Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs

Similar documents
Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media

Optical solitons and its applications

ABRIDGING INTERACTION RESULT IN TEMPORAL SPREAD- ING

Generation of supercontinuum light in photonic crystal bers

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Nonlinear Photonics with Optical Waveguides

OPTICAL COMMUNICATIONS S

Optical Spectroscopy of Advanced Materials

Self-Focusing of Optical Beams

Optical Solitons. Lisa Larrimore Physics 116

37. 3rd order nonlinearities

Theory of optical pulse propagation, dispersive and nonlinear effects, pulse compression, solitons in optical fibers

37. 3rd order nonlinearities

Nonlinear Optics (WiSe 2018/19) Lecture 7: November 30, 2018

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Nonlinear Optics (WiSe 2017/18) Lecture 12: November 28, 2017

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Linear pulse propagation

Nonlinear effects and pulse propagation in PCFs

Nonlinear effects in optical fibers - v1. Miguel A. Muriel UPM-ETSIT-MUIT-CFOP

Spatiotemporal coupling in dispersive nonlinear planar waveguides

Ultrafast Laser Physics

R. L. Sharma*and Dr. Ranjit Singh*

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses

Solitons. Nonlinear pulses and beams

The structure of laser pulses

Dispersion and how to control it

Enhanced nonlinear spectral compression in fibre by external sinusoidal phase modulation

Survey on Laser Spectroscopic Techniques for Condensed Matter

Derivation of the General Propagation Equation

No. 9 Experimental study on the chirped structure of the construct the early time spectra. [14;15] The prevailing account of the chirped struct

Two-Dimensional simulation of thermal blooming effects in ring pattern laser beam propagating into absorbing CO2 gas

Simulation of Pulse propagation in optical fibers P. C. T. Munaweera, K.A.I.L. Wijewardena Gamalath

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

The spectrogram in acoustics

Frequency-selective self-trapping and supercontinuum generation in arrays of coupled nonlinear waveguides

Optical Fiber Signal Degradation

Advanced Vitreous State The Physical Properties of Glass

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

9 Atomic Coherence in Three-Level Atoms

Highly Nonlinear Fibers and Their Applications

Cross-phase modulation and induced focusing due to optical nonlinearities in optical fibers and bulk materials

Sources supercontinuum visibles à base de fibres optiques microstructurées

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

1 Mathematical description of ultrashort laser pulses

Plasma Formation and Self-focusing in Continuum Generation

Transverse modulation instability of copropagating optical beams in nonlinear Kerr media

Dark optical solitons with finite-width background pulses

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

An electric field wave packet propagating in a laser beam along the z axis can be described as

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Dynamics of filament formation in a Kerr medium (with Erratum)

5.74 Introductory Quantum Mechanics II

Soliton trains in photonic lattices

Multi-cycle THz pulse generation in poled lithium niobate crystals

Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Impact of Nonlinearities on Fiber Optic Communications

Introduction and history

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015)

Decay of Higher Order Solitons in the presence of Dispersion, Self-steeping & Raman Scattering

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Stelios Tzortzakis. Science Program, Texas A&M University at Qatar Institute of Electronic Structure and Laser, FORTH, & University of Crete, Greece

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Factors Affecting Higher Order Solitons in Soliton Transmission

Generation and Applications of High Harmonics

Nonlinear Optics. Second Editio n. Robert W. Boyd

Solitons in optical fibers. by: Khanh Kieu

Terahertz Kerr effect

Vector dark domain wall solitons in a fiber ring laser

Step index planar waveguide

NONLINEAR OPTICS. Ch. 1 INTRODUCTION TO NONLINEAR OPTICS

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Lasers and Electro-optics

Observation of spectral enhancement in a soliton fiber laser with fiber Bragg grating

Optimizing the time resolution of supercontinuum spectral interferometry

Supplementary Figure 1: The simulated feedback-defined evolution of the intra-cavity

American Institute of Physics 319

Experimental studies of the coherence of microstructure-fiber supercontinuum

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Slow Light and Superluminal Propagation M. A. Bouchene

Four-wave mixing in PCF s and tapered fibers

Dmitriy Churin. Designing high power single frequency fiber lasers

ARTICLE IN PRESS. Optik 121 (2010)

