Neutrinos as a Unique Probe: cm

Similar documents
Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrinos: status, models, string theory expectations

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Frontiers in Neutrino Physics

Neutrino masses respecting string constraints

Sterile Neutrinos from the Top Down

Overview of cosmological constraints on neutrino mass, number, and types

Status and prospects of neutrino oscillations

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004


Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrinos. Thanks to Ian Blockland and Randy Sobie for these slides. spin particle with no electric charge; weak isospin partners of charged leptons

Neutrinos and Astrophysics

Sterile Neutrinos from the Top Down

Yang-Hwan, Ahn (KIAS)

Neutrino Mass Models

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

Is the Neutrino its Own Antiparticle?

A Novel and Simple Discrete Symmetry for Non-zero θ 13

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Is the Neutrino its Own Antiparticle?

Status and Phenomenology of the Standard Model

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

Overview of mass hierarchy, CP violation and leptogenesis.

Neutrino Oscillation Measurements, Past and Present. Art McDonald Queen s University And SNOLAB

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Mass in Strings

Neutrino Phenomenology. Boris Kayser ISAPP July, 2011 Part 1

Neutrino Physics: Lecture 12

Neutrinos as Probes of new Physics

Neutrino Phenomenology. Boris Kayser INSS August, 2013 Part 1

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Sterile neutrinos. Stéphane Lavignac (IPhT Saclay)

Non-zero Ue3, Leptogenesis in A4 Symmetry

Alternatives to the GUT Seesaw

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

The Standard Model of particle physics and beyond

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

Models of Neutrino Masses

Supersymmetry, Dark Matter, and Neutrinos

RG evolution of neutrino parameters

Sterile Neutrinos in July 2010

Cosmic Neutrinos. Chris Quigg Fermilab. XXXV SLAC Summer Institute Dark Matter 10 August 2007

Chart of Elementary Particles

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Neutrino Masses & Flavor Mixing 邢志忠. Zhi-zhong Xing. (IHEP, Winter School 2010, Styria, Austria. Lecture B

Beyond the Standard Model

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Neutrino Oscillations

Recent Discoveries in Neutrino Oscillation Physics & Prospects for the Future

Neutrino Anomalies & CEνNS

Neutrino properties: nature, mass & CP violation

Grand Unification Theories

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Beyond Standard Model Effects in Flavour Physics: p.1

Yang-Hwan, Ahn (KIAS)

Massive Neutrinos and (Heterotic) String Theory

University College London. Frank Deppisch. University College London

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

The Standard Model and beyond

The Physics of Heavy Z-prime Gauge Bosons

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

arxiv: v2 [hep-ph] 2 Mar 2018

12.2 Problem Set 2 Solutions

A model of the basic interactions between elementary particles is defined by the following three ingredients:

arxiv:hep-ph/ v1 26 Jul 2006

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

The NOνA Experiment and the Future of Neutrino Oscillations

Particle Physics: Neutrinos part II

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

The Matter-Antimatter Asymmetry and New Interactions

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

1 Neutrinos. 1.1 Introduction

On Minimal Models with Light Sterile Neutrinos

Fundamentals of Neutrino Physics and Astrophysics

NEUTRINOS: THEORY. Contents

Leptonic CP violation and neutrino mass models

Neutrino Oscillations

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

Neutrino Oscillations And Sterile Neutrinos

Lecture 18 - Beyond the Standard Model

Lecture III: Majorana neutrinos

A. Yu. Smirnov. A. Yu. Smirnov

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Introduction to Neutrino Physics. TRAN Minh Tâm

eutrino oscillations - Wikipedia, the free encyclopedia

THE NEUTRINOS. Boris Kayser & Stephen Parke Fermi National Accelerator Laboratory

Testing the low scale seesaw and leptogenesis

Flavor oscillations of solar neutrinos

Particle Physics: Neutrinos part I

Neutrino Oscillation and CP violation

Jarek Nowak University of Minnesota. High Energy seminar, University of Virginia

R. D. McKeown. Jefferson Lab College of William and Mary

SUSY models of neutrino masses and mixings: the left-right connection

Updating the Status of Neutrino Physics

Transcription:

Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing Neutral current, Z-pole, atomic parity: electroweak unification, field theory, m t ; severe constraint on physics to TeV scale Neutrino mass: constraint on TeV physics, grand unification, superstrings, extra dimensions; seesaw: m ν m 2 q /M GUT P529 Spring, 2013 1

Astrophysics/Cosmology Core of Sun Supernova dynamics Atmospheric neutrinos (cosmic rays) Violent events (AGNs, GRBs, cosmic rays) Large scale structure (dark matter) Nucleosynthesis (big bang - small A; stars iron; supernova - large N) Baryogenesis Simultaneous probes of ν and astrophysics Interior of Earth P529 Spring, 2013 2

Neutrino Oscillations: a first look Weak versus mass eigenstates: ν e }{{} weak = ν 1 cos θ + ν 2 sin θ, ν }{{} µ = ν 1 sin θ + ν 2 cos θ mass t = 0: ν(0) = ν µ (from π + µ + ν µ ) t > 0: ν(t) = ν 1 sin θe ie1t + ν 2 cos θe ie 2t [ ] ν 1 sin θe im2 1 t 2E + ν2 cos θe im2 2 t 2E e iet E i = p 2 + m 2 i E + m2 i /2E where E p for definite p m i (same for definite E or wave packets) P529 Spring, 2013 3

Probability of oscillating to ν e (observe by ν e n e p) P νµ ν e (L) = ν e ν(t) 2 = sin 2 θ cos 2 θ ( m = sin 2 2θ sin 2 2 ) L 4E e im = sin 2 2θ sin 2 [ 1.27 m 2 (ev 2 )L(km) E(GeV) 2 1 t 2E t + e im2 2 t 2 2E t ] m 2 = m 2 2 m2 1, L t µ+ π + ν µ L e ν e p Oscillation length: L osc = 4πE m 2 Survival probability: P νµ ν µ (L) = 1 P νµ ν e (L) P529 Spring, 2013 4

Neutrino Spectra ν Oscillations P νa ν b = sin 2 2θ sin 2 ( m 2 L 4E ) 10 0 KARMEN2 NOMAD MiniBooNE Bugey NOMAD CDHSW CHORUS NOMAD CHORUS LSND 90/99% 3 ν Patterns (U V l ) Solar: LMA (SNO, KamLAND, Borexino) m 2 8 10 5 ev 2, mixing large but nonmaximal Atmospheric + K2K + MINOS: m 2 Atm 2.4 10 3 ev 2, near-maximal mixing Reactor: U e3 small 0.15 m 2 [ev 2 ] 10 3 10 6 10 9 10 12 Cl 95% Ga 95% CHOOZ all solar 95% SNO 95% ν e ν X ν µ ν τ ν e ν τ ν e ν µ All limits are at 90%CL unless otherwise noted SuperK 90/99% MINOS 10 4 10 2 10 0 tan 2 θ http://hitoshi.berkeley.edu/neutrino K2K KamLAND 95% Super-K 95% 10 2 P529 Spring, 2013 5

Mixings: let ν ± 1 2 (ν µ ± ν τ ): ν 3 ν + ν 2 cos θ ν sin θ ν e ν 1 sin θ ν + cos θ ν e 3 2 m 2 m 2 atm 1 m 2 atm Normal hierarchy 2 1 m2 3 Inverted hierarchy Analogous to quarks, charged leptons ββ 0ν rate very small ββ 0ν if Majorana Degenerate pattern for m m 2 P529 Spring, 2013 6

Mass, Mixing, and Intrinsic Properties Weyl fermion Minimal (two-component) fermionic degree of freedom ψ L ψ c R by CP (ψc R ψ L ) Active Neutrino (a.k.a. ordinary, doublet) in SU(2) doublet with charged lepton normal weak interactions νr c by CP Sterile Neutrino (a.k.a. singlet, right-handed) SU(2) singlet; no interactions except by mixing, Higgs, or BSM ν R νl c by CP Almost always present: Are they light? Do they mix? P529 Spring, 2013 7

