Monte Carlo simulation of cyclotron resonant scattering features

Similar documents
Cyclotron lines in accreting X-ray pulsars. - models and observations -

Giant Flares and Offstates

arxiv: v1 [astro-ph.he] 10 Sep 2013

The Be/X-ray binary V

The Search for Cyclotron Resonant Scattering Harmonics in the Hard Spectra of Accreting Pulsars. Andrea Santangelo IASF-CNR Sez.

Variations and correlations in cyclotron resonant scattering features of

4U : a well-hidden pearl

PoS(Integral08)120. Scanning the Egress of Vela X-1

XMM-Newton's view of the multiple uorescence lines of GX 301 2

arxiv: v1 [astro-ph.he] 9 Dec 2018

arxiv: v1 [astro-ph.he] 29 Jan 2014

INTEGRAL and RXTE view of Her X-1: towards resolving of the system s puzzles

arxiv: v2 [astro-ph.he] 17 Dec 2014

Cyclotron resonant scattering feature simulations

The magnetic spectrum of X-ray binary pulsars

Cyclotron Lines: From Magnetic Field Strength Estimators to Geometry Tracers in Neutron Stars

The NuSTAR X-ray Spectrum of Hercules X-1: A Radiation-Dominated Radiative Shock

Cyclotron Line Science with LAXPC. Dipankar Bhattacharya IUCAA, Pune

Accreting Binary Pulsars

Cyclotron Observations of Binary X-Ray Pulsars

arxiv: v1 [astro-ph.he] 26 Apr 2016

arxiv: v1 [astro-ph.he] 9 Apr 2019

arxiv: v3 [astro-ph.he] 28 Nov 2011

Magnetized neutron star atmospheres: beyond the cold plasma approximation

Isolated And Accreting Magnetars Viewed In Hard X-rays

Opacity and Optical Depth

X-ray Spectra from Magnetar Candidates

Timing Characteristics of the Hard X-ray Emission from Bright X-ray Pulsars Based on INTEGRAL Data

Phase resolved X-ray spectra of Vela X-1

Monte Carlo Simulator to Study High Mass X-ray Binary System

The total luminosity of a disk with the viscous dissipation rate D(R) is

Luminosity Dependent Changes of Cyclotron Resonance Energies in Binary X-ray Pulsars

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

THE FUNDAMENTAL CYCLOTRON LINE IN 4U Introduction

Probing Neutron Star Physics using Thermonuclear X-ray Bursts

A resonant cyclotron scattering model for the X-ray spectra of Magnetar Candidates

V in the outburst of : luminosity dependence of the cyclotron line and pulse profile

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

On the nature of 35-day cycle in Her X-1

Propagation of very high energy γ-rays inside massive binaries LS 5039 and LSI

PROPELLER EFFECT IN THE TRANSIENT X-RAY PULSAR SMC X-2

Astronomy. Astrophysics. No anticorrelation between cyclotron line energy and X-ray flux in 4U

arxiv:astro-ph/ v3 27 Jul 2000

THERMAL AND BULK COMPTONIZATION IN ACCRETION-POWERED X-RAY PULSARS

Pulsar Winds. John Kirk. Max-Planck-Institut für Kernphysik Heidelberg, Germany. < > p.1/18

X-ray binaries. Marat Gilfanov MPA, Garching

arxiv: v1 [astro-ph.he] 18 Jan 2014

The fundamental INTEGRAL contributions to advance the millisecond X-ray pulsars research field

NuSTAR Observations of X-Ray Binaries

INTEGRAL & Magnetars: a high energy approach to extreme neutron stars

Colliding winds in massive star binaries: expectations from radio to gamma rays

Nonthermal Emission in Starburst Galaxies

Jets, corona and accretion disk in the black hole source SS433: Monte-Carlo simulations

Y.M.Krivosheyev, G.S.Bisnovatyi-Kogan, A.M.Cherepashchuk, K.A. Postnov

The Magnificent Seven : Strong Toroidal Fields?

