Inert Doublet Model:

Similar documents
The inert doublet model in light of LHC and XENON

Search for New Physics Beyond the SM. Shufang Su U. of Arizona

Beyond the Standard Model Phenomenology. Shufang Su U. of Arizona

Slepton, Charginos and Neutralinos at the LHC

The Inert Doublet Matter

Hidden two-higgs doublet model

Production of Inert Scalars at the LHC and the high energy e + e colliders

Maria Krawczyk U. of Warsaw

Higgs Signals and Implications for MSSM

SUSY Phenomenology & Experimental searches

Exploring Inert Scalars at CLIC

Models as existence proofs, speculations or... peaces of physical reality

Implications of the 125 GeV Higgs for the inert dark matter

Effective Theory for Electroweak Doublet Dark Matter

Electroweak and Higgs Physics

Fourth Generation and Dark Matter

CORFU HDMs. symmetry The Inert Model Various vacua Today= Inert phase Thermal evolutions Z 2

Probing the Majorana nature in radiative seesaw models at collider experiments

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

LHC Studies on the Electroweak Sector of MSSM

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Phenomenology of Fourth Generation Neutrinos

Sneutrino dark matter and its LHC phenomenology

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector

Invisible Sterile Neutrinos

EW phase transition in a hierarchical 2HDM

Lecture 18 - Beyond the Standard Model

SEARCH FOR 4 TH GENERATION QUARKS AT CMS

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Neutralino spin measurement with ATLAS detector at LHC

The Standard Model and Beyond

Higgs Searches at CMS

The Higgs boson. Marina Cobal University of Udine

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

Dark Matter and Gauged Baryon Number

Study of Higgs Boson Decaying to Four Muons at s =14 TeV

Searching for sneutrinos at the bottom of the MSSM spectrum

Recent Results on New Phenomena and Higgs Searches at DZERO

PoS(CHARGED2016)017. CP violation and BSM Higgs bosons

CMS Searches for New Physics

DISCRETE 2014 London, Maria Krawczyk U. of Warsaw. Plan Higgs: LHC data SM-like scenarios at LHC

Searches for Beyond SM Physics with ATLAS and CMS

Lecture 4 - Beyond the Standard Model (SUSY)

Simplified models in collider searches for dark matter. Stefan Vogl

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

arxiv:hep-ph/ v1 17 Apr 2000

Implication of LHC Higgs Signal for the MSSM Parameter Regions

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

BSM searches at ILC. Tohoku Forum for Creativity Tohoku Univ. Eriko Kato 1/29

FERMION PORTAL DARK MATTER

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Probing SUSY Dark Matter at the LHC

Searches for New Phenomena with Lepton Final States at the Tevatron

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Beyond the Standard Model Phenomenology. DOE Review 2008 Progress Report. Shufang Su U. of Arizona

LHC Results in Majid Hashemi IPM, Tehran Wednesday, 11 th May 2011

A realistic model for DM interactions in the neutrino portal paradigm

arxiv: v1 [hep-ph] 19 Jan 2015

Exploring Universal Extra-Dimensions at the LHC

A SUPERSYMMETRIC VIEW OF THE HIGGS HUNTING

arxiv: v2 [hep-ph] 29 Apr 2016

PAMELA from Dark Matter Annihilations to Vector Leptons

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Supersymmetry at the LHC

U(1) Gauge Extensions of the Standard Model

Search for Dark Matter in the mono-x* final states with ATLAS

Collider Searches for Dark Matter

Search for new dilepton resonances using ATLAS open data

Higgs searches in CMS

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Kaluza-Klein Dark Matter

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

HUNTING FOR THE HIGGS

The production of additional bosons and the impact on the Large Hadron Collider

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

Fourth Generation and Dark Matter

Baryogenesis and dark matter in the nmssm

arxiv:hep-ph/ v1 6 Feb 2004

Searching for neutral Higgs bosons in non-standard channels

Dark matter and collider signatures from extra dimensions

Searches at LEP. Ivo van Vulpen CERN. On behalf of the LEP collaborations. Moriond Electroweak 2004

Cold Dark Matter beyond the MSSM

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France

Search for H ± and H ±± to other states than τ had ν in ATLAS

Astroparticle Physics and the LC

Search for SUperSYmmetry SUSY

Beyond the Standard Model Higgs Boson Searches at DØ

How high could SUSY go?