Fermion Mass Transition between right and left Weyl spinors: m ψ L ψ R + m ψr ψ L m ( ψl ψ R + ψ R ψ L ) ( m 0 by ψ L,R phase changes) Dirac Mass Connects two distinct Weyl spinors (usually active to sterile): m D ( ν R + ν R ) = m D ν D ν D h ν ν R Dirac field: ν D + ν R 4 components, L = 0 t 3 L = ±1 2 Higgs doublet Why small? (Large dimensions? Higherdimensional operators? String instantons?) φ 0 m D = h ν ν = 2h ν ϕ 0 P529 Spring, 2013 8

Majorana Mass Connects Weyl spinor with itself: m T 2 ( νl ν c R + νc R m S 2 ( ν c L ν R + ν R ν c L Majorana fields: ν M + ν c R = νc M ) = m T 2 ν M ν M (active) ) = m S 2 ν MS ν MS (sterile) ν c R m T m T The Standard Electroweak Theo h T ν MS ν c L + ν R = ν c M S 2 components, L = ±2, self-conjugate φ 0 T Active: t 3 L = ±1 (triplet or higher-dimensional operator) Sterile: t 3 L = 0 (singlet or bare mass) φ 0 φ 0 Phase of or ν c L fixed by m T,S 0 P529 Spring, 2013 9

Neutrinoless Double Beta Decay (ββ 0ν ) L = 2: Majorana mass only (m ββ m T ) p e e p m ββ W W n n Other mechanisms, e.g., R P violation in supersymmetry P529 Spring, 2013 10

Mixed Models Can have simultaneous Majorana and Dirac mass terms L = 1 2 ( ) ( ( ) ν 0 L ν }{{ L 0c mt m D ν 0c R } m D m S νr 0 weak eigenstates ) + h.c. m T : L = 2, t 3 L = 1 (Majorana) m D : L = 0, t 3 L = 1 2 (Dirac) m S : L = 2, t 3 L = 0 (Majorana) P529 Spring, 2013 11

Mass eigenvalues: A ν L ( ) ( ) mt m D A ν m D m R = m1 0 }{{ S 0 m } 2 M=M T (Majorana) mass eigenstates: ν im = ν il + ν c ir = νc im, i = 1, 2 ( ν1l ν 2L ) = A ν L ( ν 0 L ν 0c L ), ( ν c 1R ν c 2R ) = A ν R ( ν 0c R ν 0 R ) M = M T (unlike Dirac mass matrix) A = Aν R P529 Spring, 2013 12

Special Cases L = 1 2 ( ν 0 L ν 0c L ) ( ) ( m T m D ν 0c R m D m S ν 0 R ) + h.c. Majorana (m D = 0): m 1 = m T : ν 1L = ν 0 L, νc 1R = ν0c R m 2 = m S : ν 2L = ν 0c L, νc 2R = ν0 R P529 Spring, 2013 13

Dirac (m T = m S = 0): m 1 = +m D : ν 1L = 1 (ν 0 L + ν0c L ), νc 1R = 1 (ν 0c R + ν0 R ) 2 2 m 2 = m D : ν 2L = 1 (ν 0 L ν0c L ), νc 2R = 1 (ν 0c R ν0 R ) 2 2 Dirac ν (4 components) equivalent to two degenerate ( m 1 = m 2 ) Majorana ν s with m 1 = m 2 and 45 mixing (cancel in ββ 0ν ) Useful description for Dirac limit of general case Recover usual Dirac expression L = m D 2 ( ν 1Lν c 1R ν 2Lν c 2R ) + h.c. = m D( ν 0 L ν0 R + ν0 R ν0 L ) No ν 0 L ν0c L or ν0c R ν0 R mixing L conserved P529 Spring, 2013 14

Seesaw (a.k.a. minimal or Type I seesaw) (m S m D,T ) : m 1 m T m2 D m S : ν 1L ν 0 L m D m S ν 0c L ν0 L, m 2 m S : E.g., m T = 0, m D = O(m u,e,d ), m S = O(M X 10 14 GeV): ν 2L m D ν 0 L m + ν0c L S ν0c L φ 0 T φ S m 1 m 2 D /m S m D ν R ν R ν 1M ν 0 L + ν0c R (active) Lower m S possible (even TeV) φ 0 φ 0 Heavy ( sterile) ν 2M decouples at low energy ν 2M decays leptogenesis P529 Spring, 2013 15

