Standard T & P (STP) At STP, 1 mol of any ideal gas occupies 22.4 L. The standard temperature and pressure for gases is:

Similar documents
Gas Density. Standard T & P (STP) 10/29/2011. At STP, 1 mol of any ideal gas occupies 22.4 L. T = 273 K (0 o C) P = 1 atm = kpa = 1.

Chapter Elements That Exist as Gases at 25 C, 1 atm. 5.2 Pressure basic physics. Gas Properties

Gas Laws. Gas Properties. Gas Properties. Gas Properties Gases and the Kinetic Molecular Theory Pressure Gas Laws

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. A gas. Difference between gas and vapor: Why Study Gases?

Chapter 5 The Gaseous State

AP Chemistry Ch 5 Gases

Chapter 10 Gases Characteristics of Gases Elements that exist as gases: Noble gases, O 2, N 2,H 2, F 2 and Cl 2. (For compounds see table 10.

Chapter 5 The Gaseous State

A Gas Uniformly fills any container. Easily compressed. Mixes completely with any other gas. Exerts pressure on its surroundings.

This should serve a s a study guide as you go on to do the problems in Sapling and take the quizzes and exams.

Chapter 5. The Gas Laws

Why study gases? A Gas 10/17/2017. An understanding of real world phenomena. An understanding of how science works.

Gases: Their Properties & Behavior. Chapter 09 Slide 1

Example Problems: 1.) What is the partial pressure of: Total moles = 13.2 moles 5.0 mol A 7.0 mol B 1.2 mol C Total Pressure = 3.

Unit Outline. I. Introduction II. Gas Pressure III. Gas Laws IV. Gas Law Problems V. Kinetic-Molecular Theory of Gases VI.

The Kinetic-Molecular Theory of Gases

Chapter Ten- Gases. STUDY GUIDE AP Chemistry

Mixture of gases. Mix 5 moles of CO 2 V = 40L 2 moles of N 2 T = 0 C 1 mole of Cl 2 What is P? Mary J. Bojan Chem 110

Chapter 5 Gases and the Kinetic-Molecular Theory

Chapter 10 Notes: Gases

Chapter 11 Gases 1 Copyright McGraw-Hill 2009

Gases and Kinetic Theory

B 2, C 2, N 2. O 2, F 2, Ne 2. Energy order of the p 2p and s 2p orbitals changes across the period.

Gases. Which elements exist as gases at ordinary temperature and pressure? Gases: Have simple molecular formulas. Chapter 10 part 1: Ideal Gases

The Kinetic-Molecular Theory of Gases

Chapter 10. Gases. The Gas Laws

10/15/2015. Why study gases? An understanding of real world phenomena. An understanding of how science works.

10/16/2018. Why study gases? An understanding of real world phenomena. An understanding of how science works.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gases. Chapter 5. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 5 GASES INSTR : FİLİZ ALSHANABLEH

Part One: The Gas Laws. gases (low density, easy to compress)

Gases and the Kinetic Molecular Theory

Gases and Kinetic Molecular Theory

Chapter 5. Gases and the Kinetic-Molecular Theory

Gases. Characteristics of Gases. Unlike liquids and solids, gases

Chapter 13. Kinetic Theory (Kinetikos- Moving ) Based on the idea that particles of matter are always in motion

AP Chemistry Unit 5 - Gases

= mol NO 2 1 mol Cu Now we use the ideal gas law: atm V = mol L atm/mol K 304 K

Although different gasses may differ widely in their chemical properties, they share many physical properties

Section Using Gas Laws to Solve Problems

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education, Inc.

9.5 The Kinetic-Molecular Theory

What we will learn about now

vapors: gases of substances that are normally liquids or solids 1 atm = 760 mm Hg = 760 torr = kpa = bar

GASES (Chapter 5) Temperature and Pressure, that is, 273 K and 1.00 atm or 760 Torr ) will occupy

Chapter 5 Gases - 4 Gas Stoichiometry. Dr. Sapna Gupta

The Gaseous State of Matter

Centimeters of mercury

Comparison of Solids, Liquids, and Gases

Chapter 10. Gases THREE STATES OF MATTER. Chapter 10 Problems 6/29/2012. Problems 16, 19, 26, 33, 39,49, 57, 61

Gases. What are the four variables needed to describe a gas?

Lecture Presentation. Chapter 10. Gases. John D. Bookstaver St. Charles Community College Cottleville, MO Pearson Education, Inc.

Quick Review 1. Properties of gases. 2. Methods of measuring pressure of gases. 3. Boyle s Law, Charles Law, Avogadro s Law. 4. Ideal gas law.

Lecture Presentation. Chapter 10. Gases. James F. Kirby Quinnipiac University Hamden, CT Pearson Education

1,2,8,9,11,13,14,17,19,20,22,24,26,28,30,33,38,40,43,45,46,51,53,55,57,62,63,80,82,88,94

Chapter 5 Gases. A Gas- Uniformly fills any container Mixes completely with any other gas Can easily be compressed Exerts pressure on its surroundings

CHEMISTRY Matter and Change. Chapter 13: Gases

Gases. Chapter 5. Elements that exist as gases at 25 0 C and 1 atmosphere

Reactions Involving Gases

Airbags fill with N 2 gas in an accident. Gas is generated by the decomposition of. 2 NaN 3 ---> > 2 Na + 3 N 2

Properties of Gases. 5 important gas properties:

D g << D R < D s. Chapter 10 Gases & Kinetic Molecular Theory. I) Gases, Liquids, Solids Gases Liquids Solids. Particles far apart

IMPORTANT CONCEPTS. 5.1 Pressure Units for pressure STP. 5.6 Kinetic Molecular Theory. 5.3 Ideal Gas Law. 5.4 Gas Stoichiometry Gas density Molar mass

Chapter 10. Chapter 10 Gases

Derived copy of The Kinetic-Molecular Theory *

Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten. Chapter 10. Gases.

Test Bank for Chemistry 9th Edition by Zumdahl

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

Some Important Industrial Gases

Pressure. Pressure Units. Molecular Speed and Energy. Molecular Speed and Energy

Engr. Yvonne Ligaya F. Musico Chemical Engineering Department

Warning!! Chapter 5 Gases. Chapter Objectives. Chapter Objectives. Chapter Objectives. Air Pollution

Preparation of the standard solution. Exp 5: Copyright Houghton Mifflin Company.All

CHAPTER 14: The Behavior of Gases

Forces between atoms/molecules

General Properties of Gases

Slide 1 / A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m 2 A 55 B 0.55 C 5.5 D 1.8 E 18

TOPIC 2. Topic 2. States of Matter (I) - Gases. 1

Substances that are Gases under Normal Conditions

Lecture 3. The Kinetic Molecular Theory of Gases

Lecture 2 PROPERTIES OF GASES

UNIT 10.

Exam 1. Remember to refer to the Periodic Table handout that is separate from this exam copy.

Chapter 10 Gases. Dr. Ayman Nafady. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E.

Chapter 11. Molecular Composition of Gases

Chapter 10 Gases. Measurement of pressure: Barometer Manometer Units. Relationship of pressure and volume (Boyle s Law)

CHAPTER 12 GASES AND KINETIC-MOLECULAR THEORY

Chapter 5. The Properties of Gases. Gases and Their Properties. Why Study Gases? Gas Pressure. some very common elements exist in a gaseous state

Gases: Units of pressure: the pascal(pa)(1 Pa = 1 N/m2 = 1 kg m-1

CHAPTER 5 GASES AND THE KINETIC- MOLECULAR THEORY

7/16/2012. Characteristics of Gases. Chapter Five: Pressure is equal to force/unit area. Manometer. Gas Law Variables. Pressure-Volume Relationship

The Gaseous State. Definition

Chapter 6: Gases. Philip Dutton University of Windsor, Canada N9B 3P4. Prentice-Hall 2002

CHEM 101A EXAM 1 SOLUTIONS TO VERSION 1

Chapter 8 Gases. 8.1 Kinetic Theory of Gases. 8.2 Barometer. Properties of Gases. 8.1 Gases and Kinetic Theory 8.2 Gas Pressure 8.

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

Chapter 10. Gases. Chemistry, The Central Science, 10th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten

Transcription:

Standard T & P (STP) The standard temperature and pressure for gases is: At STP, 1 mol of any ideal gas occupies 22.4 L T = 273 K (0 o C) P = 1 atm = 101.325 kpa = 1.01325 bar 22.4 L

Using STP in problems A 5.00 L sample of Ar gas at STP is heated until its final pressure and temperature are 2.50 atm and 75.50 C. Calculate the new volume of the gas.

Using PV = nrt How many moles of NO 2 gas occupy a volume of 5.00 L at 50.00 C and 725 mmhg?

Using PV = nrt What mass of CO gas occupies a volume of 75.0 L at 35.00 C and 2.50 atm?

Gas Density We can use PV = nrt to determine the density of gases. What are the units of density? He balloons mass/volume What does this suggest about gas density? It will depend strongly on T, P, and the mass of the gas molecules. Hot-air balloon Contrast with liquids and solids, whose densities depend somewhat on T, but far less on P.

Gas Density Example What is the density of O 2 gas in g/l at 25 o C and 0.850 atm? Calculate # moles in 1 L, use MW of O 2 to get g, divide by V.

Gas Density and Molar Mass We can develop an expression relating density and molecular weight using PV = nrt. Substituting: PV = nrt Density!! n = m MW PV = m MW RT P*MW = m V RT P*MW = drt Therefore, the density of an ideal gas can be related to the T, P, V and molecular weight AND we can use the density of a gas to determine its molar mass.

P*MW = drt Example A 0.76 g sample of an unknown solid was vaporized in a 345-mL vessel. If the vapor has a pressure of 985 mmhg at 148 o C, what is the molecular weight of the solid?

Chemical Equations and Calculations Atoms (Molecules) Avogadro s Number Reactants 6.022 x 10 23 mol -1 Moles Molar Mass Mass g/mol Products Molarity moles / L PV = nrt Solutions Gases

Gas Stoichiometry Example What volume of N 2 (g) is produced when 70.0 g NaN 3 is decomposed at a pressure of 735 mmhg and at 26 o C? 2 NaN 3 (s) 2 Na(l) + 3 N 2 (g) 70.0 g? L 64.99 g/mol 735 mmhg 26 o C 28.02 g/mol 1. The Stoichiometry Part: mass NaN 3 mol NaN 3 mol N 2 2. The Gas Law Part: mol N 2, P, T V of N 2 (g)

Example: The Stoichiometry Part What volume of N 2 (g) is produced when 70.0 g NaN 3 is decomposed at a pressure of 735 mmhg and at 26 o C? 2 NaN 3 (s) 2 Na(l) + 3 N 2 (g)

Example: The Gas Law Part What volume of N 2 (g) is produced when 70.0 g NaN 3 is decomposed? (P = 735 mmhg, T = 26 o C)

Example The active agent in many hair bleaches is hydrogen peroxide, H 2 O 2. The amount of H 2 O 2 present can be determined by titration with a standard permanganate solution: 2 MnO 4 (aq) + 5 H 2 O 2 (aq) + 6 H + (aq) 5 O 2 (g) + 2 Mn +2 (aq) + 8 H 2 O (l) Calculate the molarity of hydrogen peroxide if 28.75 ml of hydrogen peroxide produced 695 ml of oxygen gas at 0.950 atm and 315K?

Example An unknown gas having a mass of 6.150 g occupies a volume of 5.00 L at 874 torr and 23.50 C. Calculate the molar mass of the unknown gas.

Dalton s Law of Partial Pressures P He = 200 torr P Ar = 500 torr P total = 700 torr Recall that according to the ideal gas law, gas molecules are non-interacting point particles. Increasing the number of point particles increases the pressure by an amount that is proportional to the number of particles. For a mixture of ideal gases in a container: total pressure = the sum of the individual gas pressures.

Dalton s Law of Partial Pressures Say we have a container with some amount of three different gases inside, at a certain T and P. n total = n 1 + n 2 + n3 Dalton s Law says that the total pressure exerted by the three gases is the sum of the individual pressures. P total = P 1 + P 2 + P 3 P total = P 1 + P 2 + P 3 1 2 P total = + + Ptotal V = n1rt + n2rt + n3rt P totalv = n 1 + n 2 + n3 RT P V = n RT total n RT n RT n3rt V V V total

Partial Pressures Example Mixtures of He and O 2 are used in scuba tanks to help prevent the bends. For a particular dive, 12 L of O 2 at 25 o C and 1.0 atm was pumped along with 46 L of He at 25 o C and 1.0 atm into a 5.0-L tank. What is the partial pressure of each gas? What is the total pressure? 1. Find the number of moles of each gas that were delivered to the tank. 2. Find the partial pressure of each gas in the tank. 3. Add them up!

