Synchronization of regular automata

Similar documents
More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

Synchronization of regular automata

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Garnir Polynomial and their Properties

TURFGRASS DISEASE RESEARCH REPORT J. M. Vargas, Jr. and R. Detweiler Department of Botany and Plant Pathology Michigan State University

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

Constructive Geometric Constraint Solving

0.1. Exercise 1: the distances between four points in a graph

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

1 Introduction to Modulo 7 Arithmetic

CS 461, Lecture 17. Today s Outline. Example Run

Trees as operads. Lecture A formalism of trees

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Section 3: Antiderivatives of Formulas

Planar Upward Drawings

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

Present state Next state Q + M N

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMP108 Algorithmic Foundations

Designing A Uniformly Loaded Arch Or Cable

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

MATHEMATICS FOR MANAGEMENT BBMP1103

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

Last time: introduced our first computational model the DFA.

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

12. Traffic engineering

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

CS 241 Analysis of Algorithms

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

XV Quantum Electrodynamics

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

QUESTIONS BEGIN HERE!

On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries

CSI35 Chapter 11 Review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

Designing A Concrete Arch Bridge

Numbering Boundary Nodes

QUESTIONS BEGIN HERE!

The Plan. Honey, I Shrunk the Data. Why Compress. Data Compression Concepts. Braille Example. Braille. x y xˆ

Seven-Segment Display Driver

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

Chem 104A, Fall 2016, Midterm 1 Key

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

TOPIC 5: INTEGRATION

T h e C S E T I P r o j e c t

Walk Like a Mathematician Learning Task:

Section 10.4 Connectivity (up to paths and isomorphism, not including)

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

Outline. Binary Tree

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

Discovering Pairwise Compatibility Graphs

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

HIGHER ORDER DIFFERENTIAL EQUATIONS

Ch 1.2: Solutions of Some Differential Equations

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

Formal Concept Analysis

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Analysis for Balloon Modeling Structure based on Graph Theory

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

EE1000 Project 4 Digital Volt Meter

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. TK, NO. TK, MONTHTK YEARTK 1. Hamiltonian Walks of Phylogenetic Treespaces

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

CS September 2018

Floating Point Number System -(1.3)

Floating Point Number System -(1.3)

The Z transform techniques

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Transcription:

Synhrniztin f rgulr utmt Diir Cul IM CNRS Univrsité Pris-Est ul@univ-mlv.fr strt. Funtinl grph grmmrs r finit vis whih gnrt th lss f rgulr utmt. W rll th ntin f synhrniztin y grmmrs, n fr ny givn grmmr w nsir th lss f lngugs rgniz y utmt gnrt y ll its synhrniz grmmrs. Th synhrniztin is n utmtn-rlt ntin: ll grmmrs gnrting th sm utmtn synhrniz th sm lngugs. Whn th synhrnizing utmtn is unmiguus, th lss f its synhrniz lngugs frms n fftiv ln lgr lying twn th lsss f rgulr lngugs n unmiguus ntxt-fr lngugs. W itinlly prvi suffiint nitins fr suh lsss t ls unr ntntin n its itrtin. Intrutin n utmtn vr sm lpht n simply sn s finit r untl st f lll rs tgthr with tw sts f initil n finl vrtis. Suh n utmtn rgnizs th lngug f ll wrs llling n pting pth, i.. pth ling frm n initil t finl vrtx. It is wll-knwn tht finit utmt rgniz th rgulr lngugs. By pplying si nstrutins t finit utmt, w tin th ni lsur prprtis f rgulr lngugs, nmly thir lsur unr ln prtins, ntntin n its itrtin. Fr instn th synhrniztin prut n th trminiztin f finit utmt rsptivly yil th lsur f rgulr lngugs unr intrstin n unr mplmnt. This i n xtn t mr gnrl lsss f utmt. In this ppr, w will intrst in th lss f rgulr utmt, whih rgniz ntxtfr lngugs n r fin s th (gnrlly infinit) utmt gnrt y funtinl grph grmmrs [C 07]. Rgulr utmt f finit gr r ls prisly ths utmt whih n finitly mps y istn, s wll s th rgulr rstritins f trnsitin grphs f pushwn utmt [MS 85], [C 07]. Evn thugh th lss f ntxt-fr lngugs s nt njy th sm lsur prprtis s rgulr lngugs, n n fin sulsss f ntxt-fr lngugs whih, using th ntin f synhrniztin. Th ntin f synhrniztin ws first fin twn grmmrs [CH 08]. grmmr S is synhrniz y grmmr R if fr ny pting pth µ f (th grph gnrt y) S, thr xists n pting pth λ f R with th sm ll u suh tht λ n µ r synhrniz: fr vry prfix v f u, th prfixs

f λ n µ lll y v l t vrtis f th sm lvl (whr th lvl f vrtx is th miniml numr f rwriting stps nssry fr th grmmr t pru it). lngug is synhrniz y grmmr R if it is rgniz y n utmtn gnrt y grmmr synhrniz y R. funmntl rsult is tht tw grmmrs gnrting th sm utmtn yil th sm lss f synhrniz lngugs [C 08]. This wy, th ntin f synhrniztin n trnsfrr t th lvl f utmt: fr rgulr utmtn, th fmily Syn() is th st f lngugs synhrniz y ny grmmr gnrting. By xtning th v-mntin nstrutins frm finit utmt t grmmrs, n n stlish svrl lsur prprtis f ths fmilis f synhrniz lngugs. Th sum f tw grmmrs n th synhrniztin prut f grmmr with finit utmtn rsptivly ntil th lsur f Syn() unr unin n unr intrstin with rgulr lngug fr ny rgulr utmtn. Th (lvl prsrving) synhrniztin prut f tw grmmrs yils th lsur unr intrstin f Syn() whn is unmiguus i.. whn ny tw pting pths f hv istint lls. Nrmlizing f grmmr int grmmr nly ntining rs n thn th (lvl prsrving) trminiztin yils, fr ny unmiguus utmtn, th lsur f Syn() unr mplmnt rltiv t L(). This nrmliztin ls llws us t xprss Syn() in th s f n infinit gr utmtn, y prfrming th - lsur f Syn(H) fr sm finit gr utmtn H using n xtr ll. finl usful nrmliztin nly llws th prsn f initil n finl vrtis t lvl 0. It yils suffiint nitins fr th lsur f lsss f synhrniz lngugs unr ntntin n its itrtin. In Stin, w rll th finitin f rgulr utmt. In th nxt stin, w summriz knwn rsults n th synhrniztin f rgulr utmt [C 06], [NS 07], [CH 08], [C 08]. In th lst stin, w prsnt simplr nstrutin fr th lsur unr mplmnt f Syn() fr unmiguus [C 08] n prsnt nw rsults, spilly suffiint nitins fr th lsur f Syn() unr ntntin n its itrtin. Rgulr utmt n utmtn is lll rint simpl grph with input n utput vrtis. It rgnizs th st f wrs llling th pths frm n input t n utput. Finit utmt r utmt hving finit numr f vrtis, thy rgniz th lss f rgulr lngugs. Rgulr utmt r th utmt gnrt y funtinl grph grmmrs, thy rgniz th lss f ntxt-fr lngugs. ky rsult, riginlly u t Mullr n Shupp, intifis th rgulr utmt f finit gr with th utmt finitly gnrt y istn. n utmtn vr n lpht (finit st f symls) T f trminls is just st f rs lll vr T ( simpl lll rint grph) with initil n finl vrtis. W us tw symls n t mrk rsptivly th initil n finl vrtis. Mr prisly n utmtn is fin y T V V {, } V

