Babylonian resistor networks

Similar documents
The Bernoulli equation in a moving reference frame

Report Documentation Page

Use of Wijsman's Theorem for the Ratio of Maximal Invariant Densities in Signal Detection Applications

Metrology Experiment for Engineering Students: Platinum Resistance Temperature Detector

Awell-known lecture demonstration1

Diagonal Representation of Certain Matrices

REGENERATION OF SPENT ADSORBENTS USING ADVANCED OXIDATION (PREPRINT)

Crowd Behavior Modeling in COMBAT XXI

System Reliability Simulation and Optimization by Component Reliability Allocation

Internal ballistics of a pneumatic potato cannon

P. Kestener and A. Arneodo. Laboratoire de Physique Ecole Normale Supérieure de Lyon 46, allée d Italie Lyon cedex 07, FRANCE

CRS Report for Congress

uniform distribution theory

Quantitation and Ratio Determination of Uranium Isotopes in Water and Soil Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

Report Documentation Page

Analysis Comparison between CFD and FEA of an Idealized Concept V- Hull Floor Configuration in Two Dimensions. Dr. Bijan Khatib-Shahidi & Rob E.

Attribution Concepts for Sub-meter Resolution Ground Physics Models

A report (dated September 20, 2011) on. scientific research carried out under Grant: FA

Report Documentation Page

PIPS 3.0. Pamela G. Posey NRL Code 7322 Stennis Space Center, MS Phone: Fax:

Sensitivity of West Florida Shelf Simulations to Initial and Boundary Conditions Provided by HYCOM Data-Assimilative Ocean Hindcasts

Closed-form and Numerical Reverberation and Propagation: Inclusion of Convergence Effects

Scattering of Internal Gravity Waves at Finite Topography

SW06 Shallow Water Acoustics Experiment Data Analysis

On Applying Point-Interval Logic to Criminal Forensics

Broadband matched-field source localization in the East China Sea*

Estimation of Vertical Distributions of Water Vapor and Aerosols from Spaceborne Observations of Scattered Sunlight

Periodic Magnetoresistance Oscillations in Side-Gated Quantum Dots

Predicting Tropical Cyclone Formation and Structure Change

THE EULER FUNCTION OF FIBONACCI AND LUCAS NUMBERS AND FACTORIALS

Thermo-Kinetic Model of Burning for Polymeric Materials

Ocean Acoustics Turbulence Study

Z-scan Measurement of Upconversion in Er:YAG

VLBA IMAGING OF SOURCES AT 24 AND 43 GHZ

Real-Time Environmental Information Network and Analysis System (REINAS)

Sums of the Thue Morse sequence over arithmetic progressions

Computer Simulation of Sand Ripple Growth and Migration.

DIRECTIONAL WAVE SPECTRA USING NORMAL SPREADING FUNCTION

Improved Parameterizations Of Nonlinear Four Wave Interactions For Application In Operational Wave Prediction Models

High-Fidelity Computational Simulation of Nonlinear Fluid- Structure Interaction Problems

Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures

Generation and Propagation of Internal Solitary Waves on the Continental Shelf and Slope

Coastal Engineering Technical Note

REPORT DOCUMENTATION PAGE

INFRARED SPECTRAL MEASUREMENTS OF SHUTTLE ENGINE FIRINGS

Coupled Ocean-Atmosphere Modeling of the Coastal Zone

DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

ATWOOD S MACHINE WITHOUT HANGING MASSES *

USMC Enlisted Endstrength Model

Marginal Sea - Open Ocean Exchange

Levinson s Theorem and the Nonlocal Saito Potential

ANALYSIS AND MODELING OF STRATOSPHERIC GRAVITY WAVE ACTIVITY ALONG ER-2 FLIGHT TRACKS

Extension of the BLT Equation to Incorporate Electromagnetic Field Propagation

FRACTAL CONCEPTS AND THE ANALYSIS OF ATMOSPHERIC PROCESSES

Effects of Constrictions on Blast-Hazard Areas

Understanding Near-Surface and In-cloud Turbulent Fluxes in the Coastal Stratocumulus-topped Boundary Layers

