) 112 6 5 1600 1600 1600 1600 2400 2400 2400 2400 (78,81) 3 2 3000 3000 3000 3000 4500 4500 4500 4500 (79,99) 113 5 4 700 700 700 700 1050 1050 1050 1050 (80,82) 2 900 900 900 900 1350 1350 1350 (80,83) 4 3 600 600 600 600 900 900 900 900 (81,83) 119 2 600 600 600 600 900 900 900 900 (82,84) 89;110 2 100 100 100 100 150 150 150 150 982,85) 122 3 2 700 700 700 700 1050 1050 1050 1050 (83,86) 122 2 400 400 400 400 600 600 600 600 (84,87) 123;124 4 3 100 100 100 100 150 150 150 (85,87) 125 2 1600 1600 1600 1600 2400 2400 2400 2400 (86,112) 126 2 3000 3000 3000 3000 4500 4500 4500 4500 (86,113) 127 3 2 700 700 700 700 1050 1050 1050 1050 (87,111) 127 2 200 200 200 200 300 300 300 300 (88,89) 128; 129 3 2 900 900 900 900 1350 1350 1350 1350 >,90) 65;108;110 2 600 600 600 600 900 900 900 900 (89,91) 65;108; 110 5 4 600 600 600 600 900 900 900 900 (89,92) 133 2 100 100 100 100 150 150 150 150 (90,108) 133 3 2 700 700 700 700 1050 1050 1050 1050 (90,109) 134 2 700 700 700 700 1050 1050 1050 1050 (91,93) 134 4 3 400 400 400 400 600 600 600 600 (92,96) 135 3 2 200 200 200 200 300 300 300 300 (93,94) 136 4 3 700 700 700 700 1050 1050 1050 1050 (93,95) 139 2 900 900 900 900 1350 1350 1350 1350 (93,97) 139 6 5 600 600 600 600 900 900 900 900 (94,98) 139 2 700 700 700 700 1050 1050 1050 1050 (94,99) 141 3 2 900 900 900 900 1350 1350 1350 1350 (95,100) 141 4 3 900 900 900 900 1350 1350 1350 1350 (96,100) 142 0 600 600 600 600 900 900 900 900 (97,101) 90;140 2 600 600 600 600 900 900 900 900 (98,102) 143 3 2 100 100 100 100 150 150 150 150 (98,103) 144 2 700 700 700 700 1050 1050 1050 1050 (99,107) 144 3 2 700 700 700 700 1050 1050 1050 1050 (100,108) 118;121; 145 2 400 400 400 400 600 600 600 600 (101,108) 148 4 3 700 700 700 700 1050 1050 1050 1050 (101,109) 148 2 900 900 900 900 1350 1350 1350 1350 (102,104) 149 3 2 h00 h00 600 600 900 900 900 900 (102,105) 149 2 600 600 600 600 900 900 900 900 (102,108) 149 2 100 100 100 100 150 150 I50 150 (102,109) 149 5 4 700 700 700 700 1050 1050 1050 1050 (103,106) 150 3 2 400 400 400 400 600 600 600 600 (103,107) 150 5 4 100 100 100 100 150 150 150 150 (104,111) 155 2 1600 1600 1600 1600 2400 2400 2400 2400 (105,111) 156 4 3 3000 3000 3000 3000 4500 4500 4500 4500 (106,112) 159 3 2 700 700 700 700 1050 1050 1050 1050 (106,113) 159 4 3 200 200 200 200 300 300 300 300 (107,110) 151; 160 2 900 900 900 900 1350 1350 1350 1350 (108,111) 137;152;153;157 2 600 600 600 600 900 900 900 900 (109,111) 138;154;158 4 3 600 600 600 600 900 900 900 900 (110,112) 165 3 2 100 100 100 100 150 150 150 150 (110,113) 165 2 700 700 700 700 1050 1050 1050 1050

A WAY TO DEAL WITH THE PROJECT CRASHING PROBLEM 51 Table l(continued) Act. Path Pqte di Ui Ck1 Ck2 Ck3 Ck4 ak1 ak2 ak3 ak4 170 (111,114) 132;161;162;166;167 3 2 700 700 700 700 1050 1050 1050 1050 171 (112,1140) 100;102;130;163;168 4 3 400 400 400 400 600 600 600 600 172 (113,114) 101;103;131;164;169 5 4 200 200 200 200 300 300 300 300 References A lban T. (2008), A ccélération des p ro jets et allocation des ressources: des enjeux de la gestion m ulti-projet. M ém oire de M aîtrise, U niversité du Q uébec en O utaouais. B octor F ayez F. (2005), L e pro b lèm e