Gamma-ray binaries as pulsars spectral & variability behaviour Guillaume Dubus. Laboratoire d Astrophysique de Grenoble UMR 5571 UJF / CNRS

The Magnificent Seven Similarities and Differences

X-ray Emission from O Stars. David Cohen Swarthmore College

Astronomy. Astrophysics. 4U : phase lags and cyclotron resonant scattering

Nanda Rea. XMM-Newton reveals magnetars magnetospheric densities. University of Amsterdam Astronomical Institute Anton Pannekoek NWO Veni Fellow

arxiv: v1 [astro-ph.he] 4 Oct 2017

arxiv: v1 [astro-ph] 16 Oct 2008

PHYSICS NEUTRON STARS

Outline. Today we will learn what is thermal radiation

IS THE LACK OF PULSATIONS IN LOW-MASS X-RAY BINARIES DUE TO COMPTONIZING CORONAE?

- Synchrotron emission: A brief history. - Examples. - Cyclotron radiation. - Synchrotron radiation. - Synchrotron power from a single electron

Neutron Stars in Binary Systems

Chandra-HETGS Observations of LMC X-1. Michael Nowak, Ron Remillard, Norbert Schulz (MIT-Kavli) & Jörn Wilms (University of Bamberg)

The Magnificent Seven: Nearby, Thermally Emitting, Isolated Neutron Stars

Mass loss from stars

Astrophysical Radiation Processes

Addition of Opacities and Absorption

On the location and properties of the GeV and TeV emitters of LS 5039

Electron-Acoustic Wave in a Plasma

Soft X-ray Emission Lines in Active Galactic Nuclei. Mat Page

Cygnus X-1, RXTE, October 23, 1996

Super-Eddington accretion onto a magnetized neutron star

Chapter 0 Introduction X-RAY BINARIES

Characteristic temperatures

arxiv: v1 [astro-ph.he] 13 Jun 2017

Type-I Burst as a Probe of the X-ray Binary Corona

Special relativity and light RL 4.1, 4.9, 5.4, (6.7)

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Active Galactic Nuclei - Zoology

Probing the stellar wind environment of Vela X-1. With MAXI: hints for a multi-tasking accretion wake

High Energy Astrophysics

Detection of an Absorption Feature at 110 kev by OSSE. E.O. Hulburt Center for Space Research, Code 7650, Naval Research Lab.

GAMMA-RAYS FROM MASSIVE BINARIES

Origin of the Difference of the Jovian and Saturnian Satellite Systems

Modelling the synchrotron emission from O-star colliding wind binaries

Mean Intensity. Same units as I ν : J/m 2 /s/hz/sr (ergs/cm 2 /s/hz/sr) Function of position (and time), but not direction

Evidence for an evolving cyclotron line energy in 4U

Exploring the powering source of the TeV X-ray binary LS 5039

Black Hole and Host Galaxy Mass Estimates

On the possibility of disk-fed formation in supergiant high-mass X-ray binaries

Accretion in Binaries

Radiation-hydrodynamic Models for ULXs and ULX-pulsars

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

Transcription:

of cyclotron resonant scattering features Dr. Karl Remeis-Sternwarte Bamberg, Sternwartstraße 7, 96049 Bamberg, Germany Erlangen Centre for Astroparticle Physics (ECAP), Erwin-Rommel-Str. 1, 91058 Erlangen, Germany

Motivation: Measuring a neutron star s magnetic field Magnetic field variation 1 arbitrary flux [s 1 cm 2 kev 1 ] 0.1 0.01 10-3 10-4 10-5 10-6 10-7 10-8 0.05 0.06 0.07 0.08 Magnetic field strength [Bcrit] Absorption features Fundamental line and higher harmonics 12-B-12 rule: E cyc 12 B 12 kev Complex line shape 10-9 20 40 Energy [kev] 60 80

Outline 1 Accreting neutron star binary systems with cyclotron lines Origin of matter accreted to the neutron star The neutron star s magnetic field and its influence on the infalling plasma 2 Cyclotron emission from the accretion column

Accretion mechanisms Accretion column Accretion mechanisms in X-ray binary systems

Accretion mechanisms Accretion column Accretion mechanisms in X-ray binary systems WARNING Not to scale! R OB 7R sun Separation 25R sun

Accretion mechanisms Accretion column Accretion mechanisms in X-ray binary systems Kreykenbohm et al. (1999) Stellar Wind Vela X-1: B 3 10 12 G

Accretion mechanisms Accretion column Accretion mechanisms in X-ray binary systems L1 Truemper et al. (1978) Roche Lobe Overflow Her X-1: B 4 10 12 G