Active-sterile (ν 0 L ν0c L ) mixing (LSND) No active-sterile mixing for Majorana, Dirac, or seesaw m D and m S (and/or m T ) both small and comparable: Mechanism? Pseudo-Dirac ( m T, m S m D ): Small mass splitting, small L violation, e.g., m T = ɛ, m S = 0 m 1,2 = m D ± ɛ/2 Reactor and accelerator disappearance limits? Cosmological implications? P529 Spring, 2013 16

Extension to Three Families Dirac mass: L D = ν 0 L M Dν 0 R + ν0 R M D ν0 L ν 0 L ν0 1L ν 0 2L ν 0 3L = A, ν 0 R ν0 1R ν 0 2R ν 0 3R = A ν R ν R M D = arbitrary 3 3 Dirac mass matrix A ν L M DA ν R = m 1 0 0 0 m 2 0 0 0 m 3 P529 Spring, 2013 17

Leptonic weak charge lowering current J lµ W = 2ē Lγ µ V l = (ē µ τ )γ µ (1 γ 5 )V l ν 1 ν 2 ν 3 U V l = A e L A (PMNS) matrix (leptonic analog of CKM) is Pontecorvo-Maki-Nakagawa-Sakata Choose, e L phases: remove 5 unobservable phases from V l (choose ν R, e R phases for real non-negative masses) U = 1 0 0 0 c 23 s 23 c 13 0 s 13 e iδ 0 1 0 c 12 s 12 0 s 12 c 12 0 0 s 23 c }{{ 23 s } 13 e iδ 0 c }{{ 13 0 0 1 }}{{} atmospheric reactor limits Solar c ij cos θ ij, s ij sin θ ij, δ = CP -violating phase (if s 13 0) (s ij, δ CKM angles/phase) P529 Spring, 2013 18

More on unobservable phases: Most general unitary 3 3 PMNS matrix Û: 3 angles, 6 phases J lµ W = (ē µ τ )γµ (1 γ 5 )Û ν 1 ν 2 ν 3 Û = e iβ 1 0 0 e iα 1 0 0 0 e iβ 2 0 }{{} U 0 e iα 2 0 0 0 e iβ 3 s ij,δ 0 0 e iα 3 β i, α j not determined by diagonalization (Û Û = ÛÛ = I) Only depends on α j β i can choose α 3 = 0 Redefine ν jl e iα jν jl, e il e iβ ie il Û U (Independent) e ir, ν jr phases chosen so that m ei, m νj 0 P529 Spring, 2013 19

Majorana mass: L T = 1 2 ( ) ν L 0 M T νr 0c + ν0c R M T ν0 L Diagonalize: M T A ν L M T A ν R by ν0 L = A, ν 0c R = Aν R νc R But ψ al ψ c br = ψ bl ψ c ar, where ψc R = C ψ T L Therefore M T = M T T A = Aν R Phases determined by m i 0 two unremovable Majorana phases in U (observable in ββ 0ν?) U = 1 0 0 c 13 0 s 13 e iδ c 12 s 12 0 e iα 1 0 0 0 c 23 s 23 0 1 0 s 12 c 12 0 0 e iα 2 0 0 s 23 c 23 s }{{} 13 e iδ 0 c 13 0 0 1 0 0 1 }{{}}{{}}{{} atmospheric, s 2 23 1 2 s 2 13 0.035, δ=? Solar, s 2 12 0.3 Majorana only Same results for active sector in seesaw model P529 Spring, 2013 20

General case (3 active and 3 sterile): L = 1 2 ( ν 0 L ν 0c L ) ( M T M D MD T M S ) ( ν 0c R ν 0 R ) + h.c. M D, M T = MT T, M S = MS T are 3 3 6 Majorana mass eigenstates Majorana, Dirac, seesaw, active-sterile mixing (LSND) limits Can also have > 3 or < 3 sterile P529 Spring, 2013 21

Neutrino Counting Invisible Z width: N ν = 3 + N ν N ν = 0.015(9) (also counts light ν (1/2), triplet Majoron + scalar (2), etc.) Cosmology: big bang nucleosynthesis, large scale structure P529 Spring, 2013 22