SENSORS FOR MEASURING THE VOLUME SCATTERING FUNCTION OF OCEANIC WATERS

Molecular Characterization and Proposed Taxonomic Placement of the Biosimulant 'BG'

Comparative Analysis of Flood Routing Methods

LAGRANGIAN MEASUREMENTS OF EDDY CHARACTERISTICS IN THE CALIFORNIA CURRENT

Dynamics of Droplet-Droplet and Droplet-Film Collision. C. K. Law Princeton University

Parameterizing the Effects of Upper-Ocean Large Eddies on Air-Sea Interaction

Flocculation, Optics and Turbulence in the Community Sediment Transport Model System: Application of OASIS Results

Mixture Distributions for Modeling Lead Time Demand in Coordinated Supply Chains. Barry Cobb. Alan Johnson

HYCOM Caspian Sea Modeling. Part I: An Overview of the Model and Coastal Upwelling. Naval Research Laboratory, Stennis Space Center, USA

Grant Number: N IP To compare obtained theoretical results with NPAL experimental data.

Abyssal Current Steering of Upper Ocean Current Pathways in an Ocean Model with High Vertical Resolution

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

Mine Burial Studies with a Large Oscillating Water-Sediment Tunnel (LOWST)

High Resolution Surface Characterization from Marine Radar Measurements

Improvements in Modeling Radiant Emission from the Interaction Between Spacecraft Emanations and the Residual Atmosphere in LEO

Volume 6 Water Surface Profiles

Assimilation of Synthetic-Aperture Radar Data into Navy Wave Prediction Models

Wavelets and Affine Distributions A Time-Frequency Perspective

Determining the Stratification of Exchange Flows in Sea Straits

Characterization of Caribbean Meso-Scale Eddies

Super-Parameterization of Boundary Layer Roll Vortices in Tropical Cyclone Models

Modeling the Impact of Extreme Events on Margin Sedimentation

Weak Turbulence in Ocean Waves

Predictive Model for Archaeological Resources. Marine Corps Base Quantico, Virginia John Haynes Jesse Bellavance

2008 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies SPECTRAL ANALYSIS OF RADIOXENON

Models of Marginal Seas Partially Enclosed by Islands

Grant Number: N IP

An Invariance Property of the Generalized Likelihood Ratio Test

Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates

NAVGEM Platform Support

Long-Range Underwater Sound Propagation: Environmental Variability, Signal Stability and Signal Coherence

A 1/10th Degree Global Ocean Simulation Using the Parallel Ocean Program

Swash Zone Dynamics: Modeling and Data Analysis

Report Documentation Page

Exact Solution of a Constrained. Optimization Problem in Thermoelectric Cooling

Coastal Mixing and Optics

Using Dye to Study Lateral Mixing in the Ocean: 100 m to 1 km

Erik L. Swanberg 1 and Steven G. Hoffert 2. Veridian Systems 1, Autometric 2. Sponsored by Defense Threat Reduction Agency

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Super-Parameterization of Boundary Layer Roll Vortices in Tropical Cyclone Models

Experimental and Theoretical Studies of Ice-Albedo Feedback Processes in the Arctic Basin

Mass Transport by Second Mode Internal Solitary Waves

Internal Waves and Mixing in the Aegean Sea

USER S GUIDE. ESTCP Project ER

Transcription:

IOP PUBLISHING Eur. J. Phys. 33 (2012) 531 537 EUROPEAN JOURNAL OF PHYSICS doi:10.1088/0143-0807/33/3/531 Babylonian resistor networks Carl E Mungan 1 and Trevor C Lipscombe 2 1 Physics Department, US Naval Academy, Annapolis, MD 21402-1363, USA 2 Catholic University of America Press, Washington, DC 20064, USA E-mail: mungan@usna.edu and lipscombe@cua.edu Received 11 January 2012, in final form 22 February 2012 Published 16 March 2012 Online at stacks.iop.org/ejp/33/531 Abstract The ancient Babylonians had an iterative technique for numerically approximating the values of square roots. Their method can be physically implemented using series and parallel resistor networks. A recursive formula for the equivalent resistance R eq is developed and converted into a nonrecursive solution for circuits using geometrically increasing numbers of identical resistors. As an example, 24 resistors R are assembled into a second-order network and R eq /R is measured to equal 2 to better than 0.2%, as could be done in an introductory physics laboratory. (Some figures may appear in colour only in the online journal) 1. Aim Given a bucket of identical resistors R, construct a circuit whose equivalent resistance approximates 2R (to any desired degree of accuracy, limited only by the precision of the resistors). To ensure that the construction is accessible to introductory physics students, the resistors are to be combined either in series or in parallel at each stage of the circuit [1]. 2. Theoretical analysis To simplify the equations that follow, choose units of resistance so that R = 1. In the next section, it will be explained how to restore conventional units of ohms to the terms. Start by putting two resistors in series to get a resistance of 2. Denote that combination as S 0 where the S refers to putting two initial resistors in series and the subscript 0 denotes a zeroth-order approximation to 2. However, S 0 is larger than 2 and is thus an overestimate. On the other hand, one gets an underestimate by constructing P 0 = 2 S 0 = 1 (1) where in later steps, P will refer to putting two previous resistor combinations in parallel. These two zeroth-order circuits are illustrated in figure 1. 0143-0807/12/030531+7$33.00 c 2012 IOP Publishing Ltd Printed in the UK & the USA 531

Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 16 MAR 2012 4. TITLE AND SUBTITLE Babylonian resistor networks 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Naval Academy,Physics Department,Annapolis,MD,21402-1363 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR S ACRONYM(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited 13. SUPPLEMENTARY NOTES 11. SPONSOR/MONITOR S REPORT NUMBER(S) 14. ABSTRACT The ancient Babylonians had an iterative technique for numerically approximating the values of square roots. Their method can be physically implemented using series and parallel resistor networks. A recursive formula for the equivalent resistance Req is developed and converted into a nonrecursive solution for circuits using geometrically increasing numbers of identical resistors. As an example, 24 resistors R are assembled into a second-order network and Req/R is measured to equal &#8730 2 to better than 0.2%, as could be done in an introductory physics laboratory. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Same as Report (SAR) 18. NUMBER OF PAGES 7 19a. NAME OF RESPONSIBLE PERSON Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18

532 C E Mungan and T C Lipscombe 1 1 S 0 = 2 1 P 0 = 1 Figure 1. Starting circuits to construct a resistor network whose equivalent resistance approximates 2. S 0 P 0 S 0 P 0 S 1 = 3/2 S 0 S 0 P 0 P 1 = 4/3 P 0 Figure 2. The two circuits that can be constructed using six unit resistors whose equivalent resistances are nearest in value to 2. To achieve an equivalent resistance that is nearer in value to 2, one can average together S 0 and P 0 to get S 1 = 1 2 (S 0 + P 0 ) = 3 2. (2) To accomplish that, first put S 0 and P 0 in series with each other. Then put that trio of unit resistors in parallel with an identical trio to halve the total resistance. On the other hand, if one first puts S 0 and P 0 in parallel, and then puts that trio in series with an identical trio, one doubles the resistance of each trio to end up with ( 1 P 1 = 2 + 1 ) 1 = 2 S 0P 0 = S 0P 0 (3) S 0 P 0 S 0 + P 0 S 1 using equation (2) in the last step. Consequently S 1 P 1 = S 0 P 0 = 2 (4) from equation (1) and therefore P 1 = 2 S 1 = 4 3. (5) These two first-order resistor combinations are sketched in figure 2. AgainS 1 is an overestimate and P 1 is an underestimate to the value of 2.