CROSS-PHASE modulation (XPM) is a nonlinear phenomenon

plasma optics Amplification of light pulses: non-ionised media

Propagation losses in optical fibers

A tutorial on meta-materials and THz technology

Ultrafast Laser Physics

requency generation spectroscopy Rahul N

Cascaded induced lattices in quadratic nonlinear medium

Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Temporal modulation instabilities of counterpropagating waves in a finite dispersive Kerr medium. II. Application to Fabry Perot cavities

Molecular alignment, wavepacket interference and Isotope separation

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Transcription:

Self-Phase-Modulation of Optical Pulses From Filaments to Solitons to Frequency Combs P. L. Kelley Optical Society of America Washington, DC and T. K. Gustafson EECS University of California Berkeley, California 1

SPM Generated Broadband Coherent Light A chance experimental discovery in the midsixties of far-reaching consequence. It took a several years to separate SPM from the myriad of other nonlinear effects associated with stimulated scattering. Broadband coherent light has enabled Ultrafast science Optical clock technology SPM of central significance in high-speed, longdistance fiber optical communication whether it is a boon or a bane is still of debate.

Broadband Coherent Light How Do We Make It? Modulators are limited to 10s of GHz. Laser modelocking can provide coherent broadband light in the active bandwidth of tunable lasers. 40 years ago, while studying stimulated light scattering (Raman, Brillouin) we discovered nonlinear spectral broadening of light that was seemingly unrelated to material excitation modes. This nonlinear broadening can markedly increase the spectral extent of coherent optical sources. The process proved to be an example of an optical self-action effect. 3

Optical Self-Action Effects Instabilities Envelope Effects Spatial Light-by-Light Scattering Spatial Self-Phase Modulation Self-Focusing Whole beam Beam breakup Self-Trapping Spatial Solitons Temporal Modulation Instability Temporal Self-Phase Modulation Self- Chirping Self-Compression Self-Decompression Self-Dispersion Temporal Solitons Self-Steepening Combined Light Bullets These are χ (3) four wave mixing processes and are usually, but not always, elastic. 4

Early Experimental Observation of SPM Spectral broadening was first seen in small scale trapped filaments of light. The high intensity of reasonably long distance provided by selffocusing and self-trapping allowed the development of self-phase modulation. Spectra of Small-scale filaments in CS F. Shimizu, Phys. Rev. Lett. 14, 1097 (1967). Beats in the spectrum of each filament demonstrate the coherent nature of the process. 5

Other Early Experimental Observations of Spectral Enhancement B. P. Stoicheff, Phys. Lett. 7 186 (1963). W. J. Jones and B. P. Stoicheff, Phys. Rev. Lett. 13, 657 (1964). D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, ZETF Pisma, 11 (1965); translation JETP Lett., 5 (1965). N. Bloembergen and P. Lallemand, Phys. Rev. Lett. 16, 81 (1966) R. G. Brewer, Phys. Rev. Lett. 19, 8 (1967). H. P. Grieneisen, J. R. Lifsitz, and C. A. Sacchi. Bull. Am. Phys. Soc. 1, 686 (1967). C. W. Cho. N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Lett. 18, 107 (1967). A. C. Cheung, D. M. Rank, R. Y. Chiao, and C. H. Townes, Phys. Rev. Lett. 0 786 (1968). C. A. Sacchi, C. H. Townes, and J. R. Lifsitz,, Phys. Rev. 174, 438(1968). M. M. Denariez-Roberge and J.-P. E. Taran, Appl. Phys. Lett. 14, 05 (1969). [Observed 500 cm -1 spectral broadening.] R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 4, 584 (1970). [Observed 10,000 cm -1 spectral broadening.] 6

Physical Mechanisms for the Nonlinear Index of Refraction The Optical Kerr Effect n= n + δn, δn= n < E > = n A 0 Pure electronic nonlinearity à laabd&p Homogeneous materials Resonance nonlinearities Quantum structures Optical rectification, cascade nonlinear processes Motion of atoms and molecules slow nonlinearities Molecular alignment: anisotropic polarizability Electrostriction Thermal blooming Photorefraction 7

Self-Phase Modulation The equation for the slowly varying amplitude (A) without amplitude distortion or dispersion. A 1 A n + = z vg t n ik A A 0 Solution iφ (,) (,0)e NL ( τ, z Aτ z = Aτ ) n NL (,) τ z kz A(,0) τ n0 Φ = τ = t z / v g F. DeMartini, C. H. Townes, T. K. Gustafson, and P. L. Kelley, Phys. Rev. 164, 31 (1967) [Includes self-steepening]. F. Shimizu, Phys. Rev. Lett. 14, 1097 (1967). 8

