MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol

Similar documents
Numbers Related to Bernoulli-Goss Numbers

The Number of Rows which Equal Certain Row

The Schur-Cohn Algorithm

plays an important role in many fields of mathematics. This sequence has nice number-theoretic properties; for example, E.

Moment estimates for chaoses generated by symmetric random variables with logarithmically convex tails

Supplement 4 Permutations, Legendre symbol and quadratic reciprocity

Quadratic reciprocity

arxiv: v9 [math.nt] 8 Jun 2010

On a Conjecture of Farhi

MOLECULAR TOPOLOGICAL INDEX OF C 4 C 8 (R) AND C 4 C 8 (S) NANOTORUS

arxiv: v6 [math.nt] 20 Jan 2016

Some Results on Cubic Residues

PRIMES AND QUADRATIC RECIPROCITY

Two Coefficients of the Dyson Product

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected Exercises. g(x) 2 dx 1 2 a

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

Duke Math Meet

PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES. Department of Mathematics University of California Riverside, CA

Statistics and Probability Letters

A NOTE ON THE DISCRETE FOURIER RESTRICTION PROBLEM

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Quadratic Residues. Chapter Quadratic residues

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Some circular summation formulas for theta functions

Math Solutions to homework 1

Approximation of functions belonging to the class L p (ω) β by linear operators

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

A proof of the strong twin prime conjecture

SMARANDACHE TYPE FUNCTION OBTAINED BY DUALITY

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

Hadamard-Type Inequalities for s Convex Functions I

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

Multiplicative functions of polynomial values in short intervals

QUADRATIC RESIDUES MATH 372. FALL INSTRUCTOR: PROFESSOR AITKEN

Some congruences related to harmonic numbers and the terms of the second order sequences

Legendre polynomials and Jacobsthal sums

S. S. Dragomir. 2, we have the inequality. b a

REPRESENTATION THEORY OF PSL 2 (q)

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

Some integral inequalities on time scales

LECTURE 10: JACOBI SYMBOL

Some new integral inequalities for n-times differentiable convex and concave functions

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

On some inequalities for s-convex functions and applications

DIRECT CURRENT CIRCUITS

Rectangular group congruences on an epigroup

A New Method for Solving Fuzzy Volterra Integro-Differential Equations

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

Acceptance Double Sampling Plan with Fuzzy Parameter

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Principle Component Analysis

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

4. Eccentric axial loading, cross-section core

International Jour. of Diff. Eq. and Appl., 3, N1, (2001),

Lecture notes. Fundamental inequalities: techniques and applications

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

Bulletin of the. Iranian Mathematical Society

Congruences involving Bernoulli and Euler numbers Zhi-Hong Sun

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

Stats & Summary

Review of Riemann Integral

MA Handout 2: Notation and Background Concepts from Analysis

are fractions which may or may not be reduced to lowest terms, the mediant of ( a

J. Number Theory 130(2010), no. 4, SOME CURIOUS CONGRUENCES MODULO PRIMES

Math 554 Integration

The margin is too narrow to contain a truly remarkable proof.

Properties of the Riemann Integral

Integral points on the rational curve

Frobenius numbers of generalized Fibonacci semigroups

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

(II.G) PRIME POWER MODULI AND POWER RESIDUES

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Integration Techniques

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

IN GAUSSIAN INTEGERS X 3 + Y 3 = Z 3 HAS ONLY TRIVIAL SOLUTIONS A NEW APPROACH

Analytical classical dynamics

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

Chapter 1: Fundamentals

The mth Ratio Convergence Test and Other Unconventional Convergence Tests

Asymptotic Behavior of the Solutions of a Class of Rational Difference Equations

Analytical Methods Exam: Preparatory Exercises

A NOTE ON PREPARACOMPACTNESS

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

H-matrix theory and applications

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

On the degree of regularity of generalized van der Waerden triples

HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE (α, m)-convex

Positive Solutions of Operator Equations on Half-Line

REGULARITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2

Kronecker-Jacobi symbol and Quadratic Reciprocity. Q b /Q p

Transcription:

Act Arth 159013, 1-5 Congruences for [/] mo ZHI-Hong Sun School of Mthemtcl Scences, Hun Norml Unverst, Hun, Jngsu 3001, PR Chn E-ml: zhhongsun@hoocom Homege: htt://wwwhtceucn/xsjl/szh Abstrct Let Z be the set of ntegers, n let m, n be the gretest common vsor of ntegers m n n Let 1 mo be rme, Z, n c + x + wth c,, x, Z n c 1 mo Suose tht c, x + 1 or, x + c s ower of In the er, b usng the urtc recroct lw we etermne [/] mo n terms of c,, x n, where [ ] s the gretest nteger functon Hence we rtll solve some conjectures ose b the uthor n two revous ers MSC: Prmr 11A15, Seconr 11A07, 11E5 Kewors: Recroct lw; octc resue; congruence; urtc Jcob smbol 1 Introucton Let Z be the set of ntegers, 1 n Z[] + b, b Z} For n ostve o number m n Z let m be the urtc Jcob smbol We lso ssume 1 1 For our convenence we lso efne m m Then for n two o numbers m n n wth m > 0 or n > 0 we hve the followng generl urtc recroct lw: m m 1 n 1 n 1 n m For, b, c, Z wth c n, one cn efne the urtc Jcob smbol +b c+ s n [S] From [IR] we know tht +b c+ b c +b 1 c+, where x mens the comlex conjugte of x In Secton we lst mn roertes of the urtc Jcob smbol See lso [IR], [BEW] n [S] For rme k + 1 c + x + 3 wth k, c,, x, Z n c 1 mo, n [HW] n [H], b usng cclotomc numbers n Jcob sums Huson n Wllms rove tht ±1 mo f c ± 1 3 1 mo 3, ± c mo f ± 1 mo 3 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z n c 1 mo In [S] n [S5] the uthor ose mn conjectures on [/] mo n terms of c,, x n, where [ ] s the The uthor s suorte b the Ntonl Nturl Scences Founton of Chn No 1097107 1

gretest nteger functon For m, n Z let m, n be the gretest common vsor of m n n For m Z wth m α m 0 m 0 we s tht α m In the er, b evelong the clculton technue of urtc Jcob smbols we rtll solve mn conjectures from [S] n [S5], n estblsh new recroct lws for urtc n octc resues on conton tht c, x + 1 or, x + c α For the hstor of clsscl recroct lws, see [Lem] Suose r 0, t 0 n 0 0 1 mo Assume c, x + 1 or 0, x + c 1 We then hve the followng tcl results 11 If 1 mo, s rme n + b wth, b Z, then 1 1 + x m c + b 1 mo c c b b m mo 1 If 7 mo s rme, then 1 [/] c m mo f 1 mo, 1 x 1 c m x mo f 5 mo c +1 m mo 13 If 1 mo, + b,, b Z, n, b 1, then 1 + x c m mo f n x, 1 1 + c m mo f n x, 1 b 1 + + x+ c m 1 mo f n x, Bsc lemms 1 b 1 + + + x 1 c m 1 mo f n x c + b/x m b + Lemm 1 [S, Prooston 1] Let, b Z wth n b Then + b +b 1 1 1 1 1 b / n 1 + + b 1 1 b 1/ f b, 1 1 b 1 1 f b Lemm [S, Prooston ] Let, b Z wth n b Then 1 + b 1 b n 1 + b 1 b

Lemm 3 [S, Prooston 3] Let, b, c, Z wth c, b n If +b n c+ re reltvel rme elements of Z[], we hve the followng generl lw of urtc recroct: In rtculr, f b, then + b 1 b c 1 + +b 1 + b 1 1 + b + b Lemm [E], [S1, Lemm 1] Let, b, m Z wth m n m, +b 1 Then + b m + b m Lemm 5 [S3, Lemm 3] Let, b Z wth n b For n nteger x wth x, + b 1 we hve x + b x + b Lemm 6 Let, b Z wth b n, b 1 Then Proof B Lemms 1 n 3, b + b + b + b b 1 f b, + b 1 1 f b b + b + b 1 1 b + b + b 1 1 b 1 1 b 1 1 1 1b/ 1 1 1 f b, 1 1 f b + b Thus the lemm s rove For gven o rme let Z enote the set of those rtonl numbers whose enomntor s not vsble b Followng [S1,S] we efne Q r k k Z, k + 3 r} for r 0, 1,, 3

Lemm 7 [S1, Theorem 3] Let be n o rme, r 0, 1,, 3}, k Z n k + 1 0 mo If 1 mo n t 1 mo wth t Z, then k Q r f n onl f k+t k t 1/ t r mo If 3 mo, then k Q r f n onl f k k+ +1/ r mo Lemm Let be n o rme, k Z n n k + 1 mo wth n Z n nn + 1 0 mo Then k+ nn+1 Proof For k 0 mo we hve k+ 1 1 1 So the result s true Now ssume k 0 mo Then n 1 n+1 n 1 k 1 n so n 1 n+1 k+ B Lemm, k +1 1 n so k+ ±1 B [S1, Theorem ], k+ 1 k Q 0 nn+1 1 Hence k+ nn+1 Lemm 9 Suose c,, m, x Z, m, x c + mo m n m, xx + 1 Then xx + m m Proof Suose tht s rme vsor of m Then xx + If, then x c + 1 mo Thus, lng Lemm we obtn c + When, we hve c n so c Hence, m m x 1 + x xx + x xx + 1 xx + xx +, m m where n the roucts runs over ll rme vsors of m The roof s now comlete Lemm 10 Suose c,, x,, Z, c 1 mo,, c + x +, t 0, 0 1 mo n 0, xx + 1 If x, then c +x+ 1 1 1 c+ If x, then c +x+ / 1 c x+ t t 1 c+ Proof Snce c + x + xx + + we see tht c + x +, 0 1 For even x we hve, c + x + 1 mo n so c + x + xx + c + x + 1 1 xx +