Dark Matter Phenomenology

EXOTICA IN CMS. Daniele del Re Sapienza Università & INFN Sezione Roma.! on behalf of the CMS collabora=on

Walking in Monte-Carlo

LHC resonance searches in tt Z final state

Exotic W + W Z Signals at the LHC

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 )

Beyond the SM: SUSY. Marina Cobal University of Udine

Two-Higgs-doublet models with Higgs symmetry

Transcription:

Inert Doublet Model: Dark Matter Implication and Collider Phenomenology Shufang Su U. of Arizona S. Su In collaboration with E. Dolle, X. Miao and B. Thomas

Inert Doublet Model Introduce another Higgs field that only couples to gauge sector impose Z2 parity: SM particles +, extra Higgs: ( ) H H 1 = H + SM H 2 = (S + ia)/ 2 lightest one: DM candicate Inert Doublet Model (IDM) V = µ 2 1 H 1 2 + µ 2 2 H 2 2 + λ 1 H 1 4 + λ 2 H 2 4 + λ 3 H 1 2 H 2 2 + λ 4 H 1 H 2 2 + λ 5 2 [ ] (H 1 H 2) 2 + h.c.. (µ 2 1, µ2 2, λ 1, λ 2, λ 3, λ 4, λ 5 ). (v, m h, m S, δ 1, δ 2, λ 2, λ L ). S. Su 2

Inert Doublet Model Introduce another Higgs field that only couples to gauge sector impose Z2 parity: SM particles +, extra Higgs: ( ) H H 1 = H + SM H 2 = (S + ia)/ 2 lightest one: DM candicate Inert Doublet Model (IDM) V = µ 2 1 H 1 2 + µ 2 2 H 2 2 + λ 1 H 1 4 + λ 2 H 2 4 + λ 3 H 1 2 H 2 2 + λ 4 H 1 H 2 2 + λ 5 2 [ ] (H 1 H 2) 2 + h.c.. (µ 2 1, µ2 2, λ 1, λ 2, λ 3, λ 4, λ 5 ). (v, m h, m S, δ 1, δ 2, λ 2, λ L ). δ1=mh±ms S. Su 2

Inert Doublet Model Introduce another Higgs field that only couples to gauge sector impose Z2 parity: SM particles +, extra Higgs: ( ) H H 1 = H + SM H 2 = (S + ia)/ 2 lightest one: DM candicate Inert Doublet Model (IDM) V = µ 2 1 H 1 2 + µ 2 2 H 2 2 + λ 1 H 1 4 + λ 2 H 2 4 + λ 3 H 1 2 H 2 2 + λ 4 H 1 H 2 2 + λ 5 2 [ ] (H 1 H 2) 2 + h.c.. (µ 2 1, µ2 2, λ 1, λ 2, λ 3, λ 4, λ 5 ). (v, m h, m S, δ 1, δ 2, λ 2, λ L ). δ1=mh±ms δ2=mams S. Su 2

Inert Doublet Model Introduce another Higgs field that only couples to gauge sector impose Z2 parity: SM particles +, extra Higgs: ( ) H H 1 = H + SM H 2 = (S + ia)/ 2 lightest one: DM candicate Inert Doublet Model (IDM) V = µ 2 1 H 1 2 + µ 2 2 H 2 2 + λ 1 H 1 4 + λ 2 H 2 4 + λ 3 H 1 2 H 2 2 + λ 4 H 1 H 2 2 + λ 5 2 [ ] (H 1 H 2) 2 + h.c.. (µ 2 1, µ2 2, λ 1, λ 2, λ 3, λ 4, λ 5 ). (v, m h, m S, δ 1, δ 2, λ 2, λ L ). δ1=mh±ms δ2=mams SSh coupling λ L = λ 3 + λ 4 + λ 5 S. Su 2

