Advanced Combinatorial Optimization September 22, Lecture 4

Similar documents
Graphs & Algorithms: Advanced Topics Nowhere-Zero Flows

Advanced Combinatorial Optimization September 24, Lecture 5

Nowhere zero flow. Definition: A flow on a graph G = (V, E) is a pair (D, f) such that. 1. D is an orientation of G. 2. f is a function on E.

Advanced Combinatorial Optimization Updated February 18, Lecture 5. Lecturer: Michel X. Goemans Scribe: Yehua Wei (2009)

Advanced Combinatorial Optimization Feb 13 and 25, Lectures 4 and 6

Diskrete Mathematik und Optimierung

Group connectivity of certain graphs

ACO Comprehensive Exam March 17 and 18, Computability, Complexity and Algorithms

Graph coloring, perfect graphs

Zero-Sum Flows in Regular Graphs

Notes on Graph Theory

Painting Squares in 2 1 Shades

On S-packing edge-colorings of cubic graphs

Math 5707: Graph Theory, Spring 2017 Midterm 3

A short course on matching theory, ECNU Shanghai, July 2011.

Perfect matchings in highly cyclically connected regular graphs

4 CONNECTED PROJECTIVE-PLANAR GRAPHS ARE HAMILTONIAN. Robin Thomas* Xingxing Yu**

Diskrete Mathematik und Optimierung

On balanced colorings of sparse hypergraphs

1 Matchings in Non-Bipartite Graphs

CYCLE DOUBLE COVERS OF INFINITE PLANAR GRAPHS

An approximate version of Hadwiger s conjecture for claw-free graphs

Essential facts about NP-completeness:

Nowhere 0 mod p dominating sets in multigraphs

Combinatorics and Optimization 442/642, Fall 2012

The Matching Polytope: General graphs

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Parity Versions of 2-Connectedness

Supereulerian planar graphs

Packing and Covering Dense Graphs

Standard Diraphs the (unique) digraph with no vertices or edges. (modulo n) for every 1 i n A digraph whose underlying graph is a complete graph.

This is a repository copy of Chromatic index of graphs with no cycle with a unique chord.

Siegel s theorem, edge coloring, and a holant dichotomy

The Goldberg-Seymour Conjecture on the edge coloring of multigraphs

Cutting Plane Methods II

Decomposing planar cubic graphs

Every line graph of a 4-edge-connected graph is Z 3 -connected

RELATIVE TUTTE POLYNOMIALS FOR COLORED GRAPHS AND VIRTUAL KNOT THEORY. 1. Introduction

arxiv: v1 [cs.dm] 24 Jan 2008

Even Cycles in Hypergraphs.

Polynomials in graph theory

Multi-coloring and Mycielski s construction

Midterm 1. Your Exam Room: Name of Person Sitting on Your Left: Name of Person Sitting on Your Right: Name of Person Sitting in Front of You:

The Singapore Copyright Act applies to the use of this document.

Coloring. Basics. A k-coloring of a loopless graph G is a function f : V (G) S where S = k (often S = [k]).

Dynamic Programming on Trees. Example: Independent Set on T = (V, E) rooted at r V.

Hanna Furmańczyk EQUITABLE COLORING OF GRAPH PRODUCTS

Extremal Graphs Having No Stable Cutsets

arxiv: v1 [math.co] 19 Aug 2016

Flows in Graphs: Tutte s Flow Conjectures

Nowhere-zero flows in signed series-parallel graphs arxiv: v1 [math.co] 6 Nov 2014

12.1 Chromatic Number

Diskrete Mathematik und Optimierung

Tree-width and algorithms

Cycle Double Covers and Semi-Kotzig Frame

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

Induced Subgraph Isomorphism on proper interval and bipartite permutation graphs

Advanced Topics in Discrete Math: Graph Theory Fall 2010

Combining the cycle index and the Tutte polynomial?

Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

1.3 Vertex Degrees. Vertex Degree for Undirected Graphs: Let G be an undirected. Vertex Degree for Digraphs: Let D be a digraph and y V (D).

arxiv: v1 [math.co] 28 Oct 2016

arxiv: v1 [math.co] 4 Jan 2018

On Dominator Colorings in Graphs

k-blocks: a connectivity invariant for graphs

Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

GRAPH MINORS AND HADWIGER S CONJECTURE

Unmixed Graphs that are Domains

Strongly chordal and chordal bipartite graphs are sandwich monotone

GRAPH ALGORITHMS Week 7 (13 Nov - 18 Nov 2017)

4. How to prove a problem is NPC

MINIMALLY NON-PFAFFIAN GRAPHS

Group flow, complex flow, unit vector flow, and the (2+)-flow conjecture

An Improved Approximation Algorithm for Maximum Edge 2-Coloring in Simple Graphs

CS 70 Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand Midterm 1 Solutions