For o x we hve c + x + mo n so c + x + / t 0 c + x + 1 c +x+ / 1 t c + x + / / 0 1 c x+ t xx + + 1 c x+ t xx + 0 0 0 Snce x c + mo 0, usng Lemms 9, 3 n we see tht xx + 0 0 1 0 0 t 1 t 1 Now combnng ll the bove we obtn the result Lemm 11 Let be rme of the form k + 1 n c + wth c, Z Suose Z, n x + wth x, Z Then x +, c x +, n, c + x + x +, c, x + + c x +, c Proof Snce x, we see tht x, 1 If x, then n so Ths contrcts the fct x, 1 Hence x Snce x, c + x + x, c + x, 1 n x + c c + x + xx +, we see tht x +, c x +, x + x +, n, c + x + xx +, c + x + x +, c + x + x +, c x + x +, c, c x +, c + x + x + x +, c x +, c, Thus the lemm s rove x +, c, c x +, c + x + x + x +, c c x +, c + x + Lemm 1 Let be rme of the form k + 1 n c + wth c, Z n c Suose Z,, x +, x, Z n x/ c+ 1 [ ]+n k Then 1 n [/] c k mo f 1 mo, 1 n c k x mo f 5 mo Proof It s cler tht c, 1, n so x 1 x/ 1 [ ]+n k 1 [ ]+n k mo c 5

Thus x 1 1 [ ]+n c k mo n so [ ] 1 [ ] [ ] 1 [ ] x [ ] 1 n c k mo f 1, 1 n c k x mo f 5 Ths roves the lemm 3 Determnton of [/] mo usng c+x+ or Theorem 31 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, 0 1 mo, c, x + 1, x, 1 mo n c/x++ k If 1 mo, then 1 If 5 mo, then 5 1 1 + + x c k mo f 1 mo, 1 5 + + x c k+1 mo f 5 mo 1 1 + x c k+1 x 1 5 + x c k x mo f 1 mo, mo f 5 mo Proof Suose m x + n x s x 0 x 0 Snce x we hve 1 mo As c, x + 1, b Lemm 11 we hve, x + 1 n, c + x + 1 Note tht x, We lso hve x, 1 Usng Lemms 1-5, 10 n the fct tht n 1 for, n Z wth n n, n 1 we see tht c + x + k c + x + c + x + xx + + c + x + c + x + c + x + xx + 1 1 1 c + x + n xx + c + x + c + x + m+s+1 x0 x + / m x+ m+s+1 1 x 0 x+/m +1 x+ c + x + c + x + 1 x 0 x+/m +1 x+ x+ m+s+1 x 0 x 0 x + / m c x + / m 1 x 0 x+/m +1 x+ x+ m+s+1 1 x 0 1 x0 1 x 0 x+/m +1 x+ x+ m+s+1 1 x 0 1 s 1 x 0 x+/m +1 x+ x+ m+s+1 1 x 0 1 s x 6 x

Therefore, Observe tht n k 1 x 0 x+/m +1 x+ + x 0 1 + 1 x+ m+s+1 s x/ 1 1 1 1 1 x 1 f x, 1 f x x+ s m+s+1 x+ m+1 x s 1 m+1x+ x s m+1x+ 1 1 x+ f x, 1 m+1x+ f x From the bove we obtn x/ 31 x 0 x+/ 1 m +1 x+ + x + 1 m+1x+ + x+ k+1 f x, 1 x 0 x+/m +1 x+ + x 0 1 + 1 m+1x+ k f x When x +, we hve 1 m+1x+ 1 x+ For 1 mo we hve, x n x + For 1 mo n 5 mo, we hve x,, x +, m 1 n 1 x 0 x+/+1 1 x 0+ x 0 +1 1 +1 For 5 mo n 1 mo, we hve, x, x + n m For 5 mo, we see tht, x, x +, m 1 n 1 x 0 x+/+1 1 x x 0+ 0 x 0 +1 1 x + x 0 +1 Now, from the bove n 31 we euce tht x/ 1 1 + 1 + + x k f 1 mo, 1 1 + 5 + + x k+1 f 1 mo n 5 mo, 1 5 + 1 + x k+1 f 5 mo n 1 mo, 1 5 + 5 + x k f 5 mo Ths together wth Lemm 1 els the result Lemm 31 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, t 0, 0 0 1 mo, c, x + 1 n x Assume tht c/x++ k Then 1 x/ 1 [ ]+ x 1 + 1 1 1 x 1 + 1 x c +k f 1, 1 [ +1 ]+ + x+1 1+ 1 1 1 + 1 x 1 x c +k 1 f 5 7