Constraints Vacuum stability Perturbativity Dark matter direct detection W and Z decay width W S/A + H ±, Z S+A, H + H LEP II constraints Neutral and charged Higgs searches at LEP and Tevatron: does not apply rely on VVh coupling and the couplings of Higgses to fermions S. Su 3

Constraints LEP II constraints MSSM searches: e + e χ1 0 χ2 0 with χ2 0 χ1 0 qq/µµ/ee similar to e + e SA with A Sqq/µµ/ee 110 100 LEP excluded mass H 0 [GeV] 90 80 70 60 50 40 LEP II energy reach 30 20 10 LEP I excluded 0 0 50 100 150 200 mass A 0 [GeV] E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924 MSSM searches: e + e χ1 + χ1 similar to e + e H + H mh± 70 GeV S. Su 4

Constraints LEP II constraints MSSM searches: e + e χ1 0 χ2 0 with χ2 0 χ1 0 qq/µµ/ee similar to e + e SA with A Sqq/µµ/ee 110 100 LEP excluded mass H 0 [GeV] 90 80 70 60 50 40 LEP II energy reach LEP I ms +ma < mz excluded 30 20 10 LEP I excluded 0 0 50 100 150 200 mass A 0 [GeV] E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924 MSSM searches: e + e χ1 + χ1 similar to e + e H + H mh± 70 GeV S. Su 4

Constraints LEP II constraints MSSM searches: e + e χ1 0 χ2 0 with χ2 0 χ1 0 qq/µµ/ee similar to e + e SA with A Sqq/µµ/ee 110 100 LEP excluded 90 mass H 0 [GeV] 80 70 60 50 40 30 LEP II energy reach LEP II δ2 > 8 GeV ms < 80 GeV ma < 100 GeV excluded LEP I ms +ma < mz excluded 20 10 LEP I excluded 0 0 50 100 150 200 mass A 0 [GeV] E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924 MSSM searches: e + e χ1 + χ1 similar to e + e H + H mh± 70 GeV S. Su 4

Constraints LEP II constraints MSSM searches: e + e χ1 0 χ2 0 with χ2 0 χ1 0 qq/µµ/ee similar to e + e SA with A Sqq/µµ/ee 110 100 LEP excluded 90 δ2 < 8 GeV ms +ma > mz allowed mass H 0 [GeV] 80 70 60 50 40 30 LEP II energy reach LEP II δ2 > 8 GeV ms < 80 GeV ma < 100 GeV excluded LEP I ms +ma < mz excluded 20 10 LEP I excluded 0 0 50 100 150 200 mass A 0 [GeV] E. Lundstrom, M. Gustafsson and J. Edsjo, 0810.3924 MSSM searches: e + e χ1 + χ1 similar to e + e H + H mh± 70 GeV S. Su 4

Electroweak Precision Test Electroweak precision test H 2 = ( H + (S + ia)/ 2 ) 400 mh=120 GeV 0.4 m t = 172.7 ± 2.9 GeV m h = 114...1000 GeV 400 mh=500 GeV 350 300 10 GeV 40 GeV 75 GeV 600 GeV 0.2 U=0 350 300 10 GeV 40 GeV 75 GeV 600 GeV! 2 [GeV] 250 200 150 100 T 0 0.2! 2 [GeV] 250 200 150 m t 100 50 0.4 0.4 0.2 0 0.2 0.4 0 0 50 100 150 200 250 300 350 400! 1 [GeV] m h 50 68 % CL 0 0 50 100 150 200 250 300 350 400! 1 [GeV] S. Su 5 gure 1: (Adapted from [8].) Dependence of the S, T parameters on the Higgs mass. The thick