Accretion mechanisms Accretion column Accretion mechanisms in X-ray binary systems Santangelo et al. (1999) Be Accretion 4U 0115+63: B 1.4 10 12 G

Accretion mechanisms Accretion column Formation of an accretion column B B crit 4.4 10 13 G

Accretion mechanisms Accretion column Formation of an accretion column B Matter couples to magnetic field lines

Accretion mechanisms Accretion column Formation of an accretion column B Seed photon sources: Blackbody Bremsstrahlung Cyclotron emission etc...

of CRSF formation X-ray binaries B θ k

of CRSF formation X-ray binaries Resonance energy: ω n = 1 1 + 2nBsin 2 θ m sin 2 e θ B n θ k p

of CRSF formation X-ray binaries Resonance energy: ω n = 1 1 + 2nBsin 2 θ m sin 2 e θ e e B n p = p + k cos(θ) θ k p n

of CRSF formation X-ray binaries Resonance energy: ω n = 1 1 + 2nBsin 2 θ m sin 2 e θ e e e B e n p = p + k cos(θ) k θ k p n

of CRSFs

of CRSFs

of CRSFs Inject Photon Iterate Sample MFP and propagate photon Store photon Araya 99 vs. Schwarm 12 (Slab1-1) 20 Did the photon escape? yes 15 no Sample electron momentum Sample final Landau level Sample scattering angle Flux [kev 1 ] 10 20 15 τ = 1 10 4 τ = 3 10 4 Calculate final photon energy and electron momentum Next photon 10 τ = 1 10 3 0.08 τ = 3 10 3 0.08 0.02 0.04 0.06 0.02 0.04 0.06 Final Landau level >0? yes no Energy [MeV] Araya & Harding (1999) Sample decay Landau level Sample emission angle

of CRSFs Inject Photon Iterate Sample MFP and propagate photon Store photon Did the photon escape? yes no Sample electron momentum Sample final Landau level Sample scattering angle Calculate final photon energy and electron momentum Next photon Final Landau level >0? no yes Sample decay Landau level Schwarm et al. (2012) Sample emission angle

of CRSFs Inject Photon Harding 90 vs. Schwarm 12 10000 T = 5keV, ϑ = 85 Iterate Sample MFP and propagate photon Store photon 1000 100 Did the photon escape? yes 10 1 no Sample electron momentum Sample final Landau level Sample scattering angle Calculate final photon energy and electron momentum Next photon Thermally averaged scattering cross section [τt] 0.1 10000 1000 100 10 1 0.1 10000 T = 10keV, ϑ = 60 T = 50keV, ϑ = 60 Final Landau level >0? no 1000 100 yes Sample decay Landau level Sample emission angle 10 1 0.1 0.5 1 1.5 2 2.5 Energy [ωres] 3 3.5 4 Harding & Daugherty (1991)

Model parameters X-ray binaries cy, τ perp = 3.0E 04 τ Th, B = 0.04 B crit, T = 3 kev, µ = 0.00 6 5 4 3 Flux [kev 1 ] 2 1.5 1 0.8 0.6 0.5 0.4 20 40 Energy [kev] 60 80 100 120

Model parameters X-ray binaries cy, τ perp = 3.0E 04 τ Th, B = 0.06 B crit, T = 3 kev, µ = 0.00 6 5 4 B [B crit ]: 0.04 0.06 3 Flux [kev 1 ] 2 1.5 1 0.8 0.6 0.5 0.4 20 40 Energy [kev] 60 80 100 120

Model parameters X-ray binaries cy, τ perp = 3.0E 04 τ Th, B = 0.06 B crit, T = 15 kev, µ = 0.00 6 5 4 T [kev]: 3 15 3 Flux [kev 1 ] 2 1.5 1 0.8 0.6 0.5 0.4 20 40 Energy [kev] 60 80 100 120

Model parameters X-ray binaries cy, τ perp = 3.0E 04 τ Th, B = 0.06 B crit, T = 15 kev, µ = 0.50 6 5 4 µ: 0.0 0.5 3 Flux [kev 1 ] 2 1.5 1 0.8 0.6 0.5 0.4 20 40 Energy [kev] 60 80 100 120

Model parameters X-ray binaries sl10, τ para = 8.0E 04 τ Th, B = 0.06 B crit, T = 15 kev, µ = 0.50 6 5 4 geometry: cy sl10 3 Flux [kev 1 ] 2 1.5 1 0.8 0.6 0.5 0.4 20 40 Energy [kev] 60 80 100 120