Babylonian resistor networks 533 Table 1. Values predicted by equation (9) for a starting value of S 0 = 2. n S n 0 2 1 3/2 = 1.5 2 17/12 1.417 3 577/408 1.414 22 These two constructions can now be iterated to successively approach an equivalent resistance of 2. To form S 2 and P 2, simply replace every occurrence of S 0 and P 0 in figure 2 with S 1 and P 1, respectively. Then equation (2) becomes S 2 = 1 2 (S 1 + P 1 ) = 1 ) (S 1 + 2S1 (6) 2 using equation (5) in the last step, and equation (4) becomes S 2 P 2 = S 1 P 1 = 2 (7) so that P 2 = 2 S 2. (8) It takes 24 unit resistors to build either of the second-order networks S 2 or P 2. More generally for n 1 one can use 1.5 4 n unit resistors to construct the two circuits and S n = 1 2 ( S n 1 + 2 ) S n 1 P n = 2 S n. (10) Equivalent resistances computed recursively using equation (9) are listed in table 1. One sees that S n rapidly converges to 2 1.41421. Recursion relation (9) can be converted into a nonrecursive formula valid for n 0, S n = 2 1 + r f (n) (11) 1 r f (n) where f (n) 2 n and r ( 2 1)/( 2 + 1) 0.1716, as verified in appendix A. It follows immediately from this formula that S n 2asn. One can more compactly write this result as S n = ( 2 coth 2 n acoth ) 2 (12) where coth and acoth are the forward and inverse hyperbolic cotangent functions. (This formula again implies S n 2asn because coth =1.) This explicit formula for S n is plotted in figure 3 as the solid curve, treating n as a continuous variable. Its values for the integers n = 0 to 5 are indicated by the dots. The asymptotic value 2 is denoted by the horizontal dashed line. To prove that equation (9) converges to 2 without using equations (11)or(12), assume [2] that a limiting value of S n 1 exists and call it S. That must also be the limiting value of S n and hence equation (9) in the limit n becomes S = 1 ( S + 2 ) S 2 = 2 (13) 2 S (9)

534 C E Mungan and T C Lipscombe 2.0 1.9 1.8 1.7 1.6 S n 1.5 1.4 1.3 1.2 1.1 1.0 0 1 2 3 4 5 n Figure 3. Explicit and recursive values of S n asymptotically approaching the value 2. whose positive solution is S = 2. (For another approach, see appendix B.) This limiting value can be understood intuitively by writing equation (9)as S n = 1 2 (S n 1 + P n 1 ). (14) Since S n 1 is slightly larger than 2, it follows that P n 1 = 2/S n 1 will be slightly smaller than 2. Therefore averaging together these two values gives an improved estimate for 2. This iterative method of approximating 2 was known to the ancient Babylonians [3], motivating the title of this paper. 3. Experimental verification Students can assemble one of these Babylonian resistor circuits and measure its resistance. Noting from figure 3 that good accuracy is already obtained for n = 2 and that it would be difficult to correctly wire 96 or more resistors together, it is reasonable to build a second-order network. Since P n is closer in value to 2 than is S n (for any value of n), it makes sense to construct P 2 rather than S 2. All of the equations in section 2 assumed unit resistors; for laboratory resistors of resistance R, one simply has to multiply any value or expression for S n or P n by R. (For example, S 1 in figure 2 then has a resistance of 1.5R.) The required components are 24 identical resistors R and five short jumper wires. First wire the resistors together as four parallel lines of 6R each by twisting their ends together (and securing them with solder), and then add the jumper wires indicated in red in figure 4.

