Application Possibilities with Continuous YBCO Loops Made of HTS Wire

Similar documents
Analytical and Experimental Studies on the Hybrid Fault Current Limiter Employing Asymmetric Non-Inductive Coil and Fast Switch

Magnetisation of 2G Coils and Artificial Bulks

Analysis on Current Limiting Characteristics of Transformer Type SFCL with Additionally Coupled Circuit

Title use of Bi-2223/Ag squirrel-cage rot IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2006), 16(2): 14.

Study on Trapped Field Characteristics of HTS Bulk Annuli With Iron Rings for Ferromagnetic Shimming of a Compact NMR Magnet

Loss analysis of a 1 MW class HTS synchronous motor

Inductively Coupled Pulsed Energy Extraction System for 2G Wire-Based Magnets

Dependence of Levitation Force on Frequency of an Oscillating Magnetic Levitation Field in a Bulk YBCO Superconductor

Development of axial flux HTS induction motors

Physica C 468 (2008) Contents lists available at ScienceDirect. Physica C. journal homepage:

THE NUMERICAL MODEL OF 2G YBCO SUPERCONDUCTING TAPE IN THE WINDINGS OF THE TRANSFORMER

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

2 nd Generation High-Temperature Superconducting Wires for Fault Current Limiter Applications

Development of 2 MVA Class Superconducting Fault Current Limiting Transformer (SFCLT) with YBCO Coated Conductors

Revision Guide for Chapter 15

New Electric Reluctance Motor with Bulk Superconducting Materials on the Rotor

Computing Implementation of stabilized HTS tape Model based on distribution of currents between the tape layers

Simple Calibration Free Method to Measure AC Magnetic Moment and Losses

Inductance and Current Distribution Analysis of a Prototype HTS Cable

TRANSFORMERS. Pascal Tixador. Grenoble INP - Institut Néel / G2Elab. Introduction

LAB REPORT: THREE-PHASE INDUCTION MACHINE

Lecture 4: London s Equations. Drude Model of Conductivity

Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

Effect of Discontinuities and Penetrations on the Shielding Efficacy of High Temperature Superconducting Magnetic Shields

EQUIVALENT CIRCUIT MODEL FOR HIGH TEMPERATURE SUPERCONDUCTORS

Concept Design and Performance Analysis of HTS Synchronous Motor for Ship Propulsion. Jin Zou, Di Hu, Mark Ainslie

NEPTUNE -code: KAUVG11ONC Prerequisites:... Knowledge description:

Avoiding quenching in superconducting rings

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

5G50.52 Energy Storage with Superconductors

Maglev by a passive HT C superconducting short runner above the magnetic guideway

Critical Current Properties of HTS Twisted Stacked-Tape Cable in Subcooled- and Pressurized-Liquid Nitrogen

Experimental Investigation of High-Temperature Superconducting Magnet for Maglev

Flux Motion and Screening Current in High-temperature Superconducting Magnets

DC motors. 1. Parallel (shunt) excited DC motor

Cahier Technique N 13 Principe de réduction des courants d enclenchement des transformateurs

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

5G50.51 Superconductor Suspension

Preview of Period 17: Induction Motors and Transformers

Section 8: Magnetic Components

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Keywords: Superconducting Fault Current Limiter (SFCL), Resistive Type SFCL, MATLAB/SIMULINK. Introductions A rapid growth in the power generation

Field-Circuit Coupling Applied to Inductive Fault Current Limiters

Latest Status of High Temperature Superconducting Cable Projects

High-Performance Y-based Superconducting Wire and Their Applications

Design and analysis of a HTS vernier PM machine. IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Lecture #2 Design Guide to Superconducting Magnet

Chapter 21 Electric Current and Direct- Current Circuits

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

The development of a Roebel cable based 1 MVA HTS transformer

Superconducting Fault Current Limiters

Application Of Faraday s Law

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting

Practical considerations on the use of J c (B,θ) in numerical models of the electromagnetic behavior of HTS INSTITUTE OF TECHNICAL PHYS

