Negative velocity = moving left. Decreasing magnitude = slowing down. Choice A.

Similar documents
I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

I pt mass = mr 2 I sphere = (2/5) mr 2 I hoop = mr 2 I disk = (1/2) mr 2 I rod (center) = (1/12) ml 2 I rod (end) = (1/3) ml 2

Fall 2007 RED Barcode Here Physics 105, sections 1 and 2 Please write your CID Colton

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Concept Question: Normal Force

Announcements Oct 27, 2009

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

Practice Test for Midterm Exam

1 MR SAMPLE EXAM 3 FALL 2013

Physics 201, Practice Midterm Exam 3, Fall 2006

Webreview Torque and Rotation Practice Test

PHYS 1303 Final Exam Example Questions

Physics 101. Hour Exam 2 Spring Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Diagram 1 A) B - A. B) A - B. C) A + B. D) A B.

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

Summer Physics 41 Pretest. Shorty Shorts (2 pts ea): Circle the best answer. Show work if a calculation is required.

December 2015 Exam Review July :39 AM. Here are solutions to the December 2014 final exam.

PHYSICS 221 SPRING EXAM 2: March 30, 2017; 8:15pm 10:15pm

Physics 201 Midterm Exam 3

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

On my honor, I have neither given nor received unauthorized aid on this examination.

BROCK UNIVERSITY. Course: PHYS 1P21/1P91 Number of students: 234 Examination date: 5 December 2014 Number of hours: 3

Twentieth SLAPT Physics Contest Southern Illinois University Edwardsville April 30, Mechanics Test

PHYS 1303 Final Exam Example Questions

Q1. Which of the following is the correct combination of dimensions for energy?

Phys101 Second Major-173 Zero Version Coordinator: Dr. M. Al-Kuhaili Thursday, August 02, 2018 Page: 1. = 159 kw

Solution to phys101-t112-final Exam

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

Physics 201 Midterm Exam 3

PHYSICS 221 SPRING 2014

Exam 3 Practice Solutions

PHYS 101 Previous Exam Problems. Force & Motion I

Review PHYS114 Chapters 4-7

PY205N Spring The vectors a, b, and c. are related by c = a b. The diagram below that best illustrates this relationship is (a) I

Chapter 8, Rotational Equilibrium and Rotational Dynamics. 3. If a net torque is applied to an object, that object will experience:

Name (please print): UW ID# score last first

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

Exam II. Spring 2004 Serway & Jewett, Chapters Fill in the bubble for the correct answer on the answer sheet. next to the number.

Version A (01) Question. Points

1. A train moves at a constant velocity of 90 km/h. How far will it move in 0.25 h? A. 10 km B km C. 25 km D. 45 km E. 50 km

AP practice ch 7-8 Multiple Choice

1. Closed-closed: Harmonic number is same as number of antinodes. f n = nf 1 (n = 1, 2, 3, ) = 5*400 = 2000 Hz. Choice E.

III. Angular Momentum Conservation (Chap. 10) Rotation. We repeat Chap. 2-8 with rotatiing objects. Eqs. of motion. Energy.

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Thursday, 11 December 2014, 6 PM to 9 PM, Field House Gym

Quest Chapter 09. Eliminate the obviously wrong answers. Consider what is changing: speed, velocity, some part of velocity? Choose carefully.

Physics 53 Summer Final Exam. Solutions

Centripetal acceleration ac = to2r Kinetic energy of rotation KE, = \lto2. Moment of inertia. / = mr2 Newton's second law for rotational motion t = la

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

PRACTICE TEST for Midterm Exam

PHY218 SPRING 2016 Review for Final Exam: Week 14 Final Review: Chapters 1-11, 13-14

Name: Date: 5. A 5.0-kg ball and a 10.0-kg ball approach each other with equal speeds of 20 m/s. If

Version PREVIEW Semester 1 Review Slade (22222) 1

Exam 3 PREP Chapters 6, 7, 8

St. Joseph s Anglo-Chinese School

EXAM 3 MECHANICS 40% of the final grade

Physics 6A Winter 2006 FINAL

v (m/s) 10 d. displacement from 0-4 s 28 m e. time interval during which the net force is zero 0-2 s f. average velocity from 0-4 s 7 m/s x (m) 20

AAPT UNITED STATES PHYSICS TEAM AIP 2018

Welcome back to Physics 211

PHYSICS 1. Section I 40 Questions Time 90 minutes. g = 10 m s in all problems.