Model parameters X-ray binaries sl11, τ para = 1.6E 03 τ Th, B = 0.06 B crit, T = 15 kev, µ = 0.50 6 5 4 geometry: sl10 sl11 3 Flux [kev 1 ] 2 1.5 1 0.8 0.6 0.5 0.4 20 40 Energy [kev] 60 80 100 120

Model parameters X-ray binaries 1 0.1 CRSF via RCL Green s function table 7/8 < µ < 8/8 4/8 < µ < 5/8 0.01 10-3 Flux [kev 1 ] 10-4 10-5 1 0.1 2/8 < µ < 3/8 0/8 < µ < 1/8 0.01 10-3 10-4 10-5 20 40 60 80 Energy [kev] 20 40 60 80 Isenberg et al. (1998)

Simulated spectrum Her X-1 with B&W 07 continuum 0.01 10-3 10-4 10-5 µ0 = 0.100 µ1 = 0.500 µ2 = 0.900 B&W 07 seed photons Blackbody radiation Bremsstrahlung Cyclotron radiation arbitrary flux 10-6 10-7 10-8 10-9 Optical Depth [τth] 1 10 4 10-10 10-11 10-12 10-13 Her X 1 B = 4.41 10 12 G Te = 6.00 kev M = 1.11 10 17 gs 1 r0 = 44 m 3 10 4 1 10 3 10-14 3 10 3 10-15 50 100 150 Energy [kev] Becker & Wolff (2007)

Simulated spectrum Her X-1 with B&W 07 continuum 40 60 Energy [kev] 80 100 120 140 Her X 1 B = 4.41 10 12 G Te = 6.00 kev 160 0.01 10-3 Ṁ = 1.11 10 17 gs 1 r0 = 44 m 10-4 τcyc = 10 10 4 τth 10-5 Flux [s 1 cm 2 kev 1 ] 0.1 0.01 10-3 10-4 10-5 r0 = 44m B ϑ = 60 sin(x) 10-6 10-7 10-8 10-9 Flux [s 1 cm 2 kev 1 ] 10-6 10-7 1 10 Energy [kev] 100 10-10 10-11

Cyclotron emission from the accretion column B B critical luminosity model (Becker et al., 2012)

Cyclotron emission from the accretion column B B critical luminosity model (Becker et al., 2012)

Cyclotron emission from the accretion column B B critical luminosity model (Becker et al., 2012) Reflection model (Poutanen et al., 2013)

Cyclotron emission from the accretion column B B B 3, T 3 B 2, T 2 B 1, T 1

Cyclotron emission from the accretion column B B B 3, T 3 B 2, T 2 B 1, T 1

Cyclotron emission from the accretion column B B E B 3, T 3 B 2, T 2 B 1, T 1 E

Summary CRSFs exhibit fundamental physics of accreting XRBs Completely new Monte Carlo code Comparison to data has just begun Get the model now! http://www.sternwarte.uni-erlangen.de/~schwarm/cyclomodel/ Thank you for your attention! Fritz.Schwarm@sternwarte.uni-erlangen.de

Araya, R. A., & Harding, A. K. 1999, ApJ, 517, 334 Becker, P. A., & Wolff, M. T. 2007, ApJ, 654, 435 Becker, P. A., et al. 2012, A&A, 544, A123 Harding, A. K., & Daugherty, J. K. 1991, ApJ, 374, 687 Isenberg, M., Lamb, D. Q., & Wang, J. C. L. 1998, ApJ, 505, 688 Kreykenbohm, I., Kretschmar, P., Wilms, J., Staubert, R., Kendziorra, E., Gruber, D. E., Heindl, W. A., & Rothschild, R. E. 1999, A&A, 341, 141 Poutanen, J., Mushtukov, A. A., Suleimanov, V. F., Tsygankov, S. S., Nagirner, D. I., Doroshenko, V., & Lutovinov, A. A. 2013, ApJ, 777, 115 Santangelo, A., et al. 1999, ApJL, 523, L85 Schwarm, F., Schoenherr, G., Wilms, J., & Kretschmar, P. 2012 Truemper, J., Pietsch, W., Reppin, C., Voges, W., Staubert, R., & Kendziorra, E. 1978, ApJL, 219, L105