Nonlinear frequency shift Spectral Extent Self-Phase Modulation Φ NL n A( ) (,) τ Ω τ z = = kz τ n τ 0 n A(,0) τ ( ) kz δ n ΔΩ z = kz n τ τ n 0 p 0 max max Chirp Ω(,) τ z n A τ C(,) τ z = = kz n τ 0 τ (,0) The chirp has dimensions of Hz/s (perhaps best expressed in THz/ps). In this model, the pulse shape does not change in time, only the frequency spectrum. Fourier domain evolution. Frequency spectrum extent increases with increasing field amplitude and distance and with decreasing pulse length. 9

The Phase-Only Picture of Nonlinear Pulse Propagation 1 Quantities Relative to Peak Values 0.5 0-0.5 Phase Frequency Shift Chirp -1-3.00 -.00-1.00 0.00 1.00.00 3.00 Time in units of the 1/e pulse halfwidth Frequencies can occur twice in the pulse. These two components can interfere constructively or destructively, leading to an amplitude modulated spectrum. 10

SPM Evolution of Phase, Instantaneous Frequency Change, Chirp and Spectrum with Distance Pulse shape is Gaussian. Time Φ = NL,max 7 π Frequency 11

The Simplified NLSE The Nonlinear Schrödinger Equation: SPM and Dispersion A 1 A β A n i + + k A A= 0 z vg t t n0 dn d n where β = + ω dω dω The new term with β adds dispersion (pulse spreading and compression in the time domain). β is the lowest order group velocity dispersion constant. Dispersion changes the pulse shape and the phase but not the amplitude of the spectral components. SPM changes the spectrum, not the pulse shape. In the equation above, higher order dispersion, self-steepening, stimulated scattering, and relaxation of the nonlinearity are neglected. T. K. Gustafson, J.-P. Taran, H. A. Haus, J. R. Lifsitz, and P. L. Kelley, Phys. Rev. 177, 306 (1969). The NLSE also applies to self-focusing and self-trapping where transverse diffraction replaces the dispersion term. 1

The NLSE Used to analyze Spectral Broadening Experimental spectrum (a) and theoretical fit (b) using a 5.4 ps Gaussian pulse and a nonlinearity relaxation time of 9 ps. Note the interference beats on the Stokes side of the spectrum. This is an inelastic case. 13

Very Large Spectral Broadening Observed Using Modelocked Lasers R. R. Alfano and S. L. Shapiro, Phys. Rev. Lett. 4, 584 (1970). BK-7 glass was used as the nonlinear medium. The doubled modelocked glass laser pulses at 530 nm were 4-8 ps in duration. 14

Early Observation of SPM in Single Mode Fiber Photographs of input pulse shape and the output spectrum from a 3.35 μm diameter silica fiber of 99 m length. The source was a mode-locked Ar-ion laser operating at 514.5 nm. Spectra are labeled by the maximum phase shift which is proportional to input power. R. H. Stolen and C. Lin, Phys. Rev. A17, 1448 (1978). Earlier, E. P. Ippen, C. V. Shank, and T. K. Gustafson, Appl. Phys. Lett. 4, 190 (1974) had observed SPM in a fiber with a CS core. 15

Scale Lengths From the simplified NLSE we can define two scale lengths Nonlinear phase length Dispersion length z NL z DIS = k τ 1 n A n Whichever length is smaller will tend to dominate the initial evolution of a pulse. = When the two effects act together to affect pulse propagation, we can define a third scale length. Nonlinear pulse distortion length zc znlzdis z C is characteristic of nonlinear compression and decompression. Similar scale lengths apply to self-focusing and self-trapping. β 0 p 16

Nonlinear Pulse Compression and Decompression From Uncertainly Limited to Broadband Chirped Pulses and Back The nonlinear chirp near the peak of the pulse is positive the frequency sweeps from a negative shift to a positive shift. The positive sign of the chirp is determined by the fact that n is positive. Normally dispersive media advance low frequencies and decompression of nonlinearly chirped pulses occurs. Anomalously dispersive media retard low frequencies and compression of nonlinearly chirped pulses occurs. When z NL << z DIS the nonlinear distortion length, z C, provides an estimate of the distance for compression and decompression. At most frequencies, homogeneous materials are normally dispersive. We didn t know anything about dispersion in optical fibers so we choose a two-step approach to adding anomalous dispersion. 17

