Simulation of optical processes in GEANT4. Ralph Dollan DESY - ZEUTHEN

Similar documents
Studies of Hadron Calorimeter

1 Introduction. KOPIO charged-particle vetos. K - RARE Meeting (Frascati) May Purpose of CPV: veto Kl

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Scintillation detectors

Geant4 v8.3. Physics III. Makoto Asai (SLAC) Geant4 Tutorial Course

Lucite Hodoscope for SANE

Wavelength Shifters as (new) light sensors

A method to measure transit time spread of photomultiplier tubes with Cherenkov light

Dual readout with tiles for calorimetry.

G-APD + plastic scintillator: fast timing in high magnetic fields

Long-term stability plastic scintillation for LHAASO-KM2A

Development of a High Precision Axial 3-D PET for Brain Imaging

V. 3. Development of an Accelerator Beam Loss Monitor Using an Optical Fiber

STATUS OF ATLAS TILE CALORIMETER AND STUDY OF MUON INTERACTIONS. 1 Brief Description of the ATLAS Tile Calorimeter

σx=2.5cm, slpx =33mrd

A Liquid Argon Scintillation Veto for the GERDA Experiment

LXe (part B) Giovanni Signorelli. Istituto Nazionale di Fisica Nucleare, Dipartimento di Fisica and Scuola Normale Superiore, Pisa (Italy)

WbLS measurements at BNL

SHMS Aerogel Detector & Calorimeter Status. A. Mkrtchyan

Lecture 16 Light transmission and optical detectors

hν' Φ e - Gamma spectroscopy - Prelab questions 1. What characteristics distinguish x-rays from gamma rays? Is either more intrinsically dangerous?

Status report on parity violation in the (1232) resonance

Simulation study of scintillatorbased

Simulation of Radiation Monitors for Future Space Missions

Adam Para, Fermilab CALOR2010, IHEP, Beijing May 14, 2010 TOTAL ABSORPTION HOMOGENEOUS CALORIMETER WITH DUAL READOUT

Calorimeter test-beam results with APDs

PMT Charge Response and Reconstruction of Position and Energy for a Reactor θ 13 Experiment

SciBar and future K2K physics. F.Sánchez Universitat Aútonoma de Barcelona Institut de Física d'altes Energies

Geant4 simulation of plastic scintillators for a prototype μsr spectrometer

ISPA-Tubes with YAP:Ce Active Windows for X and Gamma Ray Imaging.

3342 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 43, NO. 6, DECEMBER 1996

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

Scintillating Fibre and Radiation Damage Studies for the LHCb Upgrade

AIRFLY: Measurement of the Air Fluorescence induced by electrons

Scintillation Detectors

Scintillation Detectors

Survey of the performance of scintillation materials at low temperatures

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons

Scintillation Detectors

Scintillators General Characteristics

Particle Energy Loss in Matter

INORGANIC crystal scintillators are widely used in high

Detection of X-Rays. Solid state detectors Proportional counters Microcalorimeters Detector characteristics

Commissioning and Calibration of the Zero Degree Calorimeters for the ALICE experiment

Synthesis of plastic scintillator. Ildefonso León Monzón Universidad Autónoma de Sinaloa

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data

Scintillation Detectors Particle Detection via Luminescence

Development of Ring-Imaging Cherenkov Counter for Heavy Ions

Status of the Crystal Zero Degree Detector (czdd)

Platinum resistance. also wirewound versions. eg

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs

High energy gamma production: analysis of LAL 4-mirror cavity data

ANAIS: Status and prospects

A RICH Photon Detector Module with G-APDs

Position-sensitive SiPM detector for separation of Cherenkov and fluorescent light of EAS

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

Time of Flight measurements with MCP-PMT

Time Structure in Dual Readout Calorimeters. Michele Cascella (UCL) for the RD52 Collaboration 1

Aerogel counter with a Fresnel lens. Guy Paic Instituto de Ciencias Nucleares UNAM Mexico

Study of timing properties of Silicon Photomultiliers

BSO Crystals for the HHCAL Detector Concept

Inorganic scintillators. Geometries and readout

Study of pure CsI crystal coupling with APD. The University of Tokyo. Yi-Fan JIN

Test setup, APDs,, preamps Calibration procedure Gain monitoring with LED Beam test results Future R&D options