Preliminaries. Graphs. E : set of edges (arcs) (Undirected) Graph : (i, j) = (j, i) (edges) V = {1, 2, 3, 4, 5}, E = {(1, 3), (3, 2), (2, 4)}

Lecture notes on the ellipsoid algorithm

Tutte Polynomials with Applications

1-factor and cycle covers of cubic graphs

NATIONAL UNIVERSITY OF SINGAPORE CS3230 DESIGN AND ANALYSIS OF ALGORITHMS SEMESTER II: Time Allowed 2 Hours

K 4 -free graphs with no odd holes

Characteristic flows on signed graphs and short circuit covers

1 Perfect Matching and Matching Polytopes

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Covering Cuts in Bridgeless Cubic Graphs. Sylvia BOYD, Satoru IWATA, Kenjiro TAKAZAWA

Group Connectivity: Z 4 v. Z 2 2

Nowhere-zero Unoriented Flows in Hamiltonian Graphs

Equitable Colorings of Corona Multiproducts of Graphs

Triangle-free graphs with no six-vertex induced path

MATH 2200 Final Review

On improving matchings in trees, via bounded-length augmentations 1

arxiv: v1 [math.co] 3 Aug 2009

The chromatic number of ordered graphs with constrained conflict graphs

On the Dynamic Chromatic Number of Graphs

0-Sum and 1-Sum Flows in Regular Graphs

DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH THE SAME SIZE

Minimal Paths and Cycles in Set Systems

Extendability of Contractible Configurations for Nowhere-Zero Flows and Modulo Orientations

On DP-coloring of graphs and multigraphs

CONSTRAINED PERCOLATION ON Z 2

Transcription:

8.48 Advanced Combinatorial Optimization September 22, 2009 Lecturer: Michel X. Goemans Lecture 4 Scribe: Yufei Zhao In this lecture, we discuss some results on edge coloring and also introduce the notion of nowhere zero flows. Petersen s Theorem Recall that a graph is cubic if every vertex has degree exactly, and bridgeless if it cannot be disconnected by deleting any one edge (i.e., 2-edge-connected). Theorem (Petersen) Any bridgeless cubic graph has a perfect matching. Proof: We will show that for any V U, we have o(g U) U (here o(g) is the number of odd components of the graph G). The theorem will then follow from the Tutte-Berge formula. δ(c ) δ(u) U U... C, odd C 5, even δ(c 2 ) δ(c )... C 2, odd C 4, even C, odd Figure : Illustration of the proof of Petersen s theorem. Edges inside U and C i, as well as between C 4, C 5 and U are omitted. Consider an arbitrary U V. Each odd component of G U is left by an odd number of edges, since G is cubic. Since G is also bridgeless each component is left by at least 2 edges, hence by at least edges. On the other hand, the set of edges leaving all odd components of G U is a subset of the edges leaving U, and there are at most U edges 4-

leaving U, since G is cubic. Among these U edges, there are at least edges per each odd component, therefore there are at most U odd components. (See Figure.) See Figure 2 for an example of a cubic graph along with a perfect matching. Figure 2: A bridgeless cubic graph and a perfect matching on it. Edges in the matching are bold. If we were to drop the bridgeless hypothesis, then Theorem would no longer be true, as shown by the example in Figure. Figure : A cubic graph without a perfect matching. Although any bridgeless cubic graph has a perfect matching, it is not true that any such graph can be decomposed into perfect matchings. An example of this is the Petersen graph, depicted in Figure 4. Figure 4: The Petersen graph. However, it is true that any cubic graphs can be decomposed into 4 matchings (not necessarily perfect). Such a decomposition is equivalent to an edge coloring, which we 4-2