Physics 12 Final Exam Review Booklet # 1

Physics 121, Sections 1 and 2, Winter 2011 Instructor: Scott Bergeson Exam #3 April 16 April 21, 2011 RULES FOR THIS TEST:

PHYSICS - CLUTCH CH 14: ANGULAR MOMENTUM.

PHYSICS 111 SPRING EXAM 2: March 7, 2017; 8:15-9:45 pm

AAPT UNITED STATES PHYSICS TEAM AIP 2011

r r Sample Final questions for PS 150

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

Rotation. PHYS 101 Previous Exam Problems CHAPTER

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

Physics 101. Hour Exam I Fall Last Name: First Name Network-ID Discussion Section: Discussion TA Name:

31 ROTATIONAL KINEMATICS

Physics Exam 2 October 11, 2007

1 Forces. 2 Energy & Work. GS 104, Exam II Review

Test 7 wersja angielska

Torque/Rotational Energy Mock Exam. Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Physics 103, Practice Midterm Exam 2

Please circle the name of your instructor: EB01: Beamish EB02: Fenrich EB03: Ruhl. EB04: Rahman EB05: Nedie EB06: Ropchan LAST NAME: FIRST NAME: ID#:

PHYS 124 Section A1 Mid-Term Examination Spring 2006 SOLUTIONS

2017 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN

1. (P2.1A) The picture below shows a ball rolling along a table at 1 second time intervals. What is the object s average velocity after 6 seconds?

Chapter 10: Dynamics of Rotational Motion

Rolling, Torque & Angular Momentum

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics 201 Quiz 1. Jan 14, 2013

PHYSICS 221 SPRING 2013

(1) +0.2 m/s (2) +0.4 m/s (3) +0.6 m/s (4) +1 m/s (5) +0.8 m/s

Physics 110 Third Hour Exam

(A) I only (B) III only (C) I and II only (D) II and III only (E) I, II, and III

Circular Motion and Gravitation Practice Test Provincial Questions

= W Q H. ɛ = T H T C T H = = 0.20 = T C = T H (1 0.20) = = 320 K = 47 C

Physics I (Navitas) FINAL EXAM Fall 2015

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Transcription:

Instructions: Record your answers on the bubble sheet. The Testing Center no longer allows students to see which problems they got right & wrong, so I strongly encourage you to mark your answers in this test booklet. You will get this test booklet back (but only if you write your CID at the top of the first page). You may write on this exam booklet, and are strongly encouraged to do so. In all problems, ignore friction, air resistance, and the mass of all springs, pulleys, ropes, cables, strings etc., unless specifically stated otherwise. Use g = 9.8 m/s 2 only if there are 9.8 numbers in the answer choices; otherwise use g = 10 m/s 2. Problems 1-28 will be scaled to be worth 92 total points; problems 29 and 30 are worth 4 points each. Problem 1. The figure shows a velocity vs time graph of a car moving along a road, and positive means to the right. According to the graph, what is the car doing from 0 to 5 seconds? a. moving to the left, slowing down, and stopping b. moving to the left and speeding up c. moving to the right, slowing down, and stopping d. moving to the right and speeding up e. first moving right, then moving left f. first moving left, then moving right velocity 20 10-10 -20 1 2 3 4 5 1. Negative velocity = moving left. Decreasing magnitude = slowing down. Choice A. time Problem 2. A box slides down a smooth ramp. The work done on the box by the normal force is: a. positive b. negative c. zero 2. W = F // x. The normal force is perpendicular to the displacement the whole time, so W = 0. Choice C Problem 3. Two cables support a cat burglar of mass 75 kg. One cable is at an angle as shown in the figure, with = 36.87. What is the tension in the cable connected to the left wall. Note: sin(36.9 ) = 0.60, cos(36.9 ) = 0.80, tan(36.9 ) = 0.75. a. Less than 550 N b. 550-650 c. 650-750 d. 750-850 e. 850-950 f. 950-1050 g. 1050-1150 h. More than 1150 N 3. T1 = left tension; T2 = right tension F x = 0 F y = 0 T2cos T1 = 0 T2sin mg = 0 T2 cos = T1 T2sin = mg Do right hand equation divided by left hand equation. The T2 s cancel out. tan = mg/t1 T1 = mg/tan = 750/(0.75) = 1000 N. Choice F. 1