Mixtures of He and O 2 are used in scuba tanks to help prevent the bends. For a particular dive, 12 L of O 2 at 25 o C and 1.0 atm was pumped along with 46 L of He at 25 o C and 1.0 atm into a 5.0-L tank. What is the partial pressure of each gas? What is the total pressure? O 2 Data: P = 1.0 atm V = 12 L n =? mol R = 0.08206 L atm/mol K T = 25 o C = 298 K He Data: P = 1.0 atm V = 46 L n =? mol R = 0.08206 L atm/mol K T = 25 o C = 298 K PV n = RT n = O 2 n = He 1.0 atm12 L 0.08206 L atm 298 K mol K 1.0 atm46 L 0.08206 L atm 298 K mol K = 0.49 mol O 2 = 1.9 mol He

Using the moles of each gas, the temperature, and volume of the tank we can now calculate the partial pressure of each gas, then add them to get the total pressure. nrt P = V

Mole Fraction and Partial Pressure In the last example, we determined the total pressure by adding the partial pressures. We could have also added the moles of each gas, and determined a total pressure. These two approaches suggest that a relationship exists between the moles of each gas and the total pressure.

Mole Fraction and Partial Pressure Mole Fraction (): ratio of the number of moles of a component in a mixture to the total number of moles in the mixture. n1 n1 1 n n n n i n n total 1 2 3 i total V Pi RT V Ptotal RT Pi P total P P i i total Dalton s Law The fraction of moles of a certain gas in a mixture is equal to the ratio of its partial pressure to the total pressure of the mixture.

Mixtures of He and O 2 are used in scuba tanks to help prevent the bends. For a particular dive, 12 L of O 2 at 25 o C and 1.0 atm was pumped along with 46 L of He at 25 o C and 1.0 atm into a 5.0-L tank. What is the partial pressure of each gas? What is the total pressure?

Example A mixture of gases contains 4.465 mol of neon, 0.741 mol of argon, and 2.154 mol of xenon. Calculate the partial pressures of all the gases if the total pressure is 2.00 atm at a given temperature.

Kinetic Molecular Theory (KMT) The gas laws of Boyle, Charles, and Avogadro are empirical, meaning they are based on observation of a macroscopic property. These laws offer a general description of behavior based on many experiments. The empirical gas laws can tell you what happens to an ideal gas under certain conditions, but not why it happens. KMT is a theoretical, molecular-level model of ideal gases, which can be used to predict the macroscopic behavior of a gaseous system. KMT Simulation: http://www.falstad.com/gas/

Postulates of KMT Gas particles are so small that their volume is negligible. Gas particles are in constant, random motion. Gas molecules constantly collide with each other and with the container walls. The collisions of the particles with the container walls are the cause of the pressure exerted by the gas. Collisions are elastic. The particles are assumed to exert no forces on each other; they neither attract or repel their neighbors. This motion is associated with an average kinetic energy that is directly proportional to the Kelvin temperature of the gas.

KMT: Central Points The main ideas you should take from KMT are that we can describe temperature and pressure from a molecular perspective. Pressure: arises from molecules banging into the container walls. Temperature: is directly related to the kinetic energy of the gas molecules. The more KE they have, the greater their temperature.

KMT Let s consider the average KE per molecule and see how it determines molecular speed. Note: T is measured in Kelvin; R = 8.3145 J/mol K; (J = kg m 2 /s 2 ) Average KE per molecule: The root-mean-square speed: u rms = 3RT MM 1 2 mu 2 Where u is an average of molecular velocity, and m is the mass of one molecule. We are apportioning the total KE in the mole of gas among all the molecules in an average fashion. u rms is the speed of a molecule that has the average KE. u rms gives us a formal connection between average gas speed, T, and M.

Distribution of Molecular Speeds Maxwell-Boltzmann curve (a statistical distribution) This plot represents the fraction of gas molecules in a sample that are traveling at a given velocity. u m most probable speed u avg average speed u rms the speed of a molecule with the average molecular kinetic energy (m/s) 3RT u rms M Increased T increased average KE increased u rms Increased M decreased u rms The higher the molar mass of a particle, the slower the particle moves.