Proof As c, x + 1, b Lemm 11 we hve 0, x + 1 n 0, c + x + 1 Note tht x, We lso hve x, 1 It s esl seen tht c + x + 1 1 x + ± c ±x + c 1 + + n so x + ± c ±x + c c + x + + Set ε 1 1 + x 1 Snce 1 we see tht x + ε mo n εx + c Usng Lemms 1-5, 10 n the bove we see tht n c + x + k 1 1 1 ε x++εc + εx+ c x++εc + εx+ c 1 1 ε 1 + 1 1 1 εx+ c x++εc + εx+ c x++εc + εx+ c c + x + xx + x++εc + εx+ c x++εc + εx+ c xx + x++εc + εx+ c x++εc + εx+ c x++εc/ 1 εx+ c 1 1 xx++1 εx+ c 1 c x+ t t 1 x++εc + εx+ c c + x + / x++εc + εx+ c xx + Obvousl 1b 1 b b, 1 x++εc 1 εx++c ε 1 εx+ c + 1 ε n so x++εc εx+ c 1 1 εx+ c + 1 ε εx+ c εx+ c 1 1+ε εx+ c εx+ c Also, 1 xx++1 1 x 1 + x+1 1 +1 n 1 c x+ 1 εx+ c Thus, x++εc/ 1 εx+ c 1 1 xx++1 εx+ c 1 c x+ t t 1 1+ε εx+ c εx+ c 1 εx+ c +1 1 εx+ c t t 1 1 ε + +t εx+ c εx+ c + t

It s esl seen tht x++εc + εx+ c xx + x + + εc + εx + c x + + εc + εx + c x x + + εc + ε c εc c ε ε x x + x x + ε 5+ε xx + x 1 + xx + x 5+ε 1 + x 1 1 xx + xx + x 1 x+x 1 5+ε 1 / xx+ 1 1 x 1 x Now combnng ll the bove we euce tht 3 It s cler tht k 1 1 1 ε + 1 εx+ c 1 1 1 1 ε + εx+ c +t εx+ c + t 1 x+x 1 5+ε + x 1 1 / xx+ 1 x/ 1 εx+ c 1 εx+ c εx++c 1 x+ c 1 +x 1 f 1 n so 0 mo, n 1 +x 1 1 + 1 ε f 5 n so mo 1 x x+ 1 1 1/ xx+ 1 1 1/ x+1 1 1 f 1 n so, Snce x + ε mo n 1 εx+ c + 1/ xx+ 1 + t 1 0 x+1 ε f 5 n so mo 1 1 we lso hve 1 1/ xx+ 1 εx+ c 1 1/ xx+ 1 + t 1 1/ xx+ 1 εx+ 1 1x 1/ x c 1 + t 1 1/ xx+ 1 + c 1 1 1 x 1/ x + c 1 + t 1 + c 1 + t c 1x 1/ x f 1, ε 1 c 1 c 1x 1/ x + 0 1 1 ε + c 1 c 1x 1/ x +1 f 5 9

Note tht 1 c 1 1 c 1 1 1 1 [ ] From the bove n 3 we euce the result Theorem 3 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, t 0, 0 0 1 mo, c, x + 1, x n c/x++ k If 1 mo, then 1 If 5 mo, then 5 1 1 + + c k mo f 1 mo, 1 +5 + x 1 + c k 1 mo f 3 mo, 1 5 + + x 1 + c k 1 mo f 5 mo, 1 +1 + c k mo f 7 mo 1 1 + x 1 c k 1 x 1 +5 c k 1 x 1 +3 c k x 1 +1 + x 1 c k x mo f 1 mo, mo f 3 mo, mo f 5 mo, mo f 7 mo Proof Suose c 1 x 1/ x n m c 1 x 1/ x Then m n m+1 c xc + x As c xc + x we see tht m+1 We frst ssume 1 mo Snce n we hve m 3 n m 3 Thus, 1x 1/ x c 1 1x 1/ x c 1 m 3 1 1 + Ths s lso true when c 1 x 1/ x From the bove n Lemm 31 we euce tht x/ 1 1 1 1 + 1 + +1 + 5 1 + +1 + x 1 + k f ±1 mo, + k 1 f ±3 mo Now lng Lemm 1 we euce Suose 5 mo As 0 0 we get m 1 0 0 Clerl 0 0 1 mo Thus 3 mo f m, 5 mo f m 3, 1 mo f m > 3 10