Dirac or Majorana ββ 0ν nn ppe e (m ββ i U 2 ei m i) Magnetic or electric dipole moments Dirac: may have diagonal ( νσ αβ νf αβ ) or transition ( ν i σ αβ ν j F αβ, i j) moments Majorana: only transition moments (diagonal Dirac from off-diagonal Majorana) One loop (Dirac): µ i 3eG F m i 8 3.2 10 ( 19 m i 2π 2 (much larger in some models) Laboratory, astrophysical limits: µ < 10 10 10 12 µ B 1 ev) µb p e e p n m ee ev 10 0 10 1 10 2 10 3 10 4 W m ββ W General theory prediction Disfavored by 0ΝΒΒ decay m 2 31 0 IO m 2 31 0 NO Disfavored by cosmology 10 4 10 3 10 2 10 1 10 0 m ev Winter, 1004.4160 n P529 Spring, 2013 23

Tritium β spectrum (KATRIN) m ν e ( i U ei 2 m 2 i Absolute Mass Scale ) 1/2 2 ev 0.2 ev Large scale structure: Σ i m i (0.5 1) ev O(0.05) ev If ββ 0ν observed (m ββ 0.01 ev) inverted or degenerate P529 Spring, 2013 24

P529 Spring, 2013 25

Neutrino Oscillations and Propagation The two flavor case: ν e }{{} weak = ν 1 cos θ + ν 2 sin θ, ν }{{} µ = ν 1 sin θ + ν 2 cos θ mass t = 0: ν(0) = ν µ (from π + µ + ν µ ) t > 0: ν(t) = ν 1 sin θe ie1t + ν 2 cos θe ie 2t [ ] ν 1 sin θe im2 1 t 2E + ν2 cos θe im2 2 t 2E e iet P529 Spring, 2013 26

Probability of oscillating to ν e (appearance experiment) P νµ ν e (L) = ν e ν(t) 2 = sin 2 θ cos 2 θ ( m = sin 2 2θ sin 2 2 ) L 4E e im m 2 L/4E large 2 1 t 2E t + e im2 2 t 2 2E t 1 2 sin2 2θ µ+ π + ν µ L e ν e p m 2 = m 2 2 m2 1, Oscillation length: L osc = 4πE m 2 L t Survival probability (disappearance experiment): P νµ ν µ (L) = 1 P νµ ν e (L) P529 Spring, 2013 27

Three or More Families ν(0) = ν a }{{} weak = i U ai ν i }{{} mass ν(t) i U ai ν i e im2 i t 2E P νa ν b (L) = ν b ν(t) 2 =δ ab 4 Re ( ( ) U ai U biu aj U ) bj sin 2 ij L 4E i<j + 2 Im ( ( ) U ai U biu aj U ) ij L bj sin }{{} 2E i<j CP violating ij m 2 i m2 j Rephasing invariant P529 Spring, 2013 28

Antineutrinos P νal ν bl (L) =δ ab 4 Re ( ( ) U ai U biu aj U ) bj sin 2 ij L 4E i<j +2 Im ( ( ) U ai U biu aj U ) ij L bj sin }{{} 2E i<j CP violating P νal ν bl (L) U U P νbl ν al (L) P ν c ar ν c br (L) = P ν bl ν al (L) (by CP T ) =δ ab 4 i<j Re ( U ai U biu aj U bj 2 i<j Im ( U ai U biu aj U bj ( ) ) sin 2 ij L 4E ( ) ) ij L sin 2E P529 Spring, 2013 29

Propagation in Matter Coherent forward scattering in matter potential (cf optics) Two flavor oscillations in vacuum: ν(t) = a c a(t) ν a i d dt ( ca (t) c b (t) ) = m2 4E ( ) ( cos 2θ sin 2θ ca (t) sin 2θ cos 2θ c b (t) ) In matter (different interactions of ν a and ν b ): ν µ e e ν e ν e e Z W Z ν µ e ν e e ν e e P529 Spring, 2013 30

i d dt ( ca (t) c b (t) ) = n = m2 4E cos 2θ + G F 2 n m 2 4E sin 2θ m 2 4E m 2 4E sin 2θ cos 2θ G F n e for ν el ν µl, ν τ L 0 for ν µl ν τ L n e 2 1n n for 1 2 n n for ν el νl c ν µl, ν τ L νl c 2 n ( ca (t) c b (t) ) Signs reversed for ν c R, ν R Solar (MSW), atmospheric (not sterile; (hierarchy), supernovae also WNC), long baseline MINOS vs νr c : new flavor-dependent matter interaction? (to mimic CP T violation) P529 Spring, 2013 31

