Irradiation of an Accretion Disk by a Jet: Spin Measurements of Black Holes. Thomas Dauser 1

Similar documents
Accretion on Black Holes: Testing the Lamp Post Geometry Thomas Dauser Remeis Observatory Bamberg & ECAP

Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes

Measuring the Spin of the Accreting Black Hole In Cygnus X-1

Measuring Black Hole Spin in AGN. Laura Brenneman (Harvard-Smithsonian CfA)

Resolving the Space-Time Around Black Holes

The Origins, Applications and Mysteries of the Fluorescent Iron Line p.1/29

arxiv:astro-ph/ v1 18 Nov 2005

arxiv: v1 [astro-ph.he] 12 Jan 2016

Cosine of emission angle: Energy (kev)

MAPPING THE INNERMOST REGIONS OF AGNS WITH SHORT TIMESCALE FE LINE VARIABILITY

I : Probing the formation and growth of black holes using spin

NuSTAR + XMM Observations of NGC 1365: A Constant Inner Disc

Black holes: from stellar mass to AGNs

Strong gravity effects: X-ray spectra, variability and polarimetry

arxiv:astro-ph/ v1 27 May 1998

On the determination of the spin and disc truncation of accreting black holes using X-ray reflection

A Suzaku, NuSTAR, and XMM-Newton view on variable absorption and relativistic reflection in NGC 4151

arxiv:astro-ph/ v1 20 Apr 2001

GIORGIO MATT (DIP. FISICA, UNIVERSITÀ ROMA TRE, ITALY)

SOFT X-RAY LAGS AND THE CORRELATION WITH BH MASS IN RADIO QUIET AGN

The NuSTAR view of Radio-quiet AGN

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES

Polarization signatures of X-ray reflection. Giorgio Matt ( Dip.. Fisica, Università Roma Tre )

Coronal geometry at low mass- accretion rates from XMM and NuSTAR spectra. Felix Fürst Caltech for the NuSTAR AGN physics and binaries teams

Variation of the broad X-ray iron line in MCG± during a flare

Revealing the coronal properties of Seyfert galaxies with NuSTAR

New Suzaku Results on Active Galaxies. or Reflections on AGN. James Reeves (Keele) and Suzaku team (given by Lance Miller)

BLACK HOLES (AND NEUTRON STARS) IN X-RAY BINARIES: Evolution and Accretion states TEO MUÑOZ DARIAS MARIE CURIE FELLOW. Oxford Astrophysics

arxiv: v2 [astro-ph.he] 3 Jan 2013

Iron line profiles including emission from within the innermost stable orbit of a black hole accretion disc

arxiv: v2 [astro-ph.he] 28 Mar 2016

An intermediate black hole spin in the NLS1 galaxy SWIFT J : chaotic accretion or spin energy extraction?

The nature of X-ray spectral variability in Seyfert galaxies

Testing the nature of astrophysical black hole candidates. Cosimo Bambi Fudan University

X-ray Outbursts from Black Hole Binaries. Ron Remillard Center for Space Research, MIT

Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei?

CONSTRAINTS ON BLACK HOLE SPIN FROM X-RAY SPECTROSCOPY

Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei?

arxiv:astro-ph/ v1 26 Jan 2005

Concave accretion discs and X-ray reprocessing

Probing general relativistic precession with tomography and polarimetry

arxiv: v2 [astro-ph.he] 16 Mar 2016

NuSTAR spectral analysis of the two bright Seyfert 1 galaxies: MCG and NGC Alessia Tortosa Università Roma Tre

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections

Time lags and reverberation in the lamp-post geometry of the compact corona illuminating a black-hole accretion disc

Understanding the nature of ULX with SIMBOL-X

Broadband X-ray emission from radio-quiet Active Galactic Nuclei

A systematic look at the very high and low/hard state of GX 339 4: constraining the black hole spin with a new reflection model

Iron K~ line intensity from accretion discs around rotating black holes

Testing the nature of astrophysical black hole candidates. Cosimo Bambi (Fudan University, Shanghai)

astro-ph/ Oct 1995

Observational inferences of black hole spin and jet power across the mass scale. Elena Gallo University of Michigan