Fault Current Limiters

Superconductivity. The Discovery of Superconductivity. Basic Properties

Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN

Revision Guide for Chapter 15

Analysis of Thermal Behavior of High Frequency Transformers Using Finite Element Method

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Electromagnetism Review Sheet

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

To be published in the Proceedings of ICEC-22, Seoul Korea, July 2008 MICE Note 232 1

Impact of High-Temperature Superconductors on the Superconducting Maglev

Experiment 12: Superconductivity

Honghai Song. Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran FRIB/MSU & SJTU June 2015, SJTU Xuhui Campus

A Linear Motor Driver with HTS Levitation Techniques

CHAPTER 8 DC MACHINERY FUNDAMENTALS

EXPERIMENTAL OF LOCALIZED FLUX DISTRIBUTION AT THREE PHASE INDUCTION MOTOR STATOR CORE WITH DIFFERENT STATOR SLOT SIZE

Electromagnetic Induction & Inductors

Available online at ScienceDirect. Physics Procedia 67 (2015 )

Applications Using SuperPower 2G HTS Conductor

Magnetic field outside a straight conductor (Item No.: P )

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

Design Principles of Superconducting Magnets

Induction Motors. The single-phase induction motor is the most frequently used motor in the world

PHY 1214 General Physics II

High Temperature Superconductors for Future Fusion Magnet Systems Status, Prospects and Challenges

Slide 1 / 50. Electromagnetic Induction and Faraday s Law

Superconductivity for Electric Systems DOE 2006 Wire Development Workshop

Physics 11b Lecture #13

Water-Cooled Direct Drive Permanent Magnet Motor Design in Consideration of its Efficiency and Structural Strength

PHYS 1444 Section 003 Lecture #18

Review of Basic Electrical and Magnetic Circuit Concepts EE

Induction and Inductance

Research on Permanent Magnet Linear Synchronous Motor Control System Simulation *

Power Loss Analysis of AC Contactor at Steady Closed State with Electromagnetic-Thermal Coupling Method

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano

Feasibility of HTS DC Cables on Board a Ship

Measurement of Electrical Resistance and Ohm s Law

Progress in Scale-up of 2G HTS Wire at SuperPower Part III

2G HTS Wire and High Field Magnet Demonstration

What are the two types of current? The two types of current are direct current and alternating current.

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

2G HTS Coil Winding Technology Development at SuperPower

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A

A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Part 1: Concept and Design

Electrostatics. Electricity and Electromagnetism. Atomic Nature of Electricity. Electrostatics is the study of electric charges in stationary form.

Axial Magnetic Field of Superconducting Loops

Transcription:

Published in Journal of Physics Conf. Series (SuST) 34, 33 () Application Possibilities with Continuous YBCO Loops Made of HTS Wire J. Kosa, I. Vajda, A. Gyore Kecskemet College, Fac. of Mech. Engineering and Automation, Kecskemet, Hungary Budapest University of Technology and Economics, Department of Electric Power Engineering, Budapest, Hungary E-mail: kosa.janos@gamf.kefo.hu Abstract. In our previous experiments we have produced YBCO rings machined from bulks for superconducting applications. In this work we examine the arrangement of the continuous superconducting loop made of HTS wire for advanced applications. A Korean group of researchers led by Hee-Gyoun Lee produced % BSCCO loops from tape for the first time in 6 []. In our solutions we use parallel and serial turns from perfect YBCO loops made from HTS wire. Production of multi-serial turns is not the same as the wind and flip [] method. In our case the twisting of the YBCO wire along its longitudinal axis can be avoided. We check the quality of the perfect YBCO loops with the transformation of the DC magnetic field []. In the case of the AC application we describe a new arrangement of the self-limiting transformer with using these loops. This self-limiting transformer can be a voltage or current restricting system. The paper presents the results of our experiments and opens new advanced applications of perfect YBCO loops made of HTS wire focusing on the efficiency and importance of the Korean team in creating the perfect closed loop.. Introduction There is a growing demand for the application of superconductor rings to ensure permanent magnetic field for MRI, NMR and magnetic separation applications using YBCO loops. In the case of greater bulk rings BSCCO has been used so far. The size of YBCO bulks is restricted due to the production technology. In the case of closed loops G technology does not result in creating perfect superconductor connection. The G technology of the wire made it possible to produce perfect YBCO loops from HTS wire. A Korean group of researchers led by Hee-Gyoun Lee produced % coated loops from tape for the first time in 6 []. Afterwards, on 8 August 8 Gye-Won Hong and Hee-Gyoun Lee introduced wind and flip method as a patent [3]. Another group of Korean researchers led by Woo-Seok Kim also published the production possibilities of % YBCO loops from tape in 9 [4]. The ideas described by him are really original, however, we decided to change the technology of cutting, because we think that this material can only be exposed to shear due to its layered structure as its structure gets the least damaged this way. Cutting with diamond wheel wears Kecskemet College, Kecskemet, Izsaki ut. Hungary 6. Budapest University of Technology and Economics, Department of Electric Power Engineering, Budapest, Egry Jozsef u. 8. Hungary Page of

the material abrasively causing loss of material and it can considerably lessen the value of the critical current. We developed a model of the new self-limiting transformer with continuous superconducting loop made of HTS wire.. Background to creating the new type self-limiting transformer containing continuous superconductor loops.. Producing the continuous superconductor loops We have modified the technology described by the Korean group of researchers led by Hee-Gyoun Lee [] and by another Korean group of researchers led by Woo-Seok Kim [4]. Cutting with diamond wheel causes loss of material as wears the material abrasively, so it considerably reduces the value of the critical current. As the material is of layered structure, we used an industrial blade of appropriate thickness to slit the tape on a plastic sheet. In the case of a longer cut we applied the shearing force of scissors on the tape already slit with blade. This solution is considered just a temporary solution until producers elaborate the % superconductor joint as a routine. Type of blade No. 36 INOX, MARTOR-Solingen, Germany. The superconductor wire (G HTS wire) was produced at SuperPower, Inc. in New York, USA. Type: SF 5. Our opinion is that SF 5 is perfectly suitable for the realization of the task we have carried out. From one basic loop we can made serial loops when we slip them through each other. In these solutions we use parallel and serial turns without twisting. In our case coiling was made with slipping as it can be seen in Figure. Its advantage is over wind and flip solution is that there is no twist along its longitudinal axis that could be the source for cracks of the YBCO layer at operating temperature, i.e. 77 K or at a lower temperature. Figure shows the photographs of a five-turn serial loop. Figure. Side-view of five-turn serial loop... DC flux transformer Orlando and Delin described a DC flux transformer with two coils in their book [5]. We have also developed the transformation of the DC magnetic field with different solution []. Our DC flux transformer is implemented by using only one YBCO ring. So it gives possibilities for the realization of novel industrial applications. The operation is based on well-known physical laws but so far not applied yet in this manner. The possibility of applications is based on the principle of conservation of the magnetic flux in a closed loop ideally. First we used YBCO superconducting rings from bulk. The applied YBCO rings were drilled within some minutes with a new technology we had elaborated [6]. Page of