discuss next. 2 Edge coloring Definition A graph G is k-edge-colorable if we can assign an element of {, 2,..., k} (a color ) to each edge of G such that no two adjacent edges are assigned the same color. Let χ (G), the edge chromatic number, be the smallest integer k such that G is k-edge-colorable. Bridgeless cubic graphs are not necessarily -edge-colorable, with the Petersen graph as a counterexample. However, it is true that any cubic graph is 4-edge-colorable. In fact, we have the following general result. Theorem 2 (Vizing, 964) For any graph G with maximum degree, the edge chromatic number χ (G) is either (G) or (G) +. It is clear that the edge chromatic number is at least, since all the edges incident to a vertex must have different colors. Vizing s theorem says that the graph is always ( + )-colorable. From Vizing s theorem, we know that any cubic graph G has χ (G) {, 4}. Holyer (98) showed that it is NP-complete to decide whether a given cubic graph is -colorable. The following theorem is a particularly appealing result relating matchings and colorings. Theorem (Tait, 878) The four-color theorem is equivalent to the claim that every planar cubic bridgeless graph is -edge-colorable. Nowhere zero flows The concept of nowhere zero flows was introduced by Tutte (954). It generalizes flows and circulations to values in abelian groups. Definition 2 Let G = (V, E) be a directed graph, and Γ be an abelian group. A Γ- circulation φ on G is an assignment φ : E Γ such that the following flow conservation condition holds for all for all v V : φ(e) = φ(e) (as elements of Γ). e δ (v) e δ + (v) A Γ-circulation φ is said to be nowhere zero if φ(e) 0 for all e E (where 0 denotes the identity for Γ). If G is undirected, then we say that it has a Γ-circulation if the graph admits a Γ-circulation after giving an orientation to all the edges. Since inverses exist in abelian groups, the choice of edge orientations is irrelevant in the last part of the above definition; any orientation will work if one does. The central problems regarding nowhere zero flows have the form, for a particular group Γ, which graphs have nowhere zero Γ-flows? We now give one such result. 4-

Proposition 4 Let G be a cubic graph. Then χ (G) = if and only if G has a nowhere zero Γ-flow for Γ = Z 2 Z 2. Proof: ( ) If χ (G) =, then G is -edge-colorable, so let us color the edges with {(0, ), (, 0), (, )} (as elements of Z 2 Z 2 ). Note that x = x for any x Γ, so the orientation of the edges does not matter. Then the resulting coloring gives a nowhere zero Γ-flow. Indeed, each vertex is incident to three edges colors with (0, ), (, 0), (, ), so their sum is zero in Z 2 Z 2 and hence flow conservation is satisfied. ( ) If G has a nowhere zero Γ-flow, then every vertex is incident to three edges of values (0, ), (, 0), (, ) (as no other combination of three nonzero elements of Γ sum to zero). Hence we obtain a -edge-coloring of G with colors corresponding to the value of the flow. We mentioned earlier that it is NP-complete to decide whether a given cubic graph is -colorable. It follows as a corollary that it is NP-complete to decide whether a given cubic graph has a nowhere zero (Z 2 Z 2 )-flow. The following remarkable result of Tutte says that the existence of a nowhere zero Γ-flow depends not on the group structure of Γ, but only on the size of Γ. Theorem 5 (Tutte 954) Let Γ and Γ be two finite abelian groups with Γ = Γ. Then a graph G has a nowhere zero Γ-flow if and only if G has a nowhere zero Γ flow. In fact, we will prove something stronger. For a directed graph G, allowing multiple edges and loops, let n Γ (G) denote the number of nowhere zero Γ-flows on G. Claim 6 Let G be a directed graph, allowing multiple edges and loops. If Γ and Γ are two finite abelian groups with Γ = Γ, then n Γ (G) = n Γ (G). Proof: Let us induct on the number of non-loop edges of G. When G only has loops, any assignment φ : E Γ \ {0} gives a valid flow, since flow is always conserved. Thus, the number of nowhere zero Γ-flows in this case is n Γ (G) = ( Γ ) E(G), which depends only on the size of Γ. Hence n Γ (G) = n Γ (G). This proves the base case. Now let G be any graph with at least one non-loop edge e. Let G/ {e} denote the graph constructed from G by contracting the edge e in the following sense. Suppose that e connects vertices x and y, then in the new graph, the vertices x and y will be merged into a single vertex z; any edge in G (other than e) with an endpoint in {x, y} will now have the corresponding endpoint at z. Let G \ {e} be the graph obtained from G by removing the edge e. We claim that n Γ (G/ {e}) = n Γ (G) + n Γ (G \ {e}). () Indeed, let us construct a bijection between the set of nowhere zero Γ-flows on G/ {e} and the set of nowhere zero Γ-flows on G or G \ {e}, or equivalently, the set of flows on G which is nowhere zero except for possibly the edge e. We can identify the edges of G/ {e} with the edges of G with e removed. Then any nowhere zero flow on G/ {e}, expressed as φ : E \ {e} Γ, translates into an assignment φ : E\{e} Γ on G (which is not yet a flow). Suppose that x and y are the two endpoints of 4-4