Adding a new dimension: multivariate studies of X-ray Binaries. Saku Vrtilek (CfA), Luke Bornn (Harvard), Bram Boroson (CSU), Joey Richards (LLNL)

Stellar Jets. Tom Maccarone (University of Southampton)

An explanation for the soft X-ray excess in AGN. Jamie Crummy collaborators: Andy Fabian, Luigi Gallo, Randy Ross Suzaku Team

Testing the Kerr Black Hole Hypothesis. Cosimo Bambi (Ludwig-Maximilians-Universität München) 5 June 2012, ESAC Madrid, Spain

Determining the spin of two stellar-mass black holes from disc reflection signatures

arxiv: v2 [gr-qc] 9 Jun 2016

Theoretical aspects of microquasars

Formation of lamp-post coronae in Seyfert Galaxies and X-ray binaries

arxiv: v2 [astro-ph.he] 24 Mar 2016

Principal Component Analysis

arxiv: v1 [astro-ph.he] 1 Jul 2016

arxiv:astro-ph/ v2 19 Mar 2005

Observational evidence for a correlation between jet power and black hole spin

arxiv:astro-ph/ v1 12 Jul 2005

X-ray Timing of Stellar Mass Black Holes

Strong gravity and relativistic accretion disks around supermassive black holes

CONSTRAINING BLACK HOLE SPIN VIA X-RAY SPECTROSCOPY

X-ray Binaries. Image credit: Robert Hynes (2002)

Radio and X-rays from GRS Close correlations of the third kind

Relativistic Emission Lines of Accreting Black Holes

How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets?

arxiv: v1 [astro-ph.he] 6 Dec 2016

ASTRO-H Studies of Accretion Flow onto Supermassive Black Hole

Hard X-ray Properties of Water Maser Galaxies

Principal component analysis of MCG with XMM Newton

The geometric origin of quasi-periodic oscillations in black hole binaries

The Powerful Black Hole Wind in the Luminous Quasar PDS 456

The nature of the coronae of accreting black holes

ASCA Observations of Radio-Loud AGNs

Fe K emission and absorption in Mkn 766 1

Cygnus X-1, RXTE, October 23, 1996

X-ray Binaries: Spectroscopy & Variability

Mapping the inner regions of MCG with XMM-Newton. G. Ponti, M. Cappi, M. Dadina, and G. Malaguti

Testing astrophysical black holes. Cosimo Bambi Fudan University

arxiv:astro-ph/ v3 27 May 2005

arxiv:astro-ph/ v1 7 Feb 2003

Active galactic nuclei (AGN)

AGN feedback from accretion disk winds

PoS(INTEGRAL 2012)049

arxiv:astro-ph/ v1 4 Oct 2004

Broad Iron Lines in Active Galactic Nuclei: Abstract. The broad lines in Active Galactic Nuclei (AGN) discovered recently have

Implementing an X-ray reverberation model in XSPEC

On the black hole mass and soft X-ray lag relation in radio quiet AGN

Journal of Physics & Astronomy

arxiv: v1 [astro-ph.he] 30 Dec 2014

Osservatorio Astronomico di Bologna, 27 Ottobre 2011

arxiv: v1 [astro-ph.he] 16 Oct 2012

Thomas Tauris MPIfR / AIfA Uni. Bonn

Transcription:

Irradiation of an Accretion Disk by a Jet: Spin Measurements of Black Holes Thomas Dauser in collaboration with J. Wilms, J. Garcia (CfA/UMd), R. Duro, C. S. Reynolds (UMd), N. Schartel (ESA-ESAC), K. Pottschmidt (CRESST/UMBC/NASA-GSFC), M. A. Nowak (MIT), and many others Dr. Karl Remeis Observatory Bamberg & ECAP