Problem 4. A hanging mass, 3 kg, is attached via a pulley to another mass, 15 kg, which is resting on a horizontal table as shown in the figure. There is enough friction on the table ( = 0.8) to prevent the masses from moving. What is the tension in the line connecting the two masses? a. Less than 19 N b. 19 27 c. 27 35 d. 35 43 e. 43 51 f. 51 59 g. More than 59 N 4. F hanging = 0 T m1g = 0 T = m1g = 30 N. Choice C. m m 2 Problem 5. William, initially floating in outer space with no forces acting on him, throws a ball. The ball goes one way, and he goes the other way. Before the collision, there was no momentum, and after the collision, both he and the ball have momentum. It doesn't look like momentum was conserved. What s the best explanation for this situation? a. Both William and the ball get half of the original momentum. b. Momentum is a vector, so two momentums can cancel out. c. Momentum was created because of the explosion. d. Momentum wasn t conserved in this situation, but energy was conserved. e. There was an outside force, so we shouldn t expect momentum to be conserved. f. William s momentum is very small, since his mass is much larger than the ball. 5. Momentum is zero before. Momentum is zero after. That s possible because if the ball has positive momentum (to the right), then William will have negative momentum (to the left). Choice B is the best answer. Problem 6. A railroad car of mass 20,000 kg moving to the right at 2 m/s collides and couples with another railroad car that has a mass of 30,000 and is moving to the right at 1 m/s (before the collision). What is the speed of the two coupled cars after the collision? a. 0.2 m/s b. 0.4 c. 0.6 d. 0.8 e. 1.0 f. 1.2 g. 1.4 h. 1.6 m/s 6. p bef = p aft 20000(2) + 30000(1) = (20000+30000)vf 70000 = 50000 vf vf = 7/5 = 1.4 m/s. Choice G Problem 7. In a collision between two objects with no outside forces, the total momentum of the system is conserved: a. Always b. Only when the collision is elastic 7. If there are no outside forces, momentum is always conserved. Choice A. 2

Problem 8. The escape velocity of the Earth is the speed needed for an object to go from the surface of the Earth into a near Earth orbit. a. True b. False 8. Escape velocity is how much velocity is needed to carry the object all the way to r = infinity. False. Choice B. Problem 9. A weight (mass m) is attached to an ankle, and leg lifts are done as shown in the figure. What is the torque about the knee due to this weight for the position labeled 60? a. mgd b. mgd cos(30 ) c. mgd cos(60 ) d. mgd sin(30 ) e. mgd sin(60 ) f. mgd tan(30 ) g. mgd tan(60 ) 9. torque = r F Since the force of the weight is downward, r must be the horizontal distance. By looking at the picture, you can convince yourself that the horizontal distance is dsin. Therefore torque = (dsin ) mg. Choice E. Problem 10. The four balls in the figure, each with mass 2 kg, are connected by rods. They are rotating together (as shown by the arrow) in outer space with an angular speed of 40 rad/s. The light, flexible rods can be lengthened or shortened through internal motors. What is the new angular velocity if the spokes are shortened from 1 m to 0.50 m? a. 10 rad/s b. 20 c. 40 d. 80 e. 160 rad/s 10. L bef = L aft (I ) bef = (I ) aft These are all point objects, so I = mr 2. Also, they all have the same m and the same r. 4mr 2 0 4mr 2 f f The 4m s cancel out. f = r 2 0 0 /r 2 f = 1(40)/(0.25) = 160 rad/s. Choice E Problem 11. Suppose an alien astronaut in a circular orbit around the alien homeworld, 10000 km from the planet s center, has an orbital speed of 20 km/s. How long would it take the alien to make one complete orbit? a. Less than 700 seconds b. 700 1400 c. 1400 2100 d. 2100 2800 e. 2800 3500 f. 3500 4200 g. More than 4200 seconds 11. v = 2 r/t T = 2 r/v = 2 /(20000) = 1000 = 3141.5 m/s. Choice E. 3