Two-Step Chirp Compression Calculation of the compression of a 5 ps nonlinearly chirped pulse to a 50 fs pulse using a grating pair negative dispersion delay line. R. A. Fisher, P. L. Kelley, and T. K. Gustafson, Appl. Phys. Lett. 14, 140 (1969); US Patent 3,70,884. 50 fs A prism pair can also be used as a negative dispersion delay line. Roughly 70% of a Gaussian pulse receives a positive nonlinear chirp. Assuming about 70% of that portion of the pulse has a sufficiently linear chirp means that about half the energy is in the 50 fs peak. Estimate of ideal compression: τ c 1 n τ ΔΩ( z) 1.7kzδ n 0 p = = = max 1 fs 18

Compression of Chirped Pulses Using a Grating Pair Anomalous Dispersion The larger λ, the larger the delay. Grating Output pulse Grating Input pulse Neighboring k vectors in the space between the gratings. The group delay is determined by the component of δk along k and not δk. E. B. Treacy, IEEE Journal of Quantum Electronics QE-5, 454 (1969). 19

Nonlinear Pulse Compression and Decompression z NL << z DIS Nonlinearity drives the phase. Φ 1 Φ Φ 1 + = k z vg t n t n β A A 0 A t Nonlinearly driven chirp drives the amplitude. A 1 A β Φ Φ A + = + = 0 z vg t A t t t Here A iφ = Ae Chirp is large and positive near peak of pulse, negative in wings. Changing the sign of the group velocity dispersion, changes decompression into compression. 0

Pulse Evolution in Dispersive Media z DIS = 10z NL Anomalous Dispersion z = z Normal Dispersion z = 6.3z NL 3.16 NL 1

Pulse Reshaping and Chirp Enhancement in Normally- Dispersive, Kerr Materials After grating compression ED- Glass R. A. Fisher and W. K. Bischel, APL 3, 661 (1973) and JAP 46, 491 (1975). These authors also introduced the split-step Fourier method. [See also, R. H. Hardin and F. D. Tappert, SIAM Rev. 15, 43 (1973).]

First Experiments on Optical Pulse Compression Using Self- Phase Modulation, Self-Dispersion, and Grating Compression B. Nikolaus and D. Grishkowsky, Appl. Phys. Lett. 4, 1 (1983). Recompression using an optical delay line to compensate group velocity dispersion was demonstrated earlier: H. Nakatsuka and D. Grischkowsky, Opt. Lett. 6, 13 (1981). Since this work, considerable improvement in the compression of nonlinearly chirped pulses has occurred. 3

The Optical Soliton Anomalous dispersion can balance the nonlinearity of the Kerr effect to provide a stationary pulse. The lowest order soliton condition is: z NL = z DIS which can be rewritten or Pτ 0 p n k n 1 p 0 A eff A = ε cn 11//011 4 τ β 0 0 4π n β λ where A eff is the effective area of confinement of the beam in the waveguide. The lowest order soliton is given by: P 0 ( τ ) = P0 sech ( τ / τ p ) -3.00 -.00-1.00 0.00 1.00.00 3.00 A.Hasegawa and F. Tappert, Appl. Phys. Lett. 3, 14 (1973). Earlier the same solution had been found for the spatial analog by R. Y. Chiao, E. M. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964). 1 0.5

γ ' Modulation Instability and Weak Wave Retardation Dispersion causes phase mismatch for the linear wave vectors in a four-wave process: kw1 + kw ks = βω where ±Ω are the side band frequency shifts. The wave vectors also have a nonlinear contribution which can be twice as large for the weak waves than it is for the strong wave. Assuming the strong wave field is much larger than for the weak waves, the exponential solutions for the weak waves are: β Ω 4kn = ± i AS + β n0 γ ' When β > 0 (normal dispersion) is imaginary, when β < 0 (anomalous dispersion) γ ' can be real for small values of Ω Ω 1/ 1/ Ω 4kn AS β n0 β γ ' =± Ω 1/ A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Electron. QE-16, 694 (1980). 11//011 5

SPM, the Most Important Nonlinear Optical Phenomenon? Ultrafast technology applied to physics, chemistry, and biology Octave frequency combs for optical clocks Soliton communication Designer pulse shaping direct consequence of compression technology CDMA with short pulses Chirped pulse amplification in broadband lasers for high peakpower pulses Self-modelocking balance among self-phase modulation, self-focusing, and dispersion The generation of terahertz and far infrared radiation through optical rectification 6

PICTURES