Electroweak Precision Test Electroweak precision test H 2 = ( H + (S + ia)/ 2 ) mh=120 GeV mh=500 GeV 400 400 350 300 10 GeV 40 GeV 75 GeV 600 GeV 350 300 10 GeV 40 GeV 75 GeV 600 GeV! 2 [GeV] 250 200 150! 2 [GeV] 250 200 150 100 100 50 50 0 0 50 100 150 200 250 300 350 400! 1 [GeV] 0 0 50 100 150 200 250 300 350 400! 1 [GeV] S. Su 5

Dark matter relic density coannihilation of S, A coannihilation of S, H ± δ2=mams δ1=mh±ms δ2 A S δ1 H ± Use MicrOMEGA /CalCHEP to calculate the relic density low mass region: ms < 100 GeV high mass region: ms > 400 GeV S. Su 6

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 0.3 0.25 10 7 5 0.2! h 2 0.15 0.1 δ2=mams = 10 GeV 0.05 0 δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S S. Su 7

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 0.3 10 A 0.25 q 7 5 0.2 S! h 2 0.15 Z q 0.1 0.05 0 δ2=mams = 10 GeV coannihilation δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S zpole S. Su 7

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 0.3 0.25 10 7 5 0.2! h 2 0.15 0.1 0.05 0 δ2=mams = 10 GeV coannihilation δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S zpole S. Su 7

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 0.3 Ŝ q, l 10 0.25 h SM 7 5 0.2 Ŝ q, l! h 2 0.15 0.1 0.05 0 δ2=mams = 10 GeV coannihilation δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S zpole S. Su 7 hpole

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 0.3 0.25 10 7 5 0.2! h 2 0.15 0.1 0.05 0 δ2=mams = 10 GeV coannihilation δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S zpole S. Su 7 hpole

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 S W 0.3 0.25 10 S 7 5 S H W W S W H ± 1 0.2 S W S W! h 2 0.15 0.1 0.05 0 δ2=mams = 10 GeV coannihilation δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S zpole S. Su 7 hpole

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 S W 0.3 0.25 10 S 7 5 S H W W S W H ± 1 0.2 S W S W! h 2 0.15 0.1 0.05 0 δ2=mams = 10 GeV coannihilation SS ZZ δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S zpole S. Su 7 hpole

Low mass region: vary δ2 δ1=mh±ms = 50 GeV, λl=0.01 0.3 0.25 10 7 5 0.2! h 2 0.15 0.1 0.05 0 δ2=mams = 10 GeV coannihilation SS ZZ δ2=mams = 7 GeV mh=120 δ2=mams = 5 GeV 10 20 30 40 50 60 70 80 90 100 m S zpole S. Su 7 hpole