Problem 12. A man stands 2 m from the left end of a very light plank (essentially zero mass) that is 6 m long. A vertical cable is attached to the right end of the plank, as shown. Calling the left end of the plank the pivot point, how does the torque from the man compare to the torque from the cable? Just compare magnitudes. a. The torque from the man is equal to the torque from the cable. b. The torque from the man is greater than the torque from the cable. c. The torque from the man is less than the torque from the cable. 12. p = 0 fromcable fromman = 0 fromcable = fromman Choice A Problem 13. A satellite in the shape of a solid cylinder (end view shown in figure) of mass 20 kg and radius 2 m has a very small jet at the edge that provides a force of 30 N on the gasses it expels and via Newton s 3 rd Law causes a force of 30 N to occur on the satellite. What is the torque about the center of the cylinder due to the jet? a. 0 N m b. 3 c. 30 d. 40 e. 60 f. 600 g. 1200 N m expelled gas 13. = r F = 2(30) = 60 N m Choice E Problem 14. Same situation. What will be the angular acceleration of the satellite? a. 0 rad/s 2 b. 0.5 c. 0.75 d. 1 e. 1.5 f. 2 g. 2.5 h. 3 rad/s 2 14. = I 60 = (1/2 mr 2 ) 60 = (0.5*20*2 2 ) 60 = 40 = 1.5 rad/s 2 Choice E Problem 15. Which has greater linear speed (m/s), a horse near the outside rail of a merry-go-round or a horse near the inside rail? a. outside horse b. inside horse c. both the same 15. The outer one is covering a greater distance in the same amount of time (because the circumference is larger). Therefore it s going faster. Choice A. 4

Problem 16. Which has greater angular speed (rad/s), a horse near the outside rail of a merry-go-round or a horse near the inside rail? a. outside horse b. inside horse c. both the same 16. They are both covering 360 in the same amount of time. Therefore they have the same. Choice C. Problem 17. An 80 kg man stands in the middle of a frozen pond of radius 5 m. He is unable to get to the other side because of lack of friction between his shoes and the ice. To overcome this difficulty, he throws his 2 kg physics textbook horizontally towards the north shore, at a speed of 10 m/s. How long does it take him to reach the south shore? a. Less than 16 seconds b. 16 19 c. 19 22 d. 22 25 e. 25 28 f. 28 31 g. More than 31 seconds 17. To get speed of man, use conservation of momentum. p bef = p aft 0 = m book v book - m man v man v man = m book v book /m man = 2(10)/80 = ¼ m/s. Then, use simple equation x = vt t = x/v = 5/(¼) = 20 sec. Choice C Problem 18. A ping-pong ball moves forward with a momentum p. It strikes a heavier tennis ball and bounces off backwards with a momentum (magnitude) of 0.8 p. The tennis ball is initially at rest but free to move. Ignore outside forces. The momentum of the tennis ball after the collision will be: a. greater than p b. less than p c. equal to p 18. p bef = p aft p + 0 = -0.8p + p tennisball p tennisball = 1.8p Choice A Problem 19. A dentist s drill starts from rest. After 3 s of constant angular acceleration, it turns at a rate of 150 rev/min. What was the drill s angular acceleration? a. /3 rad/s 2 b. c. d. e. 3 f. /3 rad/s 2 19. First, convert rpm to rad/s: 150 rev/min (2 rad)/(1 rev) (1 min/60 s) = 5 rad/s Then, use kinematics: f = 0 + t f = 0 + t = f /t = 5 /3 = 5/3 rad/s 2 Choice C 5