d'allocation et de nivellem ent des ressources. A SA C 2005 Conference, Toronto (O ntario), Canada. Bolduc M.C., Laporte G., Renaud J., Boctor F.F. (2010), A tabu search heuristic fo r the split delivery vehicle routing problem with production and dem and calendars. European Journal o f Operational Research, 202 (1): 122-130. D odin B., E lim am A.A. (2008), Integration o f equipm ent plannin g a n d pro ject scheduling. European Journal o f Operational Research, 184(3): 962-980. E vensm o J., K arlsen J. T. (2008), L o o kin g fo r the Source - W here D o C rash Costs Come From?. Cost E ngineering, 50(7). G erk J.E.V., Q assim R.Y. (2008), P ro ject A cceleration via A ctivity Crashing, O verlapping, a n d Substitution. IE E E T ransactions O n E ngineering M anagem ent, 55(4): 590-601. G lover F.W. (1989), Tabu Search - P a rt I. O R SA Journal on C om puting, IN FO R M S: Institute for O perations R esearch 1: 190. G lover F.W. (1990), Tabu Search - P a rt II. O R SA Journal on C om puting, IN FO R M S: Institute for O perations R esearch 2: 4. Glover F.W. Laguna M. (1997), Tabu Search. Kluwer Academic Publishers, Boston. Kane H., A zondekon S.H. (2008), Un algorithm e p o u r la résolution d un pro b lèm e d accélération de p ro jet avec des ressources multiples. 7e Conférence Internationale de M odélisation et Sim ulation - M O SIM '08 - du 31 m ars au 2 avril 2008-Paris-France, M odélisation, Optim isation et Sim ulation des systemes: Communications, Coopération, et Coordination. Liberatore M.J., Pollack-Johnson B. (2006), E xtending pro ject tim e-cost analysis by rem oving precedence relationships and activitystream ing. In ternational Journal o f Project M anagem ent, 24(6): 529-535. L iu J., C heng H., Shi X., X u J. (2010), A Tabu Search A lgorithm f o r F a st R estoration o f L arge A rea B reakdow n in D istribution System s. E nergy and P ow er E ngineering, 1-5.

52 Hamdjatou Kane, Gilbert Nkubili, Barthelemy Ateme-Nguema Liu S. (2003), F uzzy activity Times In critical P ath a n d P roject Crashing problem s. Cybernetics and Systems: A n International Journal, 34: 161-172. R akotom alala H.L. (2002), L e com prom is durée/ressource en gestion de p ro je t dans un contexte de m ultiplicité des ressources : A nalyse et im pact su r la perfo rm a n ce de p ro jet. M ém oire de M aîtrise, U niversité du Q uébec en O utaouais. R oem er T.A., A hm adi R. (2004), C oncurrent C rashing a n d O verlapping in P ro d u ct D evelopm ent. O perations R esearch, IN FO R M S: Institute for O perations R esearch 52: 606-622. Sw ink M. (2003), C om pleting p ro jects on-tim e: how p ro je c t acceleration affects new p ro d u c t developm ent. Journal o f E ngineering and T echnology M anagem ent, 20(4): 319-344. X u K., Feng Z., Jun K. (2009), A Tabu Search algorithm fo r sch eduling jo b s w ith controllable p ro cessin g tim es on a single m achine to m eet duedates. Com puters & O perations R esearch, 37: 1924-1938. W akas S., June L.W. (2009), C ost R eduction f o r the P ro ject C om pletion in Shortest Possible D uration by Stretching N oncritical Activities. A ustralian Journal o f Basic and A pplied Sciences, 3(4): 4526-4533.