whr V is n ritrry st suh tht th fllwing st f vrtis V = { s V (, s) (, s) T t V (, s, t) (, t, s) } is finit r untl. ny tripl (, s, t) is n r lll y frm sur s t gl t it is intifi with th lll trnsitin s t r irtly s t if is unrst. ny pir (, s) is lur vrtx s y {, } ls writtn s. vrtx is initil (rsp. finl) if it is lur y (rsp. ) i.. s (rsp. s ). n xmpl f n utmtn is givn y = { n n + n 0 } { n x n n > 0 } { n y n n > 0 } { x n+ x n n > 0 } { y n+ y n n > 0 } {0, y} { x n n > 0 } { y n+ n 0 } n is rprsnt (up t ismrphism) lw. Figur. n utmtn. n utmtn is thus simpl vrtx- n r-lll grph. hs finit gr if fr ny vrtx s, th st { t (s t t s) } f its jnt vrtis is finit. Rll tht (s 0,, s,..., n, s n ) fr n 0 n s 0 s... s n n s n is pth frm s 0 t s n lll y u =... n u u w writ s 0 = s n r irtly s 0 = s n if is unrst. n pting pth is pth frm n initil vrtx t finl vrtx. n utmtn is unmiguus if tw pting pths hv istint lls. Th utmtn f Figur. is unmiguus. Th lngug rgniz y n utmtn is th st L() f ll lls f its pting pths: L() = { u T s, t (s = u t s, t ) }. Nt tht ε L() if thr xists vrtx s whih is initil n finl: s, s. Th utmtn f Figur. rgnizs th lngug L() = { m n 0 < n m } { n n n > 0 } { n n 0 }. Th lngugs rgniz y finit utmt r th rgulr lngugs vr T. W gnrliz finit utmt t rgulr utmt using funtinl grph grmmrs. T fin grph grmmr, w n t xtn n r (rsp. grph) t hyprr (rsp. hyprgrph). lthugh suh n xtnsin is nturl, this my xplin why funtinl grph grmmrs r nt vry wispr t th mmnt. But w will s in th lst stin tht fr ur purps, w n rstrit t grmmrs using nly rs. Lt F st f symls rnk y mpping : F IN ssiting t h f F its rity (f) 0 suh tht F n = { f F (f) = n } is untl fr vry n 0 with T F n, F. hyprgrph is sust f n 0 F n V n whr V is n ritrry st. ny

tupl (f, s,..., s (f) ), ls writtn fs...s (f), is hyprr f ll f n f sussiv vrtis s,..., s (f). W th nitin tht th st f vrtis V is finit r untl, n th st f lls F is finit. n r is hyprr fst lll y f F n is ls nt y s f t. Fr n, hyprr fs...s n is pit s n rrw lll f n sussivly linking s,..., s n. Fr n = n n = 0, it is rsptivly pit s ll f (ll lur) n vrtx s n s n islt ll f ll nstnt. This is illustrt in th nxt figurs. Fr instn th fllwing hyprgrph: = {4, 5, 5, 5 3, 6 3, 4, 6, 456} with, F n F 3, is rprsnt lw. 3 4 5 6 Figur. finit hyprgrph. (lur) grph is hyprgrph whs lls r nly f rity r : F F F. n utmtn vr th lpht T is grph with st f lls F T {, }. W n nw intru funtinl grph grmmrs t gnrt rgulr utmt. grph grmmr R is finit st f ruls f th frm fx...x (f) H whr fx...x (f) is hyprr f ll f ll nn-trminl jining pirwis istint vrtis x... x (f) n H is finit hyprgrph. W nt y N R th st f nn-trminls f R i.. th lls f th lft hn sis, y T R = { f F N R H Im(R), f F H } th trminls f R i.. th lls f R whih r nt nn-trminls, n y F R = N R T R th lls f R. W us grmmrs t gnrt utmt hn in th fllwing, w my ssum tht T R T {, }. W rstrit ny hyprgrph H t th utmtn [H] f its trminl rs n lur vrtis: [H] = H (T V H V H {, } V H ). Similrly t ntxt-fr grmmrs (n wrs), grph grmmr hs n xim: n initil finit hyprgrph. T init this xim, w ssum tht ny grmmr R hs nstnt nn-trminl N R F 0 whih is nt ll f ny right hn si th xim f R is th right hn si H f th rul f : H F K fr ny K Im(R). Strting frm th xim, w wnt R t gnrt uniqu utmtn up t ismrphism. S w finlly ssum tht ny grmmr R is funtinl mning tht thr is nly n rul pr nn-trminl: if (X, H), (Y, K) R with X() = Y () thn (X, H) = (Y, K). Fr ny rul fx...x (f) H, w sy tht x,..., x (f) r th inputs f f, n V H [H] is th st f utputs f f. T wrk with ths grmmrs, it is simplr t ssum tht ny grmmr R is trminl-utsi [C 07]: ny trminl r r lur in right hn si links t

t lst n nn input vrtx: H (T V X V X {, } V X ) = fr ny rul (X, H) R. In prtiulr n input is nt initil n nt finl. W will us uppr-s lttrs, B, C,... fr nn-trminls n lwr-s lttrs,,... fr trminls. Hr is n xmpl f (funtinl grph) grmmr R : B B 3 Figur.3 (funtinl grph) grmmr. Fr th prvius grmmr R, w hv N R = {,, B} with th xim n () = (B) = 3, T R = {,,, } n,, 3 r th inputs f n B. ivn grmmr R, th rwriting rltin is th inry rltin twn R hyprgrphs fin s fllws: M rwrits int N, writtn M R 3 3 3 N, if w n hs nn-trminl hyprr X = s...s p in M n rul x...x p H in R suh tht N n tin y rpling X y H in M: N = (M X) h(h) fr sm funtin h mpping h x i t s i, n th thr vrtis f H injtivly t vrtis utsi f M this rwriting is nt y M R, X f hyprr X is xtn in n vius wy t th rwriting R, E f nn-trminl hyprrs. Th mplt prlll rwriting = R rwriting ring t th st f ll nn-trminl hyprrs: M= R N. Th rwriting R, X f ny st E is simultnus N if M N whr E is th st f ll nn-trminl hyprrs f M. W pit lw th first thr stps f th prlll rivtin f th prvius grmmr frm its nstnt nn-trminl : = = B = Figur.4 Prlll rivtin fr th grmmr f Figur.3. n utmtn is gnrt y R (frm its xim) if lngs t th fllwing st R ω f ismrphi utmt: R ω = { n 0 [H n] H 0 =... H n = H n+... }. R R R Nt tht in ll gnrlity, w n t nsir hyprgrphs with multipliitis. Hwvr using n pprprit nrml frm, this thnility n sfly mitt [C 07]. Fr instn th utmtn f Figur. is gnrt y th grmmr f Figur.3. rgulr utmtn is n utmtn gnrt y (funtinl grph) grmmr. Nt tht rgulr utmtn hs finit numr f nn-ismrphi nnt mpnnts, n hs finit numr f istint vrtx grs. nthr xmpl is givn y th fllwing grmmr: R, E

whih gnrts th fllwing utmtn: rgnizing th lngug { uũ u {, } + } whr ũ is th mirrr f u. Th lngug rgniz y grmmr R is th lngug L(R) rgniz y its gnrt utmtn: L(R) = L() fr (ny) R ω. This lngug is wll-fin sin ll utmt gnrt y givn grmmr r ismrphi. grmmr R is n unmiguus grmmr if th utmtn it gnrts is unmiguus. Thr is nnil wy t gnrt th rgulr utmt f finit gr whih llws t hrtriz ths utmt withut th xpliit us f grmmrs. This is th finit mpsitin y istn. Th invrs f n utmtn is th utmtn tin frm y rvrsing its rs n y xhnging initil n finl vrtis: = { t s s t } { s s } { s s }. S rgnizs th mirrr f th wrs rgniz y. Th rstritin I f t sust I f vrtis is th sugrph f inu y I : I = (T I I {, } I). Th istn I (s) f vrtx s t I is th miniml lngth f th unirt pths u twn s n I : I (s) = min{ u r I, r = s } with min( ) = +. W tk nw lur # F {, } n fin fr ny intgr n 0, D # n(, I) = { s I(s) n } { #s I (s) = n }. In prtiulr D # 0 (, I) = { # s s I }. W sy tht n utmtn is finitly mpsl y istn if fr h nnt mpnnt C f thr xists finit nn mpty st I f vrtis suh tht n 0 D# n(c, I) hs finit numr f nn-ismrphi nnt mpnnts. Suh finitin llws th

hrtriztin f th lss f ll utmt f finit gr whih r rgulr. Thrm.5 n utmtn f finit gr is rgulr if n nly if it is finitly mpsl y istn n it hs nly finit numr f nn ismrphi nnt mpnnts. Th prf is givn in [C 07] n is slight xtnsin f [MS 85] (ut withut using pushwn utmt). Rgulr utmt f finit gr r ls th trnsitin grphs f pushwn utmt rstrit t rgulr sts f nfigurtins n with rgulr sts f initil n finl nfigurtins. In prtiulr, rgulr utmt f finit gr rgniz th sm lngugs s pushwn utmt. Prpsitin.6 Th (rsp. unmiguus) rgulr utmt rgniz xtly th (rsp. unmiguus) ntxt-fr lngugs. This prpsitin rmins tru if w rstrit t utmt f finit gr. W nw us grmmrs t xtn th fmily f rgulr lngugs t ln lgrs f unmiguus ntxt-fr lngugs. 3 Synhrniztin f rgulr utmt W intru th i f synhrniztin twn grmmrs. Th lss f lngugs synhrniz y grmmr R r th lngugs rgniz y grmmrs synhrniz y R. W shw tht ths fmilis f lngugs r ls unr unin y pplying th sum f grmmrs, r ls unr intrstin with rgulr lngug y fining th synhrniztin prut f grmmr with finit utmtn, n r ls unr intrstin (in th s f grmmrs gnrting unmiguus utmt) y prfrming th synhrniztin prut f grmmrs. Finlly w shw tht ll grmmrs gnrting th sm utmtn synhrniz th sm lngugs. T h vrtx s f n utmtn R ω gnrt y grmmr R, w ssit nn ngtiv intgr l(s) whih is th miniml numr f rwritings ppli frm th xim nssry t rh s. Mr prisly fr = n 0 [H n] with H 0 =...H n = H n+..., th lvl l(s) f s V, ls writtn l R (s) R R R t spify n R,is l(s) = min{ n s V Hn }. W pit lw th lvls f sm vrtis f th rgulr utmtn f Figur. gnrt y th grmmr f Figur.3. This utmtn is rprsnt y vrtis f inrsing lvl: vrtis t sm lvl r lign vrtilly.

0 3 4 5 6 Figur 3. Vrtx lvls with th grmmr f Figur.3. W sy tht grmmr S is synhrniz y grmmr R writtn S R, r quivlntly tht R synhrnizs S writtn R S, if fr ny pting pth µ ll y u f th utmtn gnrt y S, thr is n pting pth λ ll y u f th utmtn gnrt y R suh tht fr vry prfix v f u, th prfixs f λ n µ lll y v l t vrtis f th sm lvl: fr (ny) R ω n (ny) H S ω n fr ny t 0 t... n t n with t 0, t n H, H H thr xists s 0 s... n s n with s 0, s n n l R (s i) = l S H (t i) i [0, n]. Fr instn th grmmr f Figur.3 synhrnizs th fllwing grmmr: B B Figur 3. grmmr synhrniz y th grmmr f Figur.3. In prtiulr fr S R, w hv L(S) L(R). Nt tht th mpty grmmr {(, )} is synhrniz y ny grmmr. Th synhrniztin rltin is rflxiv n trnsitiv rltin. W nt th i-synhrniztin rltin: R S if R S n S R. Nt tht i-synhrniz grmmrs R S my gnrt istint utmt: R ω S ω. Fr ny grmmr R, th img f R y is th fmily (R) = { S R S } f grmmrs synhrniz y R n Syn(R) = { L(S) S R } is th fmily f lngugs synhrniz y R. Nt tht Syn(R) is fmily f lngugs inlu in L(R) n ntining th mpty lngug n L(R). Nt ls tht Syn(R) = Syn(S) fr R S. Stnr prtins n finit utmt r xtn t grmmrs in rr t tin lsur prprtis f Syn(R). Fr instn th synhrniztin prut f finit utmt is xtn t ritrry utmt n H y H = { (s, p) (t, q) s t p q } { (s, p) s p H } { (s, p) s p H } whih rgnizs L( H) = L() L(H). Th synhrniztin prut f rgulr utmtn, gnrt y grmmr R, with finit utmtn K rmins rgulr: it is gnrt y grmmr R K tht w fin [CH 08]. Lt {q,..., q n } th vrtx st f K. T h N R, w ssit nw syml (, n) f rity () n xpt tht (, 0) = H

, n t h hyprr r...r m with m = (), w ssit th hyprr (r...r m ) K = (, n)(r, q )...(r, q n )...(r m, q )...(r m, q n ). Th grmmr R K ssits t h rul (X, H) R th fllwing rul: X K [H] K { (BY ) K BY H B N R }. Exmpl 3.3 Lt us nsir th fllwing grmmr R : s t gnrting th fllwing (rgulr) utmtn : n rgnizing th rstrit Dyk lngug D vr th pir (, ) [B 79] : L(R) = L() = D. W nsir th fllwing finit utmtn K : rgnizing th st f wrs vr {, } hving n vn numr f. S R K is th fllwing grmmr: p q (s,p) (, ) (s,q) (,p) (, ) (,q) (,p) (,q) (t,p) (, ) (t,q) gnrting th utmtn K : whih rgnizs D rstrit t th wrs with n vn numr f (r ). Th synhrniztin prut f grmmr R with finit utmtn K is synhrniz y R i.. R K R n rgnizs L(R K) = L(R) L(K). Prpsitin 3.4 Fr ny grmmr R, th fmily Syn(R) is ls unr intrstin with rgulr lngug. Prpsitins.6 n 3.4 imply th wll-knwn lsur prprty f th fmily f ntxt-fr lngugs unr intrstin with rgulr lngug. s R K is unmiguus fr R unmiguus n K trministi, it ls fllws Thrm 6.4. f [H 78] : th fmily f unmiguus ntxt-fr lngugs is ls

unr intrstin with rgulr lngug. nthr si prtin n finit utmt is th isjint unin. This prtin is xtn t ny grmmrs R n R. Fr ny i {, }, w nt R i = R ( i { i i T } {i, i} ) in rr t istinguish th vrtis f R n R. Fr (, H ) R n (, H ) R, th sum f R n R is th grmmr R + R = {(, H H )} (R {(, H )}) (R {(, H )}). S (R + R ) ω = { R ω R ω V V = } hn L(R + R ) = L(R ) L(R ). In prtiulr if S R n S R thn S + S R + R. Prpsitin 3.5 Fr ny grmmr R, Syn(R) is ls unr unin. Th synhrniztin prut f rgulr utmt n nn rgulr. Furthrmr fr th rgulr utmtn :,,,,,, th lngugs { m m n m, n 0 } n { m n n m, n 0 } r in Syn() ut thir intrstin { n n n n 0 } is nt ntxt-fr lngug. Th synhrniztin prut f grmmr with finit utmtn is xtn fr tw grmmrs R n S fr gnrting th lvl synhrniztin prut R,SH f thir gnrt utmt R ω n H S ω whih is th rstritin f H t pirs f vrtis with sm lvl: R,SH = ( H) P fr P = { (s, p) V V H l R (s) = ls H (p) }. This prut n gnrt y grmmr R S tht w fin. Lt (, B) N R N S ny pir f nn-trminls n E [, ()] [, (B)] inry rltin vr inputs suh tht fr ll i, j [, ()], if E(i) E(j) thn E(i) = E(j), whr E(i) = {j (i, j) E} nts th img f i [, ()] y E. Intuitivly fr pir (, B) N R N S f nn-trminls, rltin E [, ()] [, (B)] is us t mmriz whih ntris f n B r ing synhrniz. T ny suh, B n E, w ssit nw syml [, B, E] f rity E (whr [,, ] is ssimilt t ). T h nn-trminl hyprr r...r m f R ( N R n m = ()) n h nn-trminl hyprr Bs...s n f S (B N S n n = (B)), w ssit th hyprr [r...r m, Bs... s n, E] = [, B, E](r, s ) E... (r, s n ) E... (r m, s ) E...(r m, s n ) E with (r i, s j ) E = (r i, s j ) if (i, j) E, n ε thrwis. Th grmmr R S is thn fin y ssiting t h (X, P) R, h (BY, Q) S, n h E ( [ ()] [ (B)], ) th rul f lft hn si [X, BY, E] n f right hn si [P] [Q] E {[CU, DV, E ] CU P C N R DV Q D N S } with E = { (X(i), Y (j)) (i, j) E } ( V P V X ) ( VQ V Y ) n E = { (i, j) [ (C)] [ (D)] (U(i), V (j)) E }.

Exmpl 3.6 Lt us illustrt th lvl synhrniztin prut f tw grmmrs. W tk first grmmr R : B B x s t 3 3 B gnrting grph : sn grmmr S is th fllwing: J I y p J q K K J r gnrting grph H : Th lvl synhrniztin prut R,SH f th prvius tw grphs is th grph: This grph is gnrt y th fllwing grmmr R S rstrit t th ruls ssil frm : (x,y) U U (,) (,) (s,p) V (,) (,) (3,) V (,) (,) (3,) W (t,q) (,) (,) (,) (3,) W (3,) X (t,r) (3,) X (3,) W (t,q)

with U = [, I, {(, )}] V = [B, J, {(, ), (, ), (3, )}] W = [B, K, {(, ), (3, )}] X = [B, J, {(, ), (3, )}]. Nt tht R S is synhrniz y R n S, n is i-synhrnniz with S fr S R. Furthrmr R S gnrts R,SH fr R ω n H S ω hn rgnizs sust f L(R) L(S). Hwvr fr grmmrs S n S synhrniz y n unmiguus grmmr R, w hv L(S S ) = L(S) L(S ). Prpsitin 3.7 Fr ny unmiguus grmmr R, th fmily Syn(R) is ls unr intrstin. By xtning si prtins n finit utmt t grmmrs, it pprs tht grph grmmrs r t ntxt-fr lngugs wht finit utmt r t rgulr lngugs. W will ntinu ths xtnsins in th nxt stin. Lt us prsnt funmntl rsult nrning grmmr synhrniztin, whih stts tht Syn(R) is inpnnt f th wy th utmtn R ω is gnrt. Thrm 3.8 Fr ny grmmrs R n S suh tht R ω = S ω, w hv Syn(R) = Syn(S). Prf skth. By symmtry f R n S, it is suffiint t shw tht Syn(R) Syn(S). Lt R R. W wnt t shw tht L(R ) Syn(S). W hv t shw th xistn f S S suh tht L(S ) = L(R ). Nt tht it is pssil tht thr is n grmmr S synhrniz y S n gnrting th sm utmtn s R (i.. S S n S ω = R ω ). Lt R ω = S ω. ny vrtx s f hs lvl l R (s) ring t R n lvl l S (s) ring t S. Lt H R ω n lt K = ( lh) P th utmtn tin y lvl synhrniztin prut f with H n rstrit t th st P f vrtis ssil frm n -ssil frm. Th rstritin y ssiility frm n -ssiility frm n n y i-synhrniz grmmr [C 08]. By finitin f R R, th utmtn K n gnrt y grmmr R i-synhrniz t R with l R K (s, p) = lr (s) = lr H (p) fr vry (s, p) V K. In prtiulr L(K) = L(R ). Lt us shw tht K is gnrt y grmmr synhrniz y S. W giv th prf fr R ω f finit gr. In tht s n fr = N R (), l R (s) lr (t). (s, t) fr vry s, t V. Furthrmr K is ls f finit gr. W shw tht K is finitly mpsl nt y istn ut ring t l S K (s) fr th vrtis (s, p) f K.

Lt n 0 n C nnt mpnnt f K {(s,p) VK l S (s) n }. S C is fully trmin y its frntir : Fr K (C) = V C V K C its intrf : Int K (C) = { s t {s, t} Fr K (C) }. C Lt (s 0, p 0 ) Fr K (C) n D th nnt mpnnt f { s l S (s) n } ntining s 0. It rmins t fin un inpnnt f n suh tht (s, p) lr K (t, q) fr vry (s, p), (t, q) Fr K(C). l R K Fr ny (s, p), (t, q) Fr K (C), w hv s, t Fr (D) hn D (s, t) is un y th intgr = mx{ S ω ()(i, j) < + N S i, j [, ()] } whs S ω () = { n 0 [H n]... () = H 0 = S thus it fllws tht l R K... H n = S H n+... } (s, p) lr K (t, q) = lr (s) lr (t) (s, t) D (s, t). Fr f infinit gr n y Prpsitin 4.9, w n xprss Syn() s n ε-lsur f Syn(H) fr sm rgulr utmtn H f finit gr using ε- trnsitins. Thrm 3.8 llws t trnsfr th npt f grmmr synhrniztin t th lvl f rgulr utmt: fr ny rgulr utmtn, w n fin Syn() = Syn(R) fr (ny) R suh tht R ω. Th synhrniztin rltin is ls xtn twn rgulr utmt. rgulr utmtn H is synhrniz y rgulr utmtn, n w writ H r H, if thr xists grmmr S gnrting H whih is synhrniz y grmmr R gnrting : S R, H S ω n R ω. Lt us illustrt ths is y prsnting sm xmpls f wll-knwn sufmilis f ntxt-fr lngugs tin y synhrniztin. Exmpl 3.9 Fr ny finit utmtn, Syn() is th fmily f rgulr lngugs inlu in L(). Exmpl 3.0 Fr th fllwing rgulr utmtn : Syn() is th fmily f input-rivn lngugs [M 80] with pushing, ppping n intrnl. s th initil vrtx is nt sur f n r lll y, Syn() s nt ntin ll th rgulr lngugs. Exmpl 3. W mplt th prvius utmtn y ing n -lp n th initil vrtx t tin th fllwing utmtn :,

Th st Syn() is th fmily f visily pushwn lngugs [M 04] with pushing, ppping n intrnl. Exmpl 3. Fr th fllwing rgulr utmtn : th st Syn() is th fmily f ln lngugs [BB 0] with, pushing with thir rrspning ppping lttrs,, n is intrnl. Exmpl 3.3 Fr th fllwing rgulr utmtn : th fmily Syn( ) is th st f lngugs gnrt frm I y th fllwing linr ntxt-fr grmmrs: I = P + m m with m 0 n P {,..., m m } = Q + n n with n > 0 n Q {,..., n n }. Exmpl 3.4 Fr th fllwing rgulr utmtn : th fmily Syn( ) is th st f lngugs gnrt frm I y th fllwing linr ntxt-fr grmmrs: I = P + m m with m 0 n P {,..., m m } = Q + n n with n > 0 n Q {,..., n n }. Exmpl 3.5 Fr th fllwing unmiguus rgulr utmtn :

w hv Syn() = { L L L Syn( ) L Syn( ) } fr th rgulr utmt n f th prvius Exmpls 3.3 n 3.4. Exmpl 3.6 Th rgulr utmtn : synhrnizs th rgulr utmtn: whih rgnizs th lngug gnrt y th fllwing ntxt-fr grmmr: I = + + B = + B B = + B Mr gnrlly Syn() is th fmily f lngugs gnrt y th linr ntxt-fr grmmrs: I = L 0 + n0 + n0 BM 0 = L + n + n BM B = L + n B n fin fr n 0 0 n n > 0, n fr I 0, J 0, K 0 [0, n 0 [ n I, J, K [0, n [ suh tht fr vry k {0, }, L k = { i+ i+ j i I k j J k j i [j, i[ K k = } M k = { n k j j J k [j, n k [ K k = } L = { i+ i+ i I [0, i[ K = }. Intuitivly, th intgr n 0 (rsp. n ) is th lngth f th s (rsp. f th pri ) n fr ny k {0, }, I k, J k, K k r th susts f [0, n k [ suh tht I k is th st f th gls f th -ignls, J k is th st f th psitins f th utputs, n K k is th st f th nn llw psitins: thr r n gl f -hrizntl. Fr h rgulr utmtn mng th prvius xmpls, Syn() is ln lgr ring t L() n, fr th Exmpls 3.9, 3.0 n 3., is ls ls unr ntntin n its itrtin. W nw nsir nw lsur prprtis f synhrniz lngugs fr rgulr utmt.