Problem 20. The reason the moon does not fall into the Earth is that: a. the gravitational pull of the Earth on the moon is weak b. the gravitational pull of the sun keeps the moon up c. the moon has a sufficiently large orbital speed d. the moon has less mass than Earth e. none of the above 20. If the moon stopped moving suddenly, it would accelerate straight towards the earth. But, since it s moving at just the right speed, as it gets pulled to the earth, the earth curves away from it and its trajectory is a circle. (Remember the cannonball.) Choice C. Problem 21. Two cylinders are the same size and have the same mass. However, cylinder A has most of its weight concentrated at its rim, whereas cylinder B has most of its weight concentrated at its center. The two are rolled down a ramp. Which one will reach the bottom first? a. A b. B c. Both will reach the bottom at the same time. 21. Cylinder B will have a smaller moment of inertia. Therefore, it will consume less rotational kinetic energy, and leave behind more translational kinetic energy (for a given potential energy). It will be able to move faster and will reach the bottom first. Choice B. Problem 22. A 1 kg mass moving east at 4 m/s on a frictionless horizontal surface collides with a 2 kg mass that is initially at rest. After the collision, the first mass moves south at 3 m/s. What is the magnitude of the velocity of the second mass after the collision? a. Less than 1.3 m/s b. 1.3 1.8 c. 1.8 2.3 d. 2.3 2.8 e. 2.8 3.1 f. 3.1 3.4 g. More than 3.4 m/s 22. p xbef = p xaft p ybef = p yaft 1(4) + 0 = 0 + p 2xfinal 0 + 0 = -1(3) + p 2yfinal p 2xfinal = 4 p 2yfinal = 3 p 2totfinal = sqrt(3 2 + 4 2 ) = 5 Since p = mv, v 2final = p 2totfinal /m = 5/2 = 2.5 m/s. Choice D Problem 23. In the velocity amplifier demo, the disk at the top ( disk 1 ) obtained a very fast speed due to a series of elastic collisions. Considering just the final collision, suppose disk 2 is moving upwards at speed v and collides elastically with disk 1, which is stationary. If the mass of disk 2 is much larger than the mass of disk 1, what will the speed of disk 1 be after the collision? a. 0 b. 0.5 v c. v d. 1.5 v e. 2 v 23. Elastic: use velocity reversal equation. Note that because disk 2 is much heavier, its velocity will be essentially unchanged: v2 final = v2 initial = v. (v1 v2) bef = (v2 v1) aft 0 v = v v 1final v 1final = 2v. Choice E. 6

Problem 24. A 0.5 kg pendulum bob passes through the lowest part of its path at a speed of 3 m/s. What is the tension in the pendulum cable at this point if the pendulum is 90 cm long? a. Less than 3 N b. 3 4.5 c. 4.5 6 d. 6 7.5 e. 7.5 9 f. 9 10.5 g. More than 10.5 N 24. At lowest point: F = ma c T mg = mv 2 /r T = mg + mv 2 /r = 0.5(10) + (0.5)(3 2 )/(0.9) = 5 + 0.5*10 = 5 + 5 = 10 N. Choice F Problem 25. In class, a student in the rotating chair was rotating with his arms extended, holding weights. Then, he brought his arms closer towards his body and rotated faster. Did the student do work on the rotating system during this process? a. No, because the student had the same kinetic energy at the end b. No, because the student had the same kinetic energy at the end c. Yes, because the student had more angular momentum at the end d. Yes, because the student had more kinetic energy at the end 25. Angular momentum was conserved, but the student had to do work to bring in the weights. That increased his rotational kinetic energy. Choice D R Problem 26. A curved exit ramp (radius of curvature R = 10 m) is banked at a 36.87 angle. It is designed so that a car (end view shown) will not have to rely on friction to round the curve without slipping off; instead the centripetal acceleration will arise from a component of the normal force. What speed is this particular curve designed for? Note: sin(36.9 ) = 0.60, cos(36.9 ) = 0.80, tan(36.9 ) = 0.75. Another note: A free body diagram and equations will be required for this situation, for Problem 29. a. 60 m/s b. 75 c. 80 d. 125 e. 133.3 f. 166.7 m/s 26. F x = ma x F y = ma y = 0 Nsin = mv 2 /r Ncos = mg Divide the left equation by the right equation; N cancels out, as does m. tan = v 2 /rg v = sqrt(rg tan ) = sqrt(100(0.75)) = sqrt(75) m/s Choice B 7