NOTE: There are always some molecules with low velocity in a Boltzmann distribution!! Increased T increased average KE increased u rms Maximum of curve shifts to higher u, and distribution spreads out. Distribution of speeds will be shorter and fatter at higher temperatures. Increased M decreased u rms Heavier molecules have lower average speed than lighter molecules at a given temperature. Distribution of speeds for heavier gases will be taller and skinnier than for lighter molecules. 3RT u rms M

Molecular Speed (cont.) Let s determine u rms for N 2 at 298 K. u rms -1-1 -1 0.0280 kg mol 3RT 3 8.314 J mol K 298 K 515 m s M For a sense of scale, this is on the order of the speed of sound (~320 m s -1 ).which isn t a coincidence. 1 2 1 J kg m 2 s -1 2 Smaller mass = greater speed

Comparison of u rms for He and N 2 At 25 o C, which gas will travel faster, He or N 2?

Example Match each of the following gases at the same temperature with its distribution curve in the figure at the left: N 2 O, Kr, and H 2.

Diffusion Gas molecules travel in a straight line only until they collide with a container wall or another gas molecule. Gas molecules do not have an uninterrupted path in front of them. They are constantly colliding with other gas molecules. Rate of diffusion is proportional to u rms. So lighter particles will have a higher rate of diffusion, and vice versa.

Diffusion (cont.) Diffusion is the process of mixing gases. In a closed container, diffusion will eventually lead to a homogeneous mixture. http://www.youtube.com/watch?v =H7QsDs8ZRMI

Diffusion Examples Circle the pair of gases in each set below that diffuse faster. a. Ne & F 2 or Ar & Cl 2 b. b. Kr & Ar or O 2 & Cl 2

Diffusion Example Nitrous oxide, N 2 O, also known as laughing gas, is a colorless gas and has been used as a weak anesthetic. Hydrogen cyanide, HCN, is a poisonous, colorless gas that can cause a quick death. If both of these gases were accidentally released at the same time in the front of a theater full of moviegoers, would the people die laughing?

Effusion Effusion is a special case of diffusion, which exploits the difference in velocities of lighter gas molecules. This process was used during the Manhattan Project to separate 235 U and 238 U isotopes.

Effusion (cont.) Effusion is dependent on molecular speed. The molecular speed is in turn inversely dependent on the atomic or molar mass. Recall: 3RT urms M Graham s Law of Effusion: Rates of effusion are inversely dependent on the square root of the mass of each gas: Rate of effusion Rate of effusion 1 2 M M 2 1

Diffusion Reactions By similar arguments, the distance a molecule travels is inversely proportional to mass: distance distance 1 2 M M Example: reaction of NH 3 with HCl 2 1 (distance) NH3 (distance) HCl = M HCl M NH3 = 36.5 17 = 1.5 Exp. 1.3

Real Gases Generally speaking, there is no such thing as an Ideal Gas. There are conditions under which a gas will behave ideally low P moderate to high T van der Waals developed some corrections to the Ideal Gas law, based on a molecular picture, to explain these observed deviations. N 2

V V nb eff Number of moles of gas ideal Real Gases (cont.) Empirical constant different for each gas; increases with size of molecule. At high P, the volume of the individual gas molecules becomes non-negligible. Macroscopic gas is compressible, individual gas molecules are not. Under high P conditions, the space available for a gas molecule to move is decreased by its neighbors, so the volume of the system is reduced relative to the ideal case.

Real Gases (cont.) In the Ideal Gas theory, we assume that gas molecules do not interact. But under high P, gas molecules get very close to each other and interact. Further, at low T the molecular speed drops also increasing the importance of intermolecular interactions. Under high P and/or low T conditions, the molecules don t collide with the container as frequently, so the pressure of the system is reduced relative to the ideal case. P obs P ideal a n V 2 Empirical constant different for each gas; increases with increasing intermolecular attraction Concentration of the gas

Real Gases (cont.) 2 n P obs a V nb nrt V b generally increases with the size of the molecule a generally increases with the strength of intermolecular forces. vdw equation corrects two major flaws in ideal gas theory: Gas molecules have finite volume which becomes important at high P. Gas molecules have non-trivial attractions that become important at low T and high P.