7th International Conference on New Developments In Photodetection

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT

Experimental Particle Physics

Status of the LHCb RICH and hadron particle identification

CHIPP Plenary Meeting University of Geneva, June 12, 2008 W. Lustermann on behalf of the AX PET Collaboration

Factors Affecting Detector Performance Goals and Alternative Photo-detectors

Thin Calorimetry for Cosmic-Ray Studies Outside the Earth s Atmosphere. 1 Introduction

Scintillation Detectors

Experimental Particle Physics

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID

Hall A Compton Calorimeter G. B. Franklin Carnegie Mellon University

LSO/LYSO Crystal Development Ren-yuan Zhu

Precision Crystal Calorimeters in High Energy Physics: Past, Present and Future

DETERMINING FUNDAMENTAL PARAMETERS OF A SINGLE-PHOTOTUBE LIQUID SCINTILLATION COUNTER

Gamma Spectroscopy. References: Objectives:

A4 Laser Compton polarimetry

Properties of the Ukraine polystyrene-based plastic scintillator UPS 923A

Imperfections (Defects)

Radiation (Particle) Detection and Measurement

New Results from the DREAM project

SCINTILLATORS AND WAVELENGTH SHIFTERS FOR THE DETECTION OF IONIZING RADIATION *

Response curve measurement of the SiPM

The Ring Imaging Cherenkov detector of the AMS experiment: test beam results with a prototype

Geant4 simulations of the lead fluoride calorimeter

First Stage Analysis of the Energy Response and Resolution of the Scintillator ECAL in the Beam Test at FNAL, 2008

Detectors for 20 kev 10 MeV

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 4, AUGUST /$ IEEE

Effect Cherenkov dans le TeO2. Marco Vignati INFN Roma GDR neutrino, APC Paris, 21 June 2012

Radioactivity and Ionizing Radiation

Muon detector and muon flux measurement at Yangyang underground laboratory for the COSINE-100 experiment

SCINTILLATION DETECTORS AND PM TUBES

Precision Polarimetry at JLab, 6 GeV Era G. B. Franklin Carnegie Mellon University

Large Size LYSO Crystals for Future High Energy Physics Experiments

Luminosity Calorimeter Technologies

User Documents and Examples II

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

Transcription:

Simulation of optical processes in GEANT4 Ralph Dollan DESY - ZEUTHEN

Outline First part Results of experiments to measure the lightyield of two different material samples Second part Simulations of the Photontransport in scintillator/leadglass samples and wavelenghtshifting fibers with GEANT4 24 February, 2005 R. Dollan 2

Longitudinal Segmentation Crystal cutted into segments in depth Optical isolated fibers Readout with photodetectors Material: radiationhard dense high lightyield Lightyield reduction due to fiber readout? Crosstalk? 24 February, 2005 R. Dollan 3

BICRON BCF-91A - Fibers BCF-91A: Λ(max. emission) = 494 nm -> QE(PMT-XP1911) 13 ± 2 % BC 408 Scintillator Sample 6 mm 6 mm 30 mm 24 February, 2005 R. Dollan 4

Experiment Cosmic - Teleskop µ - PMT 1 PMT 3 XP 1911 Trigger PMT 2 Absorber Sample PMT - Signals Discriminator Triggerlogic ADC TDC File 24 February, 2005 R. Dollan 5

Direct readout vs. fiber readout (BC-408) PMT 1 Direct readout PMT 3 XP 1911 Events 50 40 Trigger Absorber Sample 30 20 a) direct coupling PMT 2 10 Fiber readout 0 40 PMT 1 PMT 3 30 b) fiber coupling Trigger Absorber Sample XP 1911 20 10 PMT 2 0 0 200 400 Number of Photoelectrons 24 February, 2005 R. Dollan 6

Experimental - Results Plastic Scintillator Leadglass Direct readout : (QE PMT 25 ± 1 %) Photoelectrons : 390 ± 50 p.e. / µ Lightyield : 1560 ± 260 photons / µ Fiber readout : (QE PMT 13 ± 2 %) Photoelectrons : 27 ± 4 p.e. / µ Lightyield : 210 ± 60 photons / µ Direct readout : (QE PMT 15 ± 2 %) Photoelectrons : 18.2 ± 2.2 p.e. / µ Lightyield : 120 ± 30 photons / µ Fiber readout : (QE PMT 13 ± 2 %) Photoelectrons : 2.4 ± 0.5 p.e. / µ Lightyield : 19 ± 7 photons / µ Lightyield reduced to 14 ± 4 % Lightyield reduced to 16 ± 7 % 24 February, 2005 R. Dollan 7