The quality of the drilled YBCO bulks and rings and the precision of the fitting of the YBCO rings joined together can be deduced with a new elaborated method [7]. Figure shows the experimental scheme of the DC magnetic field. During the experiment between two independent iron cores we provide coupling of flux with superconductor ring. This is an efficient application of flux conservation. liquid nitrogen I DC 4 mm secondary iron core primary iron core φ φ Φair YBCO 4 mm Hall probe channels data logger computer Figure. The experimental scheme of the DC magnetic field. During the experiment we excited the primary iron core with DC current and measured the value of flux related to time on both iron cores. It can be seen in Figure 3 that the flux changes in the opposite direction within the closed loops in the primary and secondary iron cores and, as a superconductor ring was used for coupling, flux conservation was efficient for a longer time (, sec). B [mt] primary secondary s Figure 3. The measured result of the DC magnetic field..3. AC application of the arrangement In this experiment we used AC current and drilled the superconducting ring from a larger YBCO bulk. From the measured results we could deduce that the coupling between the primary and the secondary coil is proportional to the number of turns []. If I =, then, N =U N U () The limited size of the YBCO rings means the limit to this solution. This limit can be avoided due to the possibility of applying a continuous superconducting loop. Page 3 of

.4. Theoretical examination of the current maintenance of closed YBCO loops in the air We will examine the current of a closed loop depending on time related to the resistance and inductivity. L is the inductivity of the loop, R is the resistance of the loop. In our case, the resistance of superconductor tape is non-linear that makes the equation more difficult to solve. The non-linear feature of the loop can be defined with measurement results. The equation can be solved applying nonlinear characteristics ( Rnonlinear (is ) ). L dis = Rnonlinear (is ) is dt () where : Rnonlinear (is ) = f ( E J ) Rnonlinear(iS ) = RC e is I C c I C (3) where: RC is the resistance at the critical current c = consant, depending on the material. is IC di L S = RC e c I is dt C (4) Solution giving inverse result: is R ln is is +... = C t + K c IC c I C L ec (5) From Equation (5) we can calculate directly how long it takes the current of the superconductor ring or a closed loop to diminish to the given current value if the initial current was equal to the critical current. Equation (4) can be solved applying Ei(x) integral exponent function integrated into mathematical software and a general solution can be obtained. The general solution (6) of the differential Equation (4) can be carried out with the help of MatLab software. The requested function is I(t). dsolve (' L Dy = R exp(( y c) /( c c )) y ' ) The symbolic solution : t / R L exp( / c ) Ei (, / c / c y ) + C = where c = Ic, c = c, C = cons. (6) In Figure 4 and Figure 5 we can see that how a superconductor ring with known parameters can conserve its current if the given initial current equals Ic and Ic/. Page 4 of

RC =.5 7 Ω, L = 5 H, I C = A, I O = initial current Figure 4. The function of the current-time of the ring, IO = IC. Figure 5. The function of the current-time of the ring, IO = IC/. 3. New type self-limiting transformer With this solution we wanted to examine whether it is possible to create a self-limiting transformer applying a new method never used before. Therefore we made a working model for testing. The primary and secondary coils were assembled as shown in Figure 6 and placed the YBCO loop on it to create the coupling between the primary and secondary coils. The advantage of this solution is that the transformer is able to break the coupling so there is no current in the secondary coil. That is why we can use it to limit voltage unloaded or to limit the current. Model data: Uprimer effective maximum (sinus) = 9 V Pmax: 7 W A =7.78 cm (cross section of the iron core) Bmax:.7 T (in iron core) f= 5 Hz Page 5 of