e. By the flow conservation on G/ {e}, we see that flow conservation holds on G everywhere except possibly at the vertices x and y. Furthermore, in G, the flow surplus of φ on x equals the flow deficit on y. Thus there is unique element of Γ that could be assigned to e that would make φ a flow on G, which is nowhere zero except possibly at the edge e. Thus we either have a nowhere zero flow in G or in G \ {e}, and the desired bijection proves (). Since G/ {e} and G\{e} both have fewer non-loop edges than G, we can use the induction hypothesis and obtain that n Γ (G) = n Γ (G/ {e}) n Γ (G \ {e}) = n Γ (G/ {e}) n Γ (G \ {e}) = n Γ (G). Therefore n Γ (G) = n Γ (G) for all G. In particular, n Γ (G) 0 if and only if n Γ (G) 0, so Theorem 5 is established. Remark In fact, we have shown that there exists a polynomial P G for each graph G, known as the flow polynomial, such that the number of nowhere zero Γ-flows is exactly P G ( Γ ). Next we consider integer valued flows. Definition Let G be an undirected graph. For integer k 2, a nowhere zero k-flow φ is an assignment φ : E {,..., k } such that for some orientation of G flow conservation is achieved, i.e., φ(e) = φ(e) for all v V. e δ (v) e δ + (v) A convenient way to deal with k-flows φ is to fix an arbitrary orientation of G = (V, E), let φ take values in {±, ±2,, ±(k )}, and impose flow conservaion. It turns out that the nowhere zero k-flows and nowhere zero Γ-flows are integrally related, as seen from the following theorem, which will be proved in the next lecture. Theorem 7 (Tutte 950) Let G be an undirected graph. k-flow if and only if G has a nowhere zero Z k -flow. Then G has a nowhere zero 4 Flow-coloring duality The following result shows the connection between nowhere zero flows and colorings in planar graphs. It says that every nowhere zero k-flow gives rise to a k-coloring of the faces, and vice versa. Theorem 8 Let G be a planar graph (with a drawing in the plane). Then the following are equivalent () There exists a coloring of the faces of G with k colors with no two adjacent faces are assigned the same color. (2) G has a nowhere zero k-flow. 4-5

Proof: ( 2) Suppose that we have a coloring of the faces, with colors chosen from {, 2,..., k}. Let us assign values and orientations to edges in the unique way so that the following condition is satisfied. For each edge e E (with the orientation already assigned), if we orient the diagram so that e is vertical and directed upwards, then the color c of the face to its left is greater than the color c 2 of the face to its right. Furthermore, e is assigned flow c c 2. Note that c c 2 k, so that all the edges are assigned values from {, 2,..., k }. It remains to check flow conservation at each vertex v. Let d be the degree at v, and let the colors of the faces incident to v be c, c 2,..., c d in counterclockwise order. See Figure 5. Then, for each i, the net flow into v on the edge between c i and c i+ (indices considered mod d) is exactly c i c i+. Then, the flow surplus at v is φ(e) φ(e) = (c c 2 ) + (c 2 c ) + + (c d c ) = 0. e δ (v) e δ + (v) Therefore, G has a nowhere zero k-flow. See Figure 6 for an example. ( ) c 4 c v c 2 c Figure 5: Showing flow conservation at v. 2 2 2 2 4 2 2 4 Figure 6: An example of a nowhere zero flow satisfying ( ). The colors of the faces are indicated in red. (2 ) Suppose that we have nowhere zero flow φ on G along with an orientation of the edges. Let us try to assign colors to the faces. We will start with colors as elements of Z, then afterwards reduce modulo k to obtain a k-coloring of the faces. 4-6

v w Figure 7: Illustrating the proof of the (2 ) direction of Theorem 8. Pick one face and color it arbitrarily. We claim that it is possible to color the other faces so that condition ( ) is satisfied. Note that ( ) in fact gives an algorithm for coloring the faces: given the color of the initial face, we can obtain the color of any other face by traversing through a sequence of adjacent faces and assigning colors following ( ). We need to show that we end up with a valid coloring. It suffices to prove that the above coloring algorithm is consistent, in the sense that that color assignment of the new face does not depend on the sequence of faces that we traversed. Let G be the planar dual to G, so that the vertices of G correspond to the faces of G. Then we need to show the following: for any two vertices v and w in G, suppose that v (as a face of G) has already been assigned a color and w has not, then for any two paths P and P 2 in G from v to w, the color assigned to w by applying ( ) and traversing on P is the same as the one obtained if we had followed P 2 instead. Now, if P and P 2 shared any vertex u of G other than v and w, then we can divide each P and P 2 into two halves at u and then argue each piece separately. Thus we will assume that P and P 2 do not share any common vertex (on G ) except for v and w. Then, the claimed consistency result follows from summing the flow conservation equations for vertices of G lying in the bounded region between the paths P and P 2 (considered as curves in the plane). Indeed, edges of G lying inside the region get canceled out, and what remains are edges passing through either curve. We omit the details of the verification (since it is easier to do it yourself than to write it down). See Figure 7. Finally, after all the colors have been assigned, we can produce a k-coloring of the faces by reducing these colors modulo k. Since no edge is assigned zero flow, by ( ), no two adjacent faces have the same color. 4-7