To simulate the behavior of Scintillator-samples, optical processes provided by GEANT4 have to be understood: Scintillation Čerenkov radiation Transport of optical photons in the medium Reflection Scattering photons at material boundaries Absorption Reemission wavelength shifting Simulation - Motivation BC 408 Scintillator Sample 6 mm 6 mm 30 mm 24 February, 2005 R. Dollan 8

Relevant processes for optical photons Process Cerenkov Scintillation OpBoundary OpAbsorption OpRayleigh Geant4 source processes/electromagnetic/xray -> G4Cerenkov processes/electromagnetic/xray -> G4Scintillation processes/optical -> G4OpBoundary processes/optical -> G4OpAbsorption processes/optical -> G4OpRayleigh OpWLS processes/optical -> G4OpWLS since GEANT4 6.0 (Transportation) 24 February, 2005 R. Dollan 9

Needed Material properties: atomic composition of the materials used refractive index absorption length (-spectrum) scintillation yield (slow/fast) scintillation time constant (slow/fast) absorption-, emission-spectra of WLS-materials time constants of WLS-materials Known: over all refractive index over all absorption length (rel. Emission-, Absorption spectrum) (scintillation yield) time constants 24 February, 2005 R. Dollan 10

Scintillation const G4int NUMENTRIES = 12; G4double PhotonEnergy[NUMENTRIES] = { 3.44*eV, 3.26*eV, 3.1*eV, 3.02*eV, 2.95*eV, 2.92*eV, 2.82*eV, 2.76*eV, 2.7*eV, 2.58*eV, 2.38*eV, 2.08*eV }; G4double RINDEX_Bc408[NUMENTRIES] = { 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58, 1.58 }; G4double ABSORPTION_Bc408[NUMENTRIES] = { 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm, 210*cm }; G4double SCINTILLATION_Bc408[NUMENTRIES] = { 0.04, 0.07, 0.20, 0.49, 0.84, 1.00, 0.83, 0.55, 0.40, 0.17, 0.03, 0 }; G4MaterialPropertiesTable *Bc408_mt = new G4MaterialPropertiesTable(); Bc408_mt->AddProperty("RINDEX", PhotonEnergy, RINDEX_Bc408, NUMENTRIES); Bc408_mt->AddProperty("ABSLENGTH", PhotonEnergy, ABSORPTION_Bc408, NUMENTRIES); Bc408_mt->AddProperty("FASTCOMPONENT", PhotonEnergy, SCINTILLATION_Bc408, NUMENTRIES); Bc408_mt->AddConstProperty("SCINTILLATIONYIELD",500./MeV); Bc408_mt->AddConstProperty("RESOLUTIONSCALE",1.0); Bc408_mt->AddConstProperty("FASTTIMECONSTANT", 1.*ns); //Bc408_mt->AddConstProperty("SLOWTIMECONSTANT",1.*ns); Bc408_mt->AddConstProperty("YIELDRATIO",1.); Bc408->SetMaterialPropertiesTable(Bc408_mt); 24 February, 2005 R. Dollan 11