For 1 mo we hve c 1 x 1 x n 1x 1/ x c 1 1x 1/ x c 1 m 3 1 1 Ths s lso true when c 1 x 1/ x Thus, usng Lemm 31 we euce tht 5 x/ 1 + 1 + x 1 k 1 f 1 mo, 1 5 + +3 k f 5 mo Now lng Lemm 1 we euce the result n the cse 5 mo n 1 mo For 3 mo we hve c 1 x 1/ x n so x 1 0 1 c c x x/ x c 1 x 1 x 1 + 1 0 c x +1 mo Thus, 1x 1/ x c +3 mo n so 1 x 1/ x c +3 Usng Lemm 31 we see tht 5 1 + +5 k 1 f 3 mo, 1 5 + +1 + x 1 k f 7 mo Now lng Lemm 1 we obtn the result n the cse 5 mo n 3 mo Summrzng ll the bove we rove the theorem Remrk 31 We note tht the k n Theorems 31-3 eens onl on c x+ mo Corollr 31 Let 1, 9 mo 60 be rme n so c + x + 15 wth c,, x, Z Suose c 1 mo, r 0, t 0, 0 0 1 mo n c, x + 1 If 1 mo, then 15 1 If 5 mo, then 15 5 1 mo f c x+ 1 mo f c x+ ± 1 c mo f c x+ 1 x 1 1 x 1 1 x 1 x mo f c x+ x mo f c x+ cx mo f c 11 x+ 0, ±1 mo 15, ± mo 15, ±5, ±6 mo 15 0, ±1 mo 15, ± mo 15, ±5, ±6 mo 15

Proof Clerl x s o Thus, uttng 15 n Theorem 3 n notng tht see [S1, Exmle 1] n + n + n + 15 3 5 we euce the result 1 f n 0, ±1 mo 15, 1 f n ± mo 15, f n ±5, ±6 mo 15 For exmle, snce 61 5 + 6 5 mo 15 we hve 5 1 6 1 + 15, 5, 1 6 1 n 15 61 5 15 7 1 1 1 6 5 1 1 5 mo 61 Theorem 33 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, t 0, 0 0 1 mo, 0, x + c 1 n / k If 1 mo, then 1 If 5 mo, then 5 1 +[ x ] c k mo f x, 1 1 x+1 + +1 + c k mo f x 1 [ x+ ] c k 1 x 1 +3 x+1 c k 1 x 1 3 x+1 c k x mo f x n so 1 mo, mo f x n 1 mo, mo f 3 mo Proof Suose x s x 0 x 0 n m x + c As x + c, 0 1, b Lemm 11 we hve 0, x + c 1 n 0, x + c + 1 Note tht x, We lso hve x, 1 If m < r, usng Lemms 1-5 n the fct 1 for Z wth, 1 we see tht 33 x + c m + m m 1 1 + 1 m+1 + m m 1 1 + 1 m+1 m + m 1 1 + 1 c + x m+1 + m m 1 + m m + m

If m r, then clerl 3 x + c r r + r If m > r, usng Lemms 1-5 we see tht 35 x + c r r 1 1 r+1 1 1 r+1 r r 1 + r r r r 1 1 x + c + xx + c r+1 r r 1 1 m r 1 xx + c r r + r+1 r+1 r + r x + c + / r B conserng the three cses m < r, m r n m > r n lng lemms n Secton, one m euce the result fter ong horrble long clcultons We onl rove the result n the cse m < r nclung x n x 1 The remnng two cses cn be rove smlrl For the etls n the cses m r n m > r, see the uthor s fourth verson of Qurtc, octc resues n bnr urtc forms n rxv:110307 Now suose m < r Then c + x + m m xx + c + + x + c + m m xx + c + m m m+s+1 x 0 x + c/ m + m m + m m + m m 1 m 1/ m+1 m+s+1 1 x 0 +1 + m 1 m+1 + m m x 0 1 m 1/ m+1 m+s+1 1 m +x 0 x + m+1 x 0 m Clerl m n m x + x 0 x 0 1 x0 1 1 x 0 1 x0 x 1 13 s m + m m x 0 1 s x