4 Clsur prprtis W hv sn tht th fmily Syn() f lngugs synhrniz y rgulr utmtn is ls unr unin n unr intrstin with rgulr lngug, n unr intrstin whn is unmiguus. In this stin, w nsir th lsur f Syn() unr mplmnt rltiv t L() n unr ntntin n its trnsitiv lsur. T tin ths lsur prprtis, w first pply grmmr nrmliztins prsrving th synhrniz lngugs. Ths nrmliztins ls llw us t ε-rs t ny rgulr utmtn t gt rgulr utmtn f finit gr with th sm synhrniz lngugs. First w put ny grmmr in n quivlnt nrml frm with th sm st f synhrniz lngugs. s in th s f finit utmt, w trnsfrm ny utmtn int th pint utmtn whih is lngug quivlnt L( ) = L(), with uniqu initil vrtx V whih is gl f n r n n finl, n with uniqu nn initil n finl vrtx V whih is sur f n r: = ( {, } V ) {, } { s (s, s ) } { t s (s t s ) } { s t (s t t ) } { s, t (s t s, t ) }. Fr instn, th finit gr rgulr utmtn f Figur. is trnsfrm int th fllwing infinit gr rgulr utmtn : Figur 4. pint rgulr utmtn. Nt tht if is unmiguus, rmins unmiguus. Th pint trnsfrmtin f rgulr utmtn rmins rgulr utmtn whih n gnrt y n 0-grmmr : nly th xim hs initil n finl vrtis. Lt R ny grmmr n, tw symls whih r nt vrtis f R. Lt R ω with, V. W fin n 0-grmmr R gnrting n prsrving th synhrniz lngugs: Syn(R ) = Syn(R). First w trnsfrm R int grmmr R in whih w mmriz in th nntrminls th input vrtis whih r link t initil r finl vrtis f th gnrt utmtn. Mr prisly t ny N R n I, J [, ()], w ssit nw syml I,J f rity () with =,. W fin th grmmr

R ssiting t h (X, H) R n I, J [, ()] th fllwing rul: I,J X [H] { B I,J Y BY H B N R } with I = { i Y (i) I Y (i) H } n J = { j Y (j) J Y (j) H } n w rstrit th ruls f R t th nn-trminls ssil frm. Nt tht th st L(R) T f lttrs rgniz y R n trmin s { ( I,J X, H) R ( i I t, X(i) [H] t t H) ( j J s, s X(j) s H) ( s, t, s t s, t H) } [H] [H] n ε L(R) H Im( R) s (s, s H). T ny N R {} n ny I, J [, ()], w ssit nw syml I,J f rity () +, n w fin th grmmr R ntining th xim rul H, {, } { ε L(R) } { L(R) T } fr (, H) R, n fr ny ( I,J X, H) R with, w tk in R th rul I,J X H I,J suh tht H I,J is th fllwing hyprgrph: H I,J = ([H] {, }) V H ) { B P,Q X B P,QX H B P,Q N R } { t i I (X(i) t) s (s H s t) } [H] [H] { s j J (s X(j)) t (t H s t) } n w put R int trminl-utsi frm [C 07]. [H] [H] Exmpl 4. Lt us nsir th fllwing grmmr R : B B C C gnrting th fllwing utmtn (with vrtx lvls): 0 3 5 6 First this grmmr is trnsfrm int th fllwing grmmr R :,, B, B, C, C,, In prtiulr ε,, L(R). Thn R is trnsfrm int th grmmr R :

,,, B, B, C, C,, tht w put in trminl-utsi frm:,,, B, B,, C, C,,,, S R gnrts :,,,,,, Th grmmrs R n R synhrniz th sm lngugs. Prpsitin 4.3 Fr ny rgulr utmtn with, V, th pint utmtn rmins rgulr n Syn( ) = Syn(). It fllws tht, in rr t fin fmilis f lngugs y synhrniztin y rgulr utmtn, w n rstrit t pint utmt. strngr nrmliztin is t trnsfrm ny grmmr R int grmmr S suh tht Syn(S) = Syn(R) n S is n r-grmmr in th fllwing sns: S is n 0-grmmr whs ny nn-trminl N S {} is f rity, n fr ny nn xim rul st H, thr is n r in H f gl s r f sur t : fr ny p q, w hv p t n q s. H W n trnsfrm ny 0-grmmr R int i-synhrniz r-grmmr R. W ssum tht h rul f R is f th frm... () H fr ny N R.

W tk nw syml 0 (nt vrtx f R) n nw ll i,j f rity fr h N R n h i, j [, ()] in rr t gnrt pths frm i t j in R ω (... ()). W fin th splitting f ny F R -hyprgrph withut vrtx 0 s ing th grph: = [] { X(i) i,j X(j) X N R i, j [ ()] } n fr p, q V n P V with 0 V, w fin p,p,q = ( { s t t p s q s, t P } ) fr p q I p,p,p = ( { s with I = { s p = t t p s, t P } { s 0 s p } ) J s = q } n J = { s p = s = 0 }. This llws t fin th splitting R f R s ing th fllwing r-grmmr: H i,j h i,j ( (H ) i,[ ()] {i,j},j ) fr h NR n i, j [, ()] whr h i,j is th vrtx rnming fin y h i,j (i) =, h i,j (j) =, h i,j (x) = x thrwis, fr i j h i,i (i) =, h i,i (0) =, h i,i (x) = x thrwis. Thus R n R r i-synhrniz, n R is unmiguus whn R is unmiguus. Nt tht w n put R int ru frm y rmving ny nn-trminl i,j suh tht R ω ( i,j ) is withut pth frm t. Exmpl 4.4 Th fllwing 0-grmmr R : B 3 B 3 gnrts th fllwing utmtn : Th splitting R f R is th fllwing grmmr:,,,, B, B,,, B,3 B,3, gnrting th fllwing utmtn:

s R R, w hv Syn(R) = Syn( R ). T stuy lsur prprtis f Syn(R) fr ny grmmr R, w n wrk with its nrml frm R whih is n r-grmmr gnrting pint utmtn. This nrmliztin is rlly usful t stuy th lsur prprty f Syn(R) unr mplmnt rltiv t L(R), unr ntntin n its itrtin. W hv sn tht Syn(R) is nt ls in gnrl unr intrstin, hn it is nt ls unr mplmnt ring t L(R) sin fr ny L, M L(R), L M = L(R) [(L(R) L) (L(R) M)]. Fr R unmiguus, Syn(R) is ls unr intrstin, n this rmins tru unr mplmnt ring t L(R) [C 08]. W giv hr simplr nstrutin. s R rmins unmiguus, w n ssum tht R is n r-grmmr. Lt S R. W wnt t shw tht L(R) L(S) Syn(R). S S is n 0-grmmr n S is lvl-unmiguus s fin in [C 08]: fr ny pting pths λ, µ with th sm ll u n fr vry prfix v f u, th prfixs f λ n µ lll y v l t vrtis f th sm lvl i.. fr (ny) S ω, s 0 s... n s n t 0 = l S (s i) = l S (t i) i [0, n]. t... n t n s 0, t 0, s n, t n Thus S is lvl-unmiguus r-grmmr. W tk nw lur F {, } n fr ny grmmr S, w nt S (rsp. S ) th grmmr tin frm S y rpling th finl lur y (rsp. y ). S R + S is n r-grmmr n (R + S ) is lvl-unmiguus. It rmins t pply th grmmr trminiztin fin in [C 08] n givn lw, t gt th grmmr R/S = Dt(R + S ) suh tht (R/S) is unmiguus n i-synhrniz t (R+ S ). Finlly w kp in R/S th finl vrtis whih r nt lur y t tin grmmr synhrniz y R n rgnizing L(R) L(S). Thrm 4.5 Fr ny unmiguus rgulr utmtn, th st Syn() is n fftiv ln lgr ring t L(), ntining ll th rgulr lngugs inlu in L(). S w n i th inlusin L(S) L(S ) fr tw grmmrs S n S synhrniz y mmn unmiguus grmmr. Furthrmr fr grmmrs R n R suh tht R + R is lvl-unmiguus, Syn(R + R ) = { L L L Syn(R ) L Syn(R ) } is ln lgr inlu in L(R ) L(R ),