Babylonian resistor networks 535 Figure 4. Circuit P 2 redrawn to make it easy to assemble. Figure 5. Measurement of the equivalent resistance of circuit P 2. The equivalent resistance between the left and right ends is predicted to be 24 17 R 2R. (15) The difference between 24/17 and 2 is less than 0.2%. The circuit in figure 4 was constructed using 24 nominally 1 k resistors. The actual resistances were measured using a multimeter prior to assembly and were found to be R = 983 ± 5. Thus, either the resistors are systematically low or the multimeter is a bit out of calibration, but that will not affect the ratio R eq /R as long as the same multimeter is used to measure the equivalent resistance R eq. As can be seen in the photograph of the setup in figure 5, we measured R eq = 1388, which differs by less than 0.2% from 2R = 1390 and is well within the 5 variation in the individual resistors. 4. Conclusions Discussion and assembly of these resistor networks provide an interesting alternative to routine series and parallel circuits in an introductory physics course. An extension of the results presented here is to keep P 0 = R (in laboratory units) but replace S 0 with any resistance kr

536 C E Mungan and T C Lipscombe instead of 2R. The equivalent resistance of networks iterated in the style of figure 2 will then asymptotically approach the value kr rather than 2R. The number k need not even be an integer but can have any real, positive value. (For example, if P 0 = 200 and S 0 = 4.7k, then k = S 0 /P 0 = 23.5.) Such Babylonian networks can thus be thought of as an analogue calculator of square roots. Another option is to replace the resistors with capacitors or springs because they too obey series and parallel combination rules. Appendix A. Verification of equations (11) and (12) Since f (n + 1) = 2 2 n, equation (11) implies that S n+1 = 2 1 + r2 f 1 r. (A.1) 2 f But according to equations (9) and (11) this result is supposed to be equal to 1 2 (S n + 2Sn ) = 1 2 1 + r f 1 r f + 1 2 1 r f 1 + r f. (A.2) In other words, one needs to show that 1 + r 2 f 2 = 1 (1 + r f ) 2 + 1 (1 r f ) 2. (A.3) 1 r 2 f 2 1 r 2 f 2 1 r 2 f But this equality is verified by expanding the two squares in the numerators of the righthand side. Different values of r give rise to different initial values for S 0. In particular, r ( 2 1)/( 2 + 1) results in S 0 = 2. To directly obtain equation (12), run the recursion solver command RSolve[{S[n + 1] ==S[n]/2 + 1/S[n], S[0] == 2}, S[n], n] (A.3) in Mathematica. Alternatively one can convert between equations (11) and (12) using standard exponential and logarithmic identities for coth and acoth. Appendix B. A physics-based approach to finding the limiting value of S n Rewrite equation (9) as S n+1 S n (n + 1) n = 1 S n S n 2. (B.1) The left-hand side is S n / n ds n /dn by treating S n and n as continuous variables. Substituting that derivative into equation (B.1) and multiplying through by 2S n, one obtains d(sn 2) 2 Sn 2 dn. (B.2) By viewing S n as a velocity, equation (B.2) can be interpreted as the change in kinetic energy of a particle falling in a uniform gravitational field while subject to a quadratic drag force. The differential equation is separated and integrated to get S n 2 e n. (B.3) The limit n corresponds to a terminal speed of 2 in which case the left-hand side of equation (B.2) is zero since the velocity is no longer changing. Equation (B.3), unlike equations (11) and (12), is only approximate for finite n, however. In contrast to the red curve in figure 3, equation (B.3) describes a graph which starts at 1 and increases towards an asymptotic value of 2.

Babylonian resistor networks 537 References [1] Amengual A 2000 The intriguing properties of the equivalent resistances of n equal resistors combined in series and in parallel Am.J.Phys.68 175 9 [2] Thompson D 1997 Resistor networks and irrational numbers Am.J.Phys.65 88 [3] Fowler D and Robson E 1998 Square root approximations in old Babylonian mathematics: YBC 7289 in context Hist. Math. 25 366 78