Thus, c + x m + m 1 m +x 0 m+1 + x 0 1 1 m 1/ m+1 m+s+1 s m x As x + c + / m 1 + / m+1 mo n x c + mo 0, usng Lemm 9 we see tht x + c + / m t 0 x + c + / m 1 t x + c + m+1 1 t xx + c m+1 0 0 1 t + c m+1 1 0 0 t + c m+1 0 0 1 t m+1 1 0 t 0 m+1 1 t 1 m+1 0 1 t t 1 m+1 1 m+1 t t 1 From the bove n 33 we euce tht 36 x + c 1 1 + 1 m+1 1 m +x 0 m+1 + x 0 1 m 1 m 1/ m+1 m+s+1 s 1 m+1 t t x/ If m 0, then x + c, x, n so 1 mo Thus, from 36 we euce tht x + c 1 1 + x +1 x/ x + c Snce k, 1 1 1 1 1 c 1+ x 1 x 1 x n 1 1 1 c 1 + x x +c 1 1 + x x +1 1 [ x+ ]+[ ], x + c from the bove n the fct 0 1 mo we erve tht x/ 1 x + x +1 1 [ 1 [ ]+ x x+ [ x+ ]+[ ] k ]+ k 1 [ ]+ +[ x ] k f 1 mo, 1 [ ]+[ x+ ] k 1 f 5 mo 1

Now lng Lemm 1 we obtn the result n the cse m 0 If m 1 < r, then x 1 mo, s 0, n 1 mo x 1 mo we hve n so Thus, 1 c x + c x + c x + c c + + mo Snce n so c mo Therefore 1 mo n 1 c 1 + + c 1 1 + + 1 1 + + c Hence, from 36 we euce tht x + c 1 1 + 1 1 +x 1 1 + 1 + +1 + x/ 1 1 1 + + x/ Snce k, we get x/ c+ 1 1 + 1 + +1 + k Now lng Lemm 1 we obtn 1 1 1 + +1 + c k mo s sserte Now we ssume m < r Then x 3 mo, s 0, n so 1 mo Snce x + c + cx + c we see tht m+1 r m 1 0 m 1 x + c x + c + c m m As m n r m + 1 m +, we must hve m+1, m + 1, t m+1 n m 1 + c mo Thus m 3, m c m 1 + m c 1 + m 1 + mo n so mo Therefore, b 36 we hve m x + c 1 1 + m+1 m+1 c 1 + m 1 1 t x/ + m+1 1 c 1 +m 3 x/ Note tht 1 c 1 1 c 1 1 1, k n 1 f m > 3, 1 f t >, 1 m 3 1 f m 3 1 1 f t We then get x/ c+ 1 1 + k Recll tht Alng Lemm 1 we obtn 1 1 c k 1 +1 the cse m < r Summrzng ll the bove we rove the theorem 15 + c k mo Ths roves the result n

New recroct lws for urtc n octc resues Theorem 1 Let n be rmes such tht 1 mo n 3 mo Suose c + x +, c,, x, Z, c 1 mo, r 0, t 0, 0 0 1 mo n c x +1 m mo Assume c, x + 1 or 0, x + c 1 Then 1 [/] + +1 x 1 c m mo f 1 mo, 1 3 x 1 c m x mo f 5 mo Proof Snce 1 mo n 3 mo we see tht x n x s o We frst ssume c, x + 1 B Lemm 11 we hve, x + c + x + 1 It s esl seen tht c/x+ c/x++ c x+ c+x+ c x mo Thus, for k 0, 1,, 3, usng Lemm 7 we get c + x + Snce c x +1 k c c x + Q x+ k c x+ + c +1 k mo x +1 k mo c x +1 m mo, from the bove we euce tht c + x + m +1 +1 +k mo 1 +5 m+1 f 3 mo, 1 +1 m f 7 mo Now, lng Theorem 3 we erve the result Now we ssume 0, 1 B Lemm 11,,, + 1 It s esl seen tht + c x mo Thus, for k 0, 1,, 3, usng Lemm 7 we get x + c k x + c Q k + x + c x + c c +1 x +1 + +1 k mo +1 +k mo k mo c +1 x k mo Snce c x +1 m mo, from the bove we euce tht +1 m 1 +1 m Now lng Theorem 33 we euce the result The roof s now comlete 16