ntining Syn(R ) n Syn(R ). Th utmt f Exmpls 3.9 t 3.6 r unmiguus hn thir fmilis f synhrniz lngugs r ln lgr. This rgulr utmtn : is -miguus: thr r tw pting pths fr th wrs n n n with n > 0 n uniqu pting pth fr th thr pt wrs. But Syn() is nt ls unr intrstin sin { m m n m, n 0 } n { m n n m, n 0 } r lngugs synhrniz y. Lt us giv th Dt prtin ppli n ny r-grmmr. s fr th lvl synhrniztin prut, th stnr pwrst nstrutin t trminiz grph is nly n lvl prsrving. Th lvl-trminiztin f ny grmmr R is Dt(R ω ) := { K R ω, K ismrphi t Dt() } whs th lvl-trminiztin Dt() f ny R ω is fin y Dt() := { P Q P, Q Π Q Su (P) q Su (P) Q, Q {q} Π } { P P Π p P p q (q q P = P {q} Π) } { P P Π F {} p P p } rstrit t th vrtis ssil frm n suh tht Π is th st f susts f vrtis with sm lvl: Π := { P P V p, q P, l(p) = l(q) } n Su (P) is th st f sussrs f vrtis in P Π y F F : Su (P) := { q p P (p q) }. Cntrry t th lvl synhrniztin prut, Dt s nt prsrv th rgulrity. Hwvr Dt(R ω ) n gnrt y grmmr whn R is n r-grmmr. Lt R ny r grmmr with R ω ssil frm. W nt H th right hn si f th rul f N R. T ny N R {}, w ssit nw syml f rity n w fin th grmmr R tin frm R y ing th ruls H fr ll N R {}, n thn y rpling in th right hn sis ny nn-trminl r s B y s B :

R := { (, H ) } { (, (H N R V H ) { Bs B N R Bs H } ) N R {} } { (, (H N R V H ) { Bs B N R Bs H } ) N R {} }. W tk linr rr < n N R {} f smllst lmnt ( s nt ppr in th right hn si f R). T h P N R {}, w ssit nw syml P f rity P hyprr <P> = P p...p m with {p,..., p m } = P n p <... < p m n w tk grph H P suh tht { P } {} = R n fr P =, w fin < > = n H = H. T h P N R {}, w pply n H P th lvl-trminiztin t gt th grph H P := Dt(H P)[ /{}] { } whs th vrtx lvl l is fin y l() = 0 P N R l() = P N R l(s) = s V HP (P {}). Nt tht th lvl l() f is nt signifint us thr is n r f gl in H P. T h P N R {}, w ssit th fllwing rul: <P> [H P ] { <Q>[U E/E] E Q U V H P Q } with Q := { N R s U, s } H P U := U U E := { t s U E, s t } fr ny E Q. H P Nt tht fr R unmiguus, w n rstrit <P > t <P> = P p...p m with {p,..., p m } = P. By tking ll th ruls ssil frm, w gt grmmr Dt(R). Lt us illustrt th nstrutin f Dt(R) t th fllwing r grmmr R : H P B B B gnrting th fllwing grph : W hv th fllwing prlll rwriting:

B = B t B B s p q Tking l() = l(b) = n l(s) = l(t) = l(p) = l(q) =, th right hn si H,B givs y lvl-trminiztin th fllwing grph Dt(H,B ): {} {} {B} {,B},, B {p,s} {t} {q} {q,t} n th fllwing grmmr Dt(R): {, B} {} {B} {,B} {} {, B} {, B} {B} {,B} gnrting Dt(): similr xmpl is givn y th fllwing r grmmr R : B B B B gnrting th fllwing grph :

W tin th fllwing grmmr Dt(R): {, B} {} {B} {,B} {} {, B} {, B} {B} {,B} gnrting Dt(): Fr ny rgulr utmtn, th lsur f Syn() unr ntntin (rsp. unr its trnsitiv lsur + ) s nt rquir th unmiguity f. s L() Syn(), nssry nitin is t hv L().L() Syn() (rsp. L() + Syn()). Nt tht this nssry nitin implis tht L() is ls unr (rsp. + ). In prtiulr Syn() is nt ls unr n + fr th utmt f Exmpls 3. t 3.6. But this nssry nitin is nt suffiint sin th fllwing rgulr utmtn :,

rgnizs L() = ε + M( + ) fr M = { n n n > 0 }, hn L().L() = L() = L() + ut M Syn() n M.M, M + Syn(). Lt us giv simpl n gnrl nitin n grmmr R suh tht Syn(R) is ls unr n +. W sy tht grmmr is itrtiv if ny initil vrtx is in th xim n fr (ny) R ω n ny pting pth s 0 s... n s n with s 0, s n n fr ny finl vrtx t i.. t, thr xists pth t t... n t n with t n suh tht l(t i ) = l(t) + l(s i ) fr ll i [, n]. Fr instn th utmtn f Exmpl 3.0 n gnrt y n itrtiv grmmr. n ny 0-grmmr gnrting rgulr utmtn hving uniqu initil vrtx whih is th uniqu finl vrtx, is itrtiv. Stnr nstrutins n finit utmt fr th ntntin n its itrtin n xtn t itrtiv grmmrs. Prpsitin 4.6 Fr ny itrtiv grmmr R, th fmily Syn(R) is ls unr ntntin n its trnsitiv lsur. Hwvr th utmtn f Exmpl 3. nnt gnrt y n itrt grmmr ut Syn() is ls unr n + [M 04]. W n ls tin fmilis f synhrniz lngugs whih r ls unr n + y sturting grmmrs. Th sturtin + f n utmtn is th utmtn + = { s r r t (s t t ) } rgnizing L( + ) = (L()) +. Nt tht if is rgulr with infinit sts f initil n finl vrtis, + n nn rgulr (ut is lwys prfix-rgnizl). If is gnrt y n 0- grmmr R, its sturtin + n gnrt y grmmr R + tht w fin. Lt (, H) th xim rul f R n r,..., r p th initil vrtis f H w n ssum tht r,..., r p r nt vrtis f R {(, H)}. T h N R {} n I [, ()], w ssit nw syml I f rity () + p n w fin R + with th fllwing ruls: [H] + { { i X(i) H } Xr...r p X H N R } I Xr...r p K I fr h (X, K) R n n I [, ()] whs K I is th utmtn tin frm K s fllws: K I = [K] { s r j j [p] i I (s X(i)) } { B { j i I, Y (j)=x(i) } Y r...r p BY K B N R }. S R is synhrniz y R + n + (R + ) ω fr R ω. T hrtriz Syn(R + ) frm Syn(R), w fin th rgulr lsur Rg(E) f ny lngug fmily E s ing th smllst fmily f lngugs ntining E n ls unr,, +. K Prpsitin 4.7 Fr ny 0-grmmr R, Syn(R + ) = Rg(Syn(R)). By Prpsitins 4.3, 4.6 n 4.7, th fllwing rgulr utmtn :