Long Baseline (LBL) Oscillation Experiments 3 ν oscillations, small s 13 and m 2 (Akhmedov et al, JHEP 04, 078): P ν µ νe = α 2 sin 2 2θ 12 c 2 sin 2 A 23 + 4 s 2 sin 2 (A 1) A 2 13 s2 23 (A 1) 2 where α = + 2 α s 13 sin 2θ 12 sin 2θ 23 cos( + δ) m2 m 2 Atm 0.03, δ δ and A A for P νµ ν e, A > 0 (normal),, A < 0 (inverted) sin A A sin(a 1) A 1 = m2 Atm L 4E, A = 2 2EGF n e m }{{ 2 Atm } matter In principle, determine s 13, δ, hierarchy (easier if s 13 from reactor) P529 Spring, 2013 32

Sterile Neutrinos CDHSW 10 0 KARMEN2 NOMAD MiniBooNE Bugey NOMAD CHORUS NOMAD CHORUS LSND 90/99% 1 st class oscillations: ν a ν b, both active m 2 [ev 2 ] 10 3 10 6 10 9 10 12 Cl 95% Ga 95% CHOOZ all solar 95% SNO 95% ν e ν X ν µ ν τ ν e ν τ ν e ν µ All limits are at 90%CL unless otherwise noted SuperK 90/99% MINOS 10 4 10 2 10 0 tan 2 θ http://hitoshi.berkeley.edu/neutrino K2K KamLAND 95% Super-K 95% 10 2 2 nd class: active sterile LSND: third ij sterile ν s LSND + MiniBooNE: sterile ν s and CP violation (but reactor, accelerator disappearance; other ν e appearance; cosmology?) ν c L appearance (need new interactions) Non-orthogonal light neutrinos (from mixing with heavy) P529 Spring, 2013 33

m2 atm m 2 LSND m 2 LSND m 2 m 2 atm m 2 P529 Spring, 2013 34

Models No unbroken gauge symmetry forbids Majorana mass for active ν s Seesaw leptogenesis (heavy ν 2M decay in Type I) But New TeV physics or string constraints may forbid seesaw Appropriate masses not automatic (e.g., SO(10) Higgs 126 or HDO) so that Majorana may be negligible Alternative baryogenesis (e.g., electroweak) Other plausible mechanisms for both Majorana and Dirac (especially in strings) Type, mechanism, scale is open question P529 Spring, 2013 35

Small Dirac masses Usually forbid bare mass (string? U(1)?) Higher dimensional operator (m D ν ϕ S /M P ) Large extra dimension (wave function overlap) String instanton Non-holomorphic soft h ν ν R φ 0 ν R φ S φ 0 φ S P529 Spring, 2013 36

Small Majorana masses The Standard Electroweak Theory Higgs triplet (spontaneous L excluded) Stringy Weinberg operator h T νl φ 0 T φ 0 φ 0 φ 0 φ 0 Heavy ν R (Type I seesaw) Heavy Higgs triplet (Type II seesaw) φ S ν R ν R h S h T φ 0 T κ Loops (new scalars) TeV (extended) seesaws φ 0 φ 0 φ 0 φ 0 φ 0 φ 0 R P violation φ 0 Typeset by FoilTEX ν µl e e ν el h φ φ 0 P529 Spring, 2013 37

Outstanding Issues (intrinsic properties) Scale of underlying physics? (string, GUT, TeV?) (LHC, flavor) Mechanism? (seesaw, LED, HDO, stringy instanton?)(indirect: LHC) Hierarchy, U e3, leptonic CP violation? (mechanism, leptogenesis) (long baseline, reactor, ββ 0ν, supernova) Absolute mass scale? (cosmology) (β decay, cosmology, ββ 0ν, supernova) Dirac or Majorana? (mechanism, scale, leptogenesis) (ββ 0ν ) Baryon asymmetry? (leptogenesis, electroweak baryogenesis, other?) (indirect: LHC) P529 Spring, 2013 38