What can we learn from the Spin of a Black Hole Example: Galaxy Evolution Steady Growth Galaxy Mergers Bardeen (97) Volonteri et al. (25) King et al. (28).8.8.8 P(a).6.4 P(a).6.4 P(a).6.4.2.2.2 - spin a - spin a - spin a Spin: < a < (Rotation Velocity with respect to the Accretion Disk) Spin could distinguish Galaxy Evolution Models

What can we learn from the Spin of a Black Hole Example: Jet Formation Jet-Formation is connected in most models to the BH spin (e.g., Blandford & Znajek, 977) Jet Power Garofalo et al. (2): most powerful jets from retrograde (a = ) BHs Spin Measuring Jet-Power vs. Spin relation constrains Jet Models

Irradiation and Reflection Jet Accretion Disk

Irradiation and Reflection Jet (Reynolds, 996) Accretion Disk

Irradiation and Reflection 7 Jet Counts per unit energy (arb.) 6 5. (Reynolds, 996). Ionized Reflection (García & Kallman, 2; García et al., 2) Accretion Disk

Relativistic effects close to the black hole α[rg] -6-4 -2 2 4 6 4-2 β[rg] -2-4 E/Ee.4.3.2..9.8.6.4 - -.3 -.2 -....2.5. Redshift z (Dauser et al., 2) Rotating Black Hole: Metric depends on M (mass) and a (spin) special relativistic beaming, light bending, and gravitational redshift (Kerr, 963; Cunningham, 975; Fabian et al., 989; Laor, 99; Dovčiak et al., 24; Dauser et al., 2)

Broad Emission Lines α[rg] -6-4 -2 2 4 6 4-2 + β[rg] -2-4 E/Ee.4.3.2..9.8.6.4 - -.3 -.2 -....2.5. Redshift z = Flux [a.u.] 3 2.5 2.5 Fe Kα (6.4keV).5 4.5 5 5.5 6 6.5 7

Diagnostic potential: inclination.8 E/E e.9.. θ o 5 2 3 4 5 6 7 8 5 ǫ=.5 a=. 5.5 6 6.5 7 8 6 4 2 Flux [a.u.] θ = 4 θ = 8

Diagnostic potential: Irradiating Source h h=3r g h=r g h=25r g h=5r g h=r g h=5r g a=+.99 θ=4 2 8 6 4 Flux [a.u.] 2 5 6 7 determines the incident radiation on the accretion disk low height implies enhanced irradiation of the inner parts radially extended sources are also possible Jets

Diagnostic potential: black hole spin.8 E/E e.9.. a +. +.8 +.6 +.3 +..3.5. θ o =4 ǫ=3. 4 2 Flux [a.u.] 5 5.5 6 6.5 7 possible Spin values: a =... high Spin broad line

Observations of Broad Iron Lines. Ratio.5 4 5 6 7 8 AGN MCG 6-3-5: a >.98 (Brenneman & Reynolds, 26; Miniutti et al., 27) both instruments measure the same line shape stellar mass BH Cyg X-: a >.9 (Duro & Dauser et al., 2) most prominent Kα line in a stellar mass BH

... yes, broad lines are everywhere Data/Model.9...2.9...2 stellar mass Black Holes XTE J55 564..2.8 2 4 6 8 2 4 6 8 Cygnus X.. GRO J655 4 GRS 95+5 2 4 6 8 2 4 6 8 data/model.9.95.5. AGN NGC 3783 (Brenneman et al., 2) 5 Energy (kev) NGC 356 (Iwasawa et al., 24) after Miller (27)

Constraining the Spin from Observations How good can we distinguish high spin from low spin? extended Jet compact Jet high Spin low Spin.8.6.4.2.8.6.4.2 Flux [a.u.] Flux [a.u.] (a) (b) a =.99 a = a =.99 a =.5..5.95.5..5 Ratio Ratio 2 4 6 2 4 6 4 6.95

Constraining the Spin from Observations How good can we distinguish high spin from low spin? extended Jet compact Jet high Spin low Spin.8.6.4.2.8.6.4.2 Flux [a.u.] Flux [a.u.] (a) (b) a =.99 a = a =.99 a =.5..5.95.5..5 Ratio Ratio 2 4 6 2 4 6 4 6.95 A detected broad line yields the spin and indicates a compact emission region compact emission region. (Dauser et al., 23)