Problem 27. A string attached to a bucket (mass 6 kg) is wound over a large pulley having a mass of 12 kg (not zero mass!). The pulley can be considered to be a solid cylinder of radius 0.6 m. The pulley turns as the block is allowed to fall from rest. No energy is lost to friction. If the bucket falls 1 m, how fast will it be going? a. 8 m/s b. 9 c. 10 d. 11 e. 12 f. 13 m/s 27. There s no nonconservative work, so E bef = E aft m 1 gh = ½ m 1 v 2 + ½ I 2 for cylinder, I = ½ m 2 r 2. Also, plug in = v/r m 1 gh = ½ m 1 v 2 + ½ ½ m 2 r 2 (v/r) 2 perhaps surprisingly, the r s cancel out m 1 gh = ½ m 1 v 2 + ¼ m 2 v 2 m 1 gh = (½ m 1 + ¼ m 2 )v 2 6(10)(1) = (3 + ¼ 12)v 2 60 = (3+3)v 2 v = sqrt(10) m/s Choice C Problem 28. A 10 m, 10 kg ladder rests against a smooth, frictionless wall. The floor has friction, however, with s = 0.5. The ladder makes a 53.13 angle with the horizontal. A 50 kg person climbs up the ladder. How far up the ladder (distance d) can the person climb before the ladder begins to slip? Note: sin(53.13 ) = 0.8; cos(53.13 ) = 0.6; tan(53.13 ) = 1.33. Note: A FBD and equations will be required for this situation, for Problem 30. frictionless wall person ladder a. 1 m b. 2 c. 3 d. 4 (useful triangle to 53.13 e. 5 f. 6 Lsin L g. 7 h. 8 i. 9 m Lcos figure out the perpendicular distances) 28. See FBD on next page for forces and their locations. F x = 0 F y =0 p = 0 N 1 - N 2 = 0 N 2 m 1 g m 2 g = 0 m 1 g(dcos ) + m 2 g(l/2 cos ) N 1 (Lsin ) = 0 N 1 = N 2 N 2 = (m 1+ m 2 )g d = [- m 2 g(l/2 cos )+ N 1 (Lsin ) ]/( m 1 g cos From second equation, N 2 = 600 N Then, from first equation, N 1 = (0.5)(600) = 300 N Then, from third equation, d = [- 10(10)(5)(0.6) + 300(10)(0.8) ]/( 50(10)(0.6) ) d = [- 500(0.6) + 3000(0.8) ]/( 500)(0.6) ) d = [- 300 + 2400 ]/( 300) d = [ 2100 ]/( 300) = 7 m Choice G d =? floor with friction 8

Write your CID separately here to make sure this page doesn t get lost. CID: Problem 29. (4 pts) (a) Draw a FBD for the car in Problem 26. Be sure to label all forces. N mg (b) Based on your FBD, write down and fill in the N2 blueprint equations for the x- and the y-directions. Don t solve the equations, just take them one step past the blueprint. Be sure to fill in the acceleration(s) if known. Do divide the forces into components as appropriate. (b1) N2 x-direction blueprint: F x = ma c N2 x-direction filled in: Nsin = mv 2 /R (b2) N2 y-direction blueprint: F y = 0 N2 y-direction filled in: Ncos mg = 0 Problem 30. (4 pts) (a) Draw a FBD for the ladder in Problem 28. Be sure to label all forces. N 1 m 1 g m 2 g N 2 point p (b) Based on your FBD, write down and fill in the N2 blueprint equations for the x- and the y-directions, as well as the torque blueprint equation for torques around point p at the base of the ladder. Don t solve the equations, just take them one step past the blueprint. Be sure to fill in the acceleration(s) if known. Do plug in F friction = N when appropriate, along with appropriate components for any perpendicular distances that arise. (b1) N2 x-direction blueprint: F x = 0 N2 x-direction filled in: N 1 - N 2 = 0 (b2) N2 y-direction blueprint: F y = 0 N2 y-direction filled in: N 2 m 1 g m 2 g = 0 (b3) Torques about p blueprint: p = 0 f = s N 2 Torques about p filled in: m 1 g(dcos ) + m 2 g(l/2 cos ) N 1 (Lsin ) = 0 9