Viable region for relic density DM SM h ms δ1, δ2 λl (I) low ms low mh 30 60 GeV 50 90 GeV 0.2 to 0 (II) 60 80 GeV at least one is large (III) high mh 50 75 GeV large δ1 δ2 < 8 GeV 0.2 to 0.2 1 to 3 (IV) 75 GeV large δ1, δ2 1 to 3 (V) high ms low mh 500 1000 GeV small δ1, δ2 0.2 to 0.3 most of the m S region between 40 GeV and 60 GeV, the relic density for the dark matter is too small due to the large coannihilation SA cross section. However, there is a viable region for 60 GeV < m S < 80 GeV with λ L in the region of ±0.1.! L 0.5 0.4 0.3 0.2 0.1 0!0.1!0.2!0.3!0.4!0.5 10 0.5 10 0.5 10 +3, (I) 8 0.4 8 0.4 8 +3* 6 0.3 (II) 6 0.3 (III) 6 (IV) +34 (V) 4 0.2 4 0.2 4 +32 2 0.1 2 0.1 2 +31 0 0 0 0 0 +!2!0.1!2!0.1!2!+31!4!0.2!4!0.2!4!+32!6!0.3!6!0.3!6!+34!8!0.4!8!0.4!8!+3* 10 20 30!10!0.5!10!0.5!10!+3, 40 50 60 70 80 90 100 10 201030204030 5040 6050 7060 8070 9080 100 90 100 10 2010 3020 40 30 50 40 60 50 70 60 80 70 90 80 100 90 100 10 20 30 40 50 60 70 80 90 100 *++,++ ++.++ /++ 0++ 1+++ 11++ 12++ m [GeV] m [GeV] m [GeV] m [GeV] S! #$%&'( S m S [GeV] S m S [GeV] S "! L! L! L! L! L! ) blue curves) in m S λ L plane for mfig. h =120 6: FIG. GeV. WMAP 4: WMAP 3σ allowed 3σ allowed region region (enclosed (enclosed by blue by blue curves) curves) in min S m S λ L plane λ L plane for for m h m=500 h =120 GeV. GeV. 50, 50) GeV (left plot), (70,70) GeV (right plot). ical and experimental constraints; see Shaded caption Shaded regions of regions are excluded are excluded by various by various theoretical theoretical and and experimental constraints; see see caption caption of of Fig. 3 for Fig. explanation. 3 for explanation. S. Su The mass Thesplittings mass splittings are chosen are chosen to be (δ to 1, be δ 2 )(δ = 1, (250, δ 2 ) = 110) (10, 50) GeV GeV (left (left plot), plot), (180,8) (10,10) GeV GeV (right (right plot). plot). 8

Collider signatures +W (*) H ± A + Z (*) +W (*) pp SA SSZ ( ), SSW ( ) W ( ) S pp SH ± SSW ( ), SSZ ( ) W ( ) pp AH ± SSZ ( ) W ( ), SSZ ( ) Z ( ) W ( ), SSW ( ) W ( ) W ( ) pp H + H SSW ( ) W ( ), SSW ( ) W ( ) Z ( ), SSW ( ) W ( ) Z ( ) Z ( ). Signatures: jets + leptons + missing ET jets and leptons could be soft for small splittings S. Su 9

Leptonic signals Focus on purely leptonic signals single lepton: SH ± dilepton: SA, H + H trilepton: AH ±... Benchmark points Dominant background WW, ZZ/γ, WZ/γ, tt,... mh (GeV) ms (GeV) (δ1, δ2) (GeV) λl LH1 150 40 (100,100) 0.275 LH2 120 40 (70,70) 0.15 LH3 120 82 (50,50) 0.2 LH4 120 73 (10,50) 0 LH5 120 79 (50,10) 0.18 HH1 500 76 (250,100) 0 HH2 500 76 (200,30) 0 S. Su 10

Dilepton signal from Z* Dilepton signals: pp SA SSZ (*) SSl + l pp H + H SSW (*) W (*) SSl + l νν Signal: pp SA SSZ (*) SSl + l Two isolated opposite charge e or µ with missing ET, no hard jets. Background: from IDM pp H + H SSW (*) W (*) SSl + l νν from SM pp WW l + l νν pp ZZ/γ l + l νν tt, WZ, Wt, Zt... with missing lepton or jets S. Su 11

Dilepton signal: LH1 LH1: ms = 40 GeV, (δ1, δ2)=(100,100) GeV Signal: pp SA SSZ SSl + l, l=e,µ Two isolated opposite charge e or µ with missing ET, no hard jets. 1/σ d σ/ d Mll ( &!! &!!& M ll W + W ZZ/γ t t W + Z/γ W + t SA ) &!!" S. &!!' Su ) 12! "! #! $! %! &!! &"! &#! &$! M ll