Robust Spin Estimation AGN H77 495: iron Kα and Lα line detected Dauser et al. (22) νfν[ 2 ergs s cm 2 ]. first AGN with detected iron Kα and Lα (see, e.g., Fabian et al., 29; Zoghbi et al., 2) Ratio..5.5.5 2 5 two reflection components with different ionization, high spin (a >.99), and low jet height (h < 4r g)

Robust Spin Estimation stellar mass BH Cyg X-: Broad Band Spectrum XMM-Newton RXTE-PCA RXTE-HEXTE Integral Duro & Dauser et al. (23, in prep.) νfν [ 6 ergs s cm 2 ] χ 5 2 5 3 - -3-5 5 2 5 2 5 Broad Band Coverage (Simultaneous observations) ( first robust stellar mass BH spin measurement) Cygnus X- is a fast rotating black hole (a >.9), and compact emission region (h < 4r g) Spin in agreement with the disk-spin method (Gou et al., 2)

Summary Relativistic effects distort reflection features produced close to the BH Broad Emission Lines Line Shapes are sensitive to the Spin and other parameters A detected broad line yields the spin and indicates a compact emission region compact emission region Additional information (e.g.,broad band spectra) is necessary for robust spin estimates.

References Bardeen J.M., 97, Nat 226, 64 Blandford R.D., Znajek R.L., 977, MNRAS 79, 433 Brenneman L.W., Reynolds C.S., 26, ApJ 652, 28 Brenneman L.W., Reynolds C.S., Nowak M.A., et al., 2, ApJ 736, 3 Cunningham C.T., 975, ApJ 22, 788 Dauser T., Garcia J., Wilms J., et al., 23, MNRAS 687 Dauser T., Svoboda J., Schartel N., et al., 22, MNRAS 422, 94 Dauser T., Wilms J., Reynolds C.S., Brenneman L.W., 2, MNRAS 49, 534 Dove J.B., Wilms J., Maisack M., Begelman M.C., 997, ApJ 487, 759 Dovčiak M., Karas V., Yaqoob T., 24, ApJ Suppl. 53, 25 Duro R., Dauser T., Wilms J., et al., 2, A&A 533, L3 Fabian A.C., Rees M.J., Stella L., White N.E., 989, MNRAS 238, 729 Fabian A.C., Zoghbi A., Ross R.R., et al., 29, Nat 459, 54 Fender R.P., Gallo E., Russell D., 2, MNRAS 46, 425 García J., Kallman T.R., 2, ApJ 78, 695 García J., Kallman T.R., Mushotzky R.F., 2, ApJ 73, 3 Garofalo D., Evans D.A., Sambruna R.M., 2, MNRAS 46, 975 Gou L., McClintock J.E., Reid M.J., et al., 2, ApJ 742, 85 Haardt F., 993, ApJ 43, 68 Iwasawa K., Miniutti G., Fabian A.C., 24, MNRAS 355, 73 Kerr R.P., 963, Phys. Rev. Lett., 237 King A.R., Pringle J.E., Hofmann J.A., 28, MNRAS 385, 62 Laor A., 99, ApJ 376, 9 Markoff S., Nowak M.A., Wilms J., 25, ApJ 635, 23 Matt G., Perola G.C., Piro L., Stella L., 992, A&A 257, 63 Miller J.M., 27, ARA&A 45, 44 Miniutti G., Fabian A.C., Anabuki N., et al., 27, PASJ 59, 35 Reynolds C.S., 996, Ph.D. Thesis, University of Cambridge Ross R.R., Fabian A.C., 25, MNRAS 358, 2 Volonteri M., Madau P., Quataert E., Rees M.J., 25, ApJ 62, 69 Wilms J., Reynolds C.S., Begelman M.C., et al., 2, MNRAS 328, L27 Zoghbi A., Fabian A.C., Uttley P., et al., 2, MNRAS 4, 249