WLS Absorptionlength from Code Hugh Gallagers Web Page (Tufts University), (Scintillator studies for the MINOS-Experiment) const G4int NUMENTRIES3 = 42; G4double PhotonEnergy_WLS_ABS_Bcf91a_core[NUMENTRIES3] = { 3.539*eV, 3.477*eV, 3.340*eV, 3.321*eV, 3.291*eV, 3.214*eV, 3.162*eV, 3.129*eV, 3.091*eV, 3.086*eV, 3.049*eV, 3.008*eV, 2.982*eV, 2.958*eV, 2.928*eV, 2.905*eV, 2.895*eV, 2.890*eV, 2.858*eV, 2.813*eV, 2.774*eV, 2.765*eV, 2.752*eV, 2.748*eV, 2.739*eV, 2.735*eV, 2.731*eV, 2.723*eV, 2.719*eV, 2.698*eV, 2.674*eV, 2.626*eV, 2.610*eV, 2.583*eV, 2.556*eV, 2.530*eV, 2.505*eV, 2.480*eV, 2.455*eV, 2.431*eV, 2.407*eV, 2.384*eV }; G4double WLS_ABSLENGTH_Bcf91a_core[NUMENTRIES3] = { 0.28*cm, 0.28*cm, 0.26*cm, 0.25*cm, 0.24*cm, 0.21*cm, 0.19*cm, 0.16*cm, 0.13*cm, 0.13*cm, 0.14*cm, 0.11*cm, 0.08*cm, 0.05*cm, 0.02*cm, 0.05*cm, 0.08*cm, 0.10*cm, 0.13*cm, 0.10*cm, 0.08*cm, 0.07*cm, 0.08*cm, 0.11*cm, 0.13*cm, 0.16*cm, 0.19*cm, 0.21*cm, 0.24*cm, 0.27*cm, 0.30*cm, 2.69*cm, 3.49*cm, 3.99*cm, 5.00*cm, 11.6*cm, 21.6*cm, 33.1*cm, 175*cm, 393*cm, 617*cm, 794*cm }; const G4int NUMENTRIES2 = 24; G4double PhotonEnergy_WLS_EM_Bcf91a_core[NUMENTRIES2] = { 2.69*eV, 2.67*eV, 2.66*eV, 2.64*eV, 2.63*eV, 2.61*eV, 2.58*eV, 2.56*eV, 2.55*eV, 2.53*eV, 2.50*eV, 2.48*eV, 2.46*eV, 2.45*eV, 2.44*eV, 2.43*eV, 2.41*eV, 2.37*eV, 2.33*eV, 2.25*eV, 2.24*eV, 2.19*eV, 2.15*eV, 2.08*eV }; G4double WLS_EMISSION_Bcf91a_core[NUMENTRIES2] = {0, 0.02, 0.09, 0.20, 0.29, 0.40, 0.59, 0.70, 0.80, 0.89, 1.00, 0.96, 0.88, 0.79, 0.69, 0.59, 0.50, 0.40, 0.31, 0.22, 0.19, 0.10, 0.06, 0 }; 24 February, 2005 R. Dollan 12

Geometry WLS Fiber Scintillator sample Air gap Tyvek wrapping 24 February, 2005 R. Dollan 13

Frontview Fiber diameter: 1mm, Cladding thickness: 3% of core Ø Channel: 1mmx1mm Fiber core: Polystyrene, n=1.6 Fiber cladding: Acrylic, n=1.49 Optical glue: Epoxy, n=1.56 Scintillator: Polyvinyltoluene, n=1.58 24 February, 2005 R. Dollan 14

Sideview, both sides open 24 February, 2005 R. Dollan 15

Sideview, one side open 24 February, 2005 R. Dollan 16

Front view - Photons in the Fiber Scintillation yield ~50 0/MeV 24 February, 2005 R. Dollan 17

PMT positions Directly attached to scintillator sample Directly attached to fiber surface PMT Window: Ø 15 mm, thickness 2mm Short absorptionlength -> all photons absorbed 24 February, 2005 R. Dollan 18

Bc_direct_3a 24 February, 2005 R. Dollan 19

Bc_fiber_3a 24 February, 2005 R. Dollan 20

Bc_direct_3a_pmt 24 February, 2005 R. Dollan 21

Bc_fiber_3a_pmt 24 February, 2005 R. Dollan 22

Lg_direct 24 February, 2005 R. Dollan 23

Lg_fiber 24 February, 2005 R. Dollan 24

Lg_direct_pmt 24 February, 2005 R. Dollan 25

Lg_fiber_pmt 24 February, 2005 R. Dollan 26

Simulation - Results Plastic Scintillator Leadglass (exp.): Lightyield reduced to 14 ± 4 % (exp.): Lightyield reduced to 16 ± 7 % (sim.): Lightyield reduced to 9.3 9.8 % (sim.): Lightyield reduced to 8.3-12 % 24 February, 2005 R. Dollan 27

Summary This is a first look can be improved!!! for a first naive look nice agreement between exp. and sim. results For a realistic Simulation: implementation of realistic boundary and surface conditions of the materials/samples exact WLS-Absorption spectrum good knowledge of Absorption-, Emission behaviour of the materials material composition data these simulation studies continue V. Drugakov > Simulation of a block of crystals 24 February, 2005 R. Dollan 28