The investigated scheme is in Figure 6. I primary iron core secondary iron core I ~U ~U % YBCO loop Figure 6. Scheme of the arrangement. 3.. Self-limiting voltage transformer With this arrangement we can limit voltage on the secondary side when I =. If primary voltage increases, then flux in the primary iron core also grows and as a consequence, the current inside the superconductor increases in order to maintain the flux stability of the closed loop. With the arrangement in Figure 6 the stray of the magnetic field of the coils is low. In modeling we use the following approach: There is no stray magnetic field of the iron core. The flux is evenly dispersed inside the iron core. The iron cores are operated on the linear section of B-H characteristic curve. The current of the superconductor is less than the critical current. (I < Ic). The decrease of the temporary current of the superconductor ring due to losses can be neglected within the periodic time of AC frequency. The magnetic resistance of the air is roughly infinite (Rair ), thus the current of the superconducting ring []: NI P RS Rair NI P RS =. RS + RP Rair RS Rair + RP Rair + RP RS I SUP = lim (7) Where: N = number of primary turns IP = momentary value of the primary electrical excitation RS = magnetic resistance of the secondary iron core RP = magnetic resistance of the primary iron core. It can be expected if the current of the superconductor ring is bigger than the quench current of the superconductor, then the coupling between the primary and secondary coil is broken. Thus no voltage arises in the secondary coil. We applied 5 Hz frequency. Later on this can be an advantage when producing unloaded high voltage on the secondary side. In Figure 7 we can see the coupling of one superconductor loop with N=N= 35 limited voltage, while in the case of transforming higher voltage two parallel YBCO loops have been applied with N = 5, N = 35 turns (Figure 8). Due to temperature rise within the superconductor we can observe hysteresis. Page 6 of

~U (V) piece % YBCO loop, I= N/N=35/35 7 6 5 4 U 3 I = Iquench f = 5 Hz 4 6 8 ~U (V) Figure 7. Coupling of turn YBCO loop, unloaded N/N=35/35, I =. ~U (V) pieces parallel % YBCO loops, I = N/N=5/35 8 6 U I = Iquench f =5 Hz 4 4 ~U (V) 6 8 Figure 8. Coupling of parallel turn YBCO loops, unloaded N/N=5/35, I =. 3.. Self-limiting current transformer The secondary side is loaded (Figure 9). In this case R=5 Ohm, N = N = 35. Figure shows the power relation between primary and secondary coils, piece YBCO loop. ~I ~U Rsecondary Xsecondary R load A ~U ~I Figure 9. The secondary side is loaded. Page 7 of

6 4 S (VA) P (W) 8 S 6 P 4-5 5 S (VA) Figure. The power relation, piece YBCO loop. We have introduced a new factor (K) that shows the maximum effective electrical power that one closed superconductor loop can transfer. It depends on the geometry of the arrangement, the cross section of the iron core and the parameters of the superconductor, the number of turns and the load. This factor is represented by K. In our model the superconductor with one turn transfers 3.5 W effective electrical power (P) in secondary coil, when the load is 5 Ω. The maximum transfer capacity occurs at quench current. Primary apparent electric power (S) is 7 VA, secondary apparent electric power (S) is 3.8 VA. Thus: K = 3.5 W/turn. This can be a characteristic of the equipment. With the application of several closed loops we can carry out sizing easily. The free choice of size is a definite advantage opposed to brittle YBCO and BSCCO bulks of restricted size. In Figure we can see the voltage transfer of a superconductor loop with 5 parallel turns at 3 Ω. 6 5 U (V ) 4 3 3 4 5 6 7 8 9 U (V) Figure. Voltage transfer with 5 parallel turns at 3 Ω. 4. Dynamic examination We can see the scheme of the arrangement in Figure. We generated artificial fault from the operating current of the secondary coil and measured its current. In the experiment, the fault time was 5 periods. This time was enough for the operating current to decrease after the fifth period, when it was loaded. The sample rate was khz. Page 8 of

Data logger Rsecondary Xsecondary Rload ~U Rfault ~Ifault 5 serial YBCO turns Figure. Scheme of the arrangement for dynamic examination. Figure 3 shows the measured results. Rload = 3 Ω. We used 5 serial turns made of YBCO wire. 3.46 A I [A].6 A.58 A. A.5 A 95 5 5 5 t [ms] - -.33 A -.7 A - fault operating current -3 -. A after fault 5 periods fault Figure 3. The fault time is five periods. Figure 4 shows the moment of the fault enlarged. In this figure we can see the current limit occurs after 3.3 ms. This time is less than a quarter of a period. 3 I [A] limited current starting fault - 3 4 5 - -3 3.3 ms t [ms] 6 8 f = 5 Hz T = ms sample rate = khz Figure 4. The limited current. Page 9 of 7 9