Dilepton signal: LH1 LH1: ms = 40 GeV, (δ1, δ2)=(100,100) GeV Signal: pp SA SSZ SSl + l, l=e,µ Two isolated opposite charge e or µ with missing ET, no hard jets. 1/σ d σ/ d Mll ( &!! &!!& M ll W + W ZZ/γ t t W + Z/γ W + t SA ) &!!" S. &!!' Su ) 12! "! #! $! %! &!! &"! &#! &$! M ll

Dilepton signal: LH1 LH1: ms = 40 GeV, (δ1, δ2)=(100,100) GeV I+II I+II+III Cuts PT l >15 GeV, ηl <2.5 ΔR(ll)>0.4 no jets with PT i >20 GeV, ηj <3 MET >100 GeV HT >200 GeV 80 GeV < Mll < 100 GeV S (fb) SA 6.550 3.68 B (fb) H + H 0.496 0.040 WW 345.1 12.41 ZZ /γ 82.69 39.86 tt 91.20 7.37 WZ 104.35 37.55 Wt 68.68 15.00 total 102.18 L=100 fb 1 S/B 0.04 s/ (B) 3.64 S. Su 13

Low mass region: LH4 LH4: ms = 73 GeV, (δ1, δ2)=(10,50) GeV Signal: pp SA SSZ* SSl + l, l=e,µ Two isolated opposite charge e or µ with large missing ET, no hard jets. 1/σ d σ/ d Mll &!! &!!& M ll W + W ZZ/γ t t W + Z/γ W + t SA ) &!!" S. Su 14 &!!' )! "! #! $! %! &!! &"! &#! &$! M ll

Low mass region: LH4 LH4: ms = 73 GeV, (δ1, δ2)=(10,50) GeV Signal: pp SA SSZ* SSl + l, l=e,µ Two isolated opposite charge e or µ with large missing ET, no hard jets. 1/σ d σ/ d Mll &!! &!!& M ll W + W ZZ/γ t t W + Z/γ W + t SA ) &!!" S. Su 14 &!!' )! "! #! $! %! &!! &"! &#! &$! M ll

Low mass region: LH4 LH4: ms = 73 GeV, (δ1, δ2)=(10,50) GeV Signal: pp SA SSZ* SSl + l, l=e,µ Two isolated opposite charge e or µ with large missing ET, no hard jets. 1/σ d σ/ d Mll &!! &!!& M ll W + W ZZ/γ t t W + Z/γ W + t SA ) &!!" S. Su 14 &!!' )! "! #! $! %! &!! &"! &#! &$! M ll

Low mass region: LH4 LH4: ms = 73 GeV, (δ1, δ2)=(10,50) GeV Signal: pp SA SSZ* SSl + l, l=e,µ Two isolated opposite charge e or µ with large missing ET, no hard jets.!" " Cos( φ ll ) * 1/σ d σ/ d cos ΔΦll!"!!!"!' W + W ZZ/γ t t W + Z/γ W + t S. Su 15 SA!"!( *!!!"#$!"#%!"#&!"#' " "#' "#& "#% "#$! Cos( φ ll )

Low mass region: LH4 LH4: ms = 73 GeV, (δ1, δ2)=(10,50) GeV Signal: pp SA SSZ* SSl + l, l=e,µ Two isolated opposite charge e or µ with large missing ET, no hard jets.!" " Cos( φ ll ) * 1/σ d σ/ d cos ΔΦll!"!!!"!' W + W ZZ/γ t t W + Z/γ W + t S. Su 15 SA!"!( *!!!"#$!"#%!"#&!"#' " "#' "#& "#% "#$! Cos( φ ll )

Low mass region: LH4 LH4: ms = 73 GeV, (δ1, δ2)=(10,50) GeV I+II I+II+III Cuts PT l >15 GeV, ηl <2.5 ΔR(ll)>0.4 no jets with PT i >20 GeV, ηj <3 MET >90 GeV HT >200 GeV 20 GeV< Mll < 50 GeV cos(ϕll)>0.7 ΔR(ll)<0.8 S (fb) SA 2.48 0.22 B (fb) H + H <0.0001 <0.001 WW 345.14 0.04 ZZ /γ 82.69 0.16 tt 91.20 0.09 WZ 104.35 0.07 Wt 68.68 0.09 total 0.47 L=100 fb 1 S/B 0.47 s/ (B) 3.23 S. Su 16