,,,,,,, hs th sm synhrniz lngugs thn th utmtn f Exmpl 3.0: Syn() is th fmily f input-rivn lngugs (fr pushing, ppping n intrnl). By ing n -lp n th initil (n finl) vrtx f, w tin n utmtn H suh tht Syn(H) is th fmily f visily pushwn lngugs hn y Prpsitin 4.7, is ls unr n +. Exmpl 4.8 nturl xtnsin f th visily pushwn lngugs is t rst lttrs. Fr pushing, ppping n intrnl, w rst lttr t fin th fllwing rgulr utmtn :,,, ny lngug f Syn() is visily pushwn lngug tking s n intrnl lttr, ut nt th nvrs: { n n n 0 } Syn(). By Thrm 4.5, Syn() is ln lgr. Furthrmr th fllwing utmtn H :,,,,,,,,,,,, stisfis Syn(H) = Syn() n H + = H hn y Prpsitin 4.7, Syn() is ls ls unr n +. Nt tht th utmt f th prvius xmpl hv infinit gr. Furthrmr fr ny utmtn f finit gr hving n infinit st f initil r finl vrtis, th pint utmtn is f infinit gr. Hwvr ny rgulr utmtn f infinit gr (in ft ny prfix-rgnizl utmtn) n tin y ǫ-lsur frm rgulr utmtn f finit gr using ε-trnsitins. Fr instn lt us tk nw lttr T (inst f th mpty wr) n lt us nt π th mrphism rsing in th wrs vr T {}: π () = fr ny T n π () = ε, tht w xtn y unin t ny lngug L (T {}) : π (L) = { π (u) u L }, n y pwrst t ny fmily P f lngugs: π (P) = { π (L) L P }. Th fllwing rgulr utmtn K :

,,, is f finit gr n stisfis π (Syn(K)) = Syn() fr th utmtn f Exmpl 4.8. Lt us giv simpl trnsfrmtin f ny grmmr R t grmmr R suh tht R ω is f finit gr n π (Syn(R )) = Syn(R). s Syn(R) = Syn( R ), w rstrit this trnsfrmtin t r-grmmrs. Lt R n r-grmmr. W fin R t n r-grmmr tin frm R y rpling h nn xim rul st H y th rul: st ( [H] {s s, t t} h(h [H]) ) P with s, t nw vrtis n h th vrtx mpping fin fr ny r V H y h(r) = r if r {s, t}, h(s) = s n h(t) = t, n P is th st f vrtis ssil frm s n -ssil frm t. Fr instn th r-grmmr R is trnsfrm int th fllwing r-grmmr R : Fr ny rul f R, th inputs r sprt frm th utputs (y -trnsitins), hn R ω is f finit gr. Furthrmr this trnsfrmtin prsrvs th synhrniz lngugs. Prpsitin 4.9 Fr ny r-grmmr R, Syn(R) = π (Syn(R )). S fr ny R, Syn(R) = π (Syn( R )) n ( R ) ω is f finit gr. ll th nstrutins givn in this ppr r nturl gnrliztins f usul trnsfrmtins n finit utmt t grph grmmrs. In this wy, si lsur prprtis ul lift t su-fmilis f ntxt-fr lngugs. Cnlusin Th synhrniztin f rgulr utmt is fin thrugh vis gnrting ths utmt, nmly funtinl grph grmmrs. It n ls fin using pushwn utmt with ε-trnsitins [NS 07] us Thrm 3.8 ssrts tht th fmily f lngugs synhrniz y rgulr utmtn is inpnnt f th wy th utmtn is gnrt it is grph-rlt ntin. This

ppr shws tht th mhnism f funtinl grph grmmrs prvis nturl nstrutins n rgulr utmt gnrlizing usul nstrutins n finit utmt. This ppr is ls n invittin t xtn th ntin f synhrniztin t mr gnrl su-fmilis f utmt. knwlgmnts Mny thnks t rnu Cryl n ntin Myr fr hlping m prpr th finl vrsin f this ppr. Rfrns [M 04] R. lur n P. Mhusun Visily pushwn lngugs, 36 th STOC, CM Prings, L. Bi (E.), 0 (004). [B 79] J. Brstl Trnsutins n ntxt-fr lngugs, E. Tunr, pp. 78, 979. [BB 0] J. Brstl n L. Bssn Bln grmmrs n thir lngugs, Frml n Nturl Cmputing, LNCS 300, W. Brur, H. Ehrig, J. Krhumäki,. Slm (Es.), 3 5 (00). [C 06] D. Cul Synhrniztin f pushwn utmt, 0 th DLT, LNCS 4036, O. Irr,. Dng (Es.), 0-3 (006). [C 07] D. Cul Dtrministi grph grmmrs, Txts in Lgi n ms, mstrm Univrsity Prss, J. Flum, E. räl, T. Wilk (Es.), 69 50 (007). [C 08] D. Cul Bln lgrs f unmiguus ntxt-fr lngugs, 8 th FSTTCS, Dgstuhl Rsrh Onlin Pulitin Srvr, R. Hrihrn, M. Mukun, V. Viny (Es.) (008). [CH 08] D. Cul n S. Hssn Synhrniztin f grmmrs, 3 r CSR, LNCS 500, E. Hirsh,. Rzrv,. Smnv,. Slissnk (Es.), 0 (008). [H 78] M. Hrrisn Intrutin t frml lngug thry, isn-wsly (978). [M 80] K. Mhlhrn Pling muntin rngs n its pplitin t DCFL rgnitin, 7 th ICLP, LNCS 85, J. Bkkr, J. vn Luwn (Es.), 4 43 (980). [MS 85] D. Mullr n P. Shupp Th thry f ns, pushwn utmt, n sn-rr lgi, Thrtil Cmputr Sin 37, 5 75 (985). [NS 07] D. Nwtk n J. Sr Hight-trministi pushwn utmt, 3 n MFCS, LNCS 4708, L. Kur,. Kur (Es.), 5 34 (007).