In the arrangement shown by Figure 5 we can see the emergence of the fault current in unloaded circuit. We chose 5 periods for the fault time, i.e. second. Rfault ~Ifault Rsecondary ~U Xsecondary Data logger Figure 5. Scheme of the arrangement. We can observe that right after the first period the current starts to decrease and stagnates at about 3% of the fault current. After the fault was over ms later we caused a new fault and we could see that the new fault current could not develop due to the rise in temperature in the superconductor (Figure 6). In this case ms is too short for the superconductor loop to achieve the superconductor state again. 3 Ifault [A].5 Fault Fault.5.5 -.5 67 87 7 7 47 67 t [ms] - -.5 ~ ms - -.5-3 Figure 6. 5 periods for the fault time and again fast fault. When there was a longer time between the two faults, the starting fault current was higher but did not reach the maximum of the first fault (Figure 7). When we caused a new fault in the unloaded circuit after 4 ms, after the first fault was cancelled, the fault current did not reach the value of the first fault current. Page of

3.5 fault fault.5.5 9 -.5 3 5 7 9 3 t [ms] ~4 ms - -.5 - -.5-3 Figure 7. 5 periods for the fault time and a second fault. When there was even longer time between the two faults, the starting maximum of the second fault did reach the maximum value of the first fault (Figure 8). By this time the superconductor loop cooled down to such a temperature when the loop achieved the superconductor state again. 3.5 Ifault [A] fault.5 fault.5 -.5-55 75 95 5 35 55 75 95 5 35 t [ms] ~6 ms -.5 - -.5-3 Figure 8. Longer time between two the faults. 5. Conclusions: The continuous closed loop made from YBCO tape is suitable for use in such equipment. Slitting with blade does not considerably influence critical current. Serial windings can be produced with slipped coiling. The self-limiting transformer described above can be produced in bigger size and used profitably due to the fast connection. Page of

6. References [] Hee-Gyoun Lee, Jae-Geun Kim, Sun-Wang Lee, Woo-Seak Kim, Seung-Wook Lee, KyeongDal Chai, Gye-Wan Hong, Tae-Kuk Ko, Design and fabrication of permanent mode magnet by using coated conductor, Physica C 445-448 (6) pp. 99-. [] Kosa, J., Vajda, I., Transformation of the DC and AC Magnetic Field with Novel Application of the YBCO HTS ring, Applied Superconductivity, IEEE Transactions Volume 9, Issue 3, June 9 pp. 86-89. [3] Pub. No: US 8/7458 A, PCT No.: PCT/KR6/7, Jul. 6, 5 (KR) -56864. [4] Woo-Seok Kim, Chan Park, Sang Ho Park, Jikwang Lee, Jung-Bin Song, Haigun Lee, HeeGyoun Lee, Gye-Won Hong, and Kyeongdal Choi, Magnetic Field Stability of a Small YBCO Magnet in Persistent Current Mode, IEEE Transactions on Applied Superconductivity, Vol. 9. No. 3. June 9, pp. 94-97. [5] T. Orlando, K. Delin, Foundations of Applied Superconductivity, Addison-Wesley Publishing Company, 99 p. and pp. 88-89. [6] J. Kosa, I. Vajda, Environmentally friendly machining of ceramic based YBCO bulk superconductor, Journal of Materials Processing Technology, Volume 8, Issues -3,. January 7, pp. 48-5. [7] Kosa, J, Vajda, I., Farkas L., Qualification of the Machining and Fitting Precision of YBCO Bulks and Rings Joined Together via the Examination of the Trapped Flux, Applied Superconductivity, IEEE Transactions Volume 9, Issue 3, June 9 pp. 8-85. Acknowledgments The author thanks the German colleagues IPHT at Jena for YBCO bulk and thanks the SuperPower, Inc. in New York for YBCO wire and facts and figures of the wire. Page of