Low mass region: LH2 LH2: m S = 40 GeV, (δ1, δ2)=(70,70) GeV I+II I+II+III Cuts PT l >15 GeV, ηl <2.5 ΔR(ll)>0.4 no jets with PT i >20 GeV, ηj <3 MET >50 GeV HT >150 GeV Mll < 70 GeV cos(ϕll)>0.7 ΔR(ll)<1.2 S (fb) SA 7.392 0.97 B (fb) H + H 0.568 <0.001 WW 345.1 0.09 ZZ /γ 82.69 0.28 tt 91.20 0.23 WZ 104.35 0.14 Wt 68.68 0.13 total 0.88 L=100 fb 1 S/B 1.11 s/ (B) 10.37 S. Su 17

Dilepton signal: LH5 LH5: ms = 79 GeV, (δ1, δ2)=(50,10) GeV Signal: pp SA SSZ* SSl + l, l=e,µ Soft leptons. Difficult. S. Su 18

Collider reach @ LHC pp SA SSZ (*) SSl + l ms (δ1, δ2) S B S/B S/ (B) GeV GeV fb fb L=100 fb 1 LH1 40 (100,100) 3.68 102.18 0.04 3.64 LH2 40 (70,70) 0.97 0.88 1.11 10.37 LH3 82 (50,50) 0.19 0.47 0.40 2.75 LH4 73 (10,50) 0.22 0.47 0.47 3.23 LH5 79 (50,10) 0.33 0.30 0.09 0.52 HH1 76 (250,100) 0.69 27.17 0.03 1.33 HH2 76 (200,30) 1.22 27.65 0.04 2.32 S. Su 19

Collider reach @ LHC pp SA SSZ (*) SSl + l ms (δ1, δ2) S B S/B S/ (B) GeV GeV fb fb L=100 fb 1 LH1 40 (100,100) 3.68 102.18 0.04 3.64 LH2 40 (70,70) 0.97 0.88 1.11 10.37 LH3 82 (50,50) 0.19 0.47 0.40 2.75 LH4 73 (10,50) 0.22 0.47 0.47 3.23 LH5 79 (50,10) 0.33 0.30 0.09 0.52 HH1 76 (250,100) 0.69 27.17 0.03 1.33 HH2 76 (200,30) 1.22 27.65 0.04 2.32 S. Su 19

Collider reach @ LHC pp SA SSZ (*) SSl + l ms (δ1, δ2) S B S/B S/ (B) GeV GeV fb fb L=100 fb 1 LH1 40 (100,100) 3.68 102.18 0.04 3.64 LH2 40 (70,70) 0.97 0.88 1.11 10.37 LH3 82 (50,50) 0.19 0.47 0.40 2.75 LH4 73 (10,50) 0.22 0.47 0.47 3.23 LH5 79 (50,10) 0.33 0.30 0.09 0.52 HH1 76 (250,100) 0.69 27.17 0.03 1.33 HH2 76 (200,30) 1.22 27.65 0.04 2.32 S. Su 19

Conclusions IDM: provide a scalar WIMP dark matter candidate Viable regions of parameter spaces provide correct relic density DM SM h ms δ1, δ2 λl (I) low ms low mh 30 60 GeV 50 90 GeV 0.2 to 0 (II) 60 80 GeV at least one is large (III) high mh 50 75 GeV large δ1 δ2 < 8 GeV 0.2 to 0.2 1 to 3 (IV) 75 GeV large δ1, δ2 1 to 3 (V) high ms low mh 500 1000 GeV small δ1, δ2 0.2 to 0.3 Rich collider phenomenology dilepton signal (from SA) observable for not too small δ2. S. Su 20