Corollr 1 Let 1 mo n 3 mo be rmes such tht c + x + wth c,, x, Z n c Suose c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, + x 1 or 0, x + c 1 If 1 mo, then 1 If 5 mo, then ± 1 x 1 + mo f x ±c mo, 1 3 + x 1 + c mo f x ± mo 5 ± x mo 1 3 cx mo f x ±c mo, f x ± mo Proof If x ±c mo, then n so c x +1 ±1 +1 ±1 mo If x ± mo, then c n so c x +1 +1 1 3 mo Now lng Theorem 1 we euce the result We note tht Corollr 1 rtll settles [S5, Conjecture 3] For exmle, let be rme such tht 13 mo n hence c + x + 3 wth c,, x, Z Suose c 1 mo, r 0, t 0 n 0 0 1 mo If c, x + 1 or 0, x + c 1, then 3 5 ± x cx Ths rtll solves [S, Conjecture 91] mo f x ±c mo 3, mo f x ± mo 3 Theorem Let n be rmes such tht 1 mo, 7 mo, c + x +, c,, x, Z, c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x + 1 or 0, x + c 1 Suose c c+ +1 m mo Then 1 [/] c m mo f 1 mo, 1 x 1 c m x mo f 5 mo Proof Observe tht c +1 +1 c c + +1 +1 c x + +1 c x +1 mo The result follows from Theorem 1 We note tht f, then the m n Theorem eens onl on c 17 mo

Corollr Let 1 mo n 7 mo be rmes such tht c + x + wth c,, x, Z n cc Suose c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x+ 1 or 0, 1 If 1 mo, then 1 1 +1 + mo f c, 1 mo f, ± 1 +9 16 + c mo f 16 7 n c ± mo, 1 +1 16 + mo f 16 15 n c ± mo If 5 mo, then 5 1 +1 + x 1 1 x 1 x x ± 1 +9 16 + x 1 1 +1 16 + x 1 x mo f c, mo f, cx mo mo f 16 7 n c ± mo, f 16 15 n c ± mo Proof Clerl 1 mo f c, c 1 mo f, mo f c mo, mo f c mo Thus the result follows from Theorem Theorem 3 Let n be stnct rmes of the form k + 1, c + x +, + b,, b, c,, x, Z, c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x + 1 or 0, x + c 1 Suose c+b x 1 b m mo If 1 mo, then 1 If 5 mo, then 5 x+ 1 +[ ] c m mo f x, 1 1 x 1 + + c m mo f x 1 [ x ] c m+1 x mo f x, 1 +3 x 1 c m+1 x mo f x 1

Proof Clerl x We frst ssume c, x + 1 B Lemm 11,, x + c + x + 1 It s esl seen tht c+bx+ c bx+ c+b x b mo Thus, for k 0, 1,, 3, usng Lemm 7 we get c + x + k c x + Q k c + bx + c bx + c + b b x c + b 1 x 1 1 c x+ + b 1 c x+ b b k mo b k mo b k 1 mo Snce c+b x Now the result follows from Theorems 31 n 3 mmetel 1 b m mo, from the bove we get c+x+ b k mo 1 m+ Suose 0, x + c 1 B Lemm 11,, x + c + x + c 1 It s esl seen tht b +b c+b x mo Thus, for k 0, 1,, 3, usng Lemm 7 we get x + c k x + c Q k bx + c + bx + c c + b 1 x 1 + b b 1 b b 1 +k mo b k mo k mo c + b x 1 b k mo Snce c+b x 1 b m mo, b the bove we get 1 m Thus, lng Theorem 33 n the fct x x c + 1 + mo for even x we erve the result The roof s now comlete Corollr 3 Let 1 mo n 5 mo be rmes such tht c + x + wth c,, x, Z n c Suose c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x + 1 or 0, x + c 1 If 1 mo, then 1 ± 1 + x+ mo f x n x ±c mo, ± 1 + x 1 + mo f x n x ±c mo, ± 1 5 + + x+ c ± 1 5 + + x 1 + c mo f x n x ± mo, mo f x n x ± mo 19

If 5 mo, then 5 ±δx cx mo 1 5 δx x where δx 1 or 1 ccorng s x or not f x ±c mo, mo f x ± mo, Proof If x ±c mo, then n so c+b x 1 c x 1 ±1 1 ±1 mo If x ± mo, then c n so c+b ± b 1 ± 1 5 b euce the result x 1 b x 1 mo Now uttng the bove wth Theorem 3 we Theorem Let n be stnct rmes such tht 1 mo, 1 mo, c + x +, + b,, b, c,, x, Z, c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x+ 1 or 0, 1 Suose c+b c b 1 b m mo If 1 mo, then If 5 mo, then 5 1 1 + x m mo c 1 x c m+1 x 1 x+1 c m+1 x mo f x, mo f x Proof Observe tht b mo, x mo n so c + b 1 c b 1 c + b c b 1 1 c + b 1 c + b x 1 mo The result follows from Theorem 3 We note tht f, then the m n Theorem eens onl on c mo Corollr Let 1 mo n 1 mo be stnct rmes such tht c + x + wth c,, x, Z n cc Suose c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x+ 1 or 0, 1 If 1 mo, then 1 1 1 + + x mo f c, 1 + x mo f, 1 1 16 + + x mo f 16 1 n c ± mo, ± 1 9 16 + + x c mo f 16 9 n c ± mo 0

If 5 mo n εx 1 x or 1 x+1 ccorng s x or x, then 5 1 1 εx cx εx cx mo f c, mo f, 1 1 16 εx cx 1 9 16 εx x mo f 16 1 n c ± mo, mo f 16 9 n c ± mo Proof Suose tht + b wth, b Z Then clerl c + b 1 c b 1 1 mo f c, 1 mo f, 1 1 16 mo f 16 1 n c ± mo, ± 1 9 16 b mo f 16 9 n c ± mo Thus the result follows from Theorem Corollr 5 Let 1 mo be rme such tht 17 n c + x + 17 wth c,, x, Z Suose c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x + 1 or 0, x + c 1 If 1 mo, then then 17 1 1 + x mo f 17 c, 1 + x mo f c ± mo 17, ± 1 + x c mo f c ±5, ±10 mo 17 If 5 mo n εx 1 x or 1 x+1 ccorng s x or x, 17 5 εx cx εx cx ±εx x mo f 17 c, mo f c ± mo 17, mo f c ±5, ±10 mo 17 Proof Snce 17 1 + n 17 1 ±5+ ±5 17 1 ±10+ ±10 mo 17, from Theorem n Corollr we euce the result Theorem 5 Let 1 mo be rme, c + x + +b +b,, b, c,, x, Z, 0,,, b 1, c 1 mo, r 0, t 0 n 0 0 1 mo Assume c, x + 1 or 0, x + c 1 Suose c+b/x b+ m 1

If 1 mo, then + b 1 1 + x c m mo f n x, 1 + c m mo f n x, 1 b+1 + + x c m 1 mo f n x, 1 b 1 + + + x 1 c m 1 mo f n x If 5 mo, then + b 5 1 x c m 1 x 1 x+1 c m 1 x 1 x + b+1 c m x 1 b 1 c m x mo f n x, mo f n x, mo f n x, mo f n x Proof Set +b Then clerl n We frst ssume c, x+ 1 B Lemm 11,, x +, c + x + 1 Snce c x+ c+x+ c x mo, we see tht c/x + + c + x + c + x + c + x + b + b c + x + c x + c + x + c x + b + b + b + b + c x+ c+x+ 1 c 1 x c /x 1 b + b + b + b + b c + b/x 1 1 b+1 b + b + b + b m 1 b+1 b m 1 b+1 + b 1 m 1 b+1 + 1 m 1 b+1 +[ ] m 1 Ths together wth Theorems 31 n 3 els the result uner the conton c, x+ 1 Now we ssume 0, 1 B Lemm 11,,, + 1

Snce + c x mo, usng Lemm 6 we see tht /x + c x + c x + c x + c b + b x + c + x + c x + c + x + c b + b + b + b + + 1 c 1 x c /x 1 b + b + b + b + 1 c + b/x 1 1 b + b + b + m 1 b 1 m 1 b+1 1 m f, 1 1 m m f Combnng ths wth Theorem 33 we euce the result uner the conton 0, x + c 1 The roof s now comlete Remrk 1 Let be rme of the form k + 1, Z,,, n c + x + wth c,, x, Z, c 1 mo, r 0 n 0 1 mo, we conjecture tht one cn lws choose the sgn of x such tht c, x + 1 or 0, x + c 1 Thus the conton c, x + 1 or 0, x + c 1 n Theorems 1-5 n Corollres 1-5 cn be cncele See lso relte conjectures n [S] n [S5] References [BEW] BC Bernt, RJ Evns n KS Wllms, Guss n Jcob Sums, Wle, New York, 199 [E] RJ Evns, Resuct of rmes, Rock Mountn J Mth 19 199, 1069-101 [H] RH Huson, Dohntne etermntons of 3 1/ n 5 1/, Pcfc J Mth 111 19, 9-55 [HW] RH Huson n KS Wllms, Some new resuct crter, Pcfc J Mth 91 190, 135-13 [IR] K Ireln n M Rosen, A Clsscl Introucton to Moern Number Theor, n e, Srnger, New York, 1990 [Lem] F Lemmermeer, Recroct Lws: From Euler to Esensten, Srnger, Berln, 000 [S1] ZH Sun, Sulements to the theor of urtc resues, Act Arth 97 001, 361-377 [S] ZH Sun, Qurtc resues n bnr urtc forms, J Number Theor 113 005, 10-5 [S3] ZH Sun, On the urtc chrcter of urtc unts, J Number Theor 1 00, 195-1335 [S] ZH Sun, Qurtc, octc resues n Lucs seuences, J Number Theor 19 009, 99-550 [S5] ZH Sun, Congruences for A + A + mb 1/ n b + + b 1/ mo, Act Arth 19 011, 75-96 3 1