A MOTIVIC LOCAL CAUCHY-CROFTON FORMULA

Similar documents
Lipschitz continuity properties

Globalization and compactness of McCrory Parusiński conditions. Riccardo Ghiloni 1

Geometric motivic integration

Course on Motivic Integration IV

arxiv: v2 [math.ag] 24 Jun 2015

Generating the Pfaffian closure with total Pfaffian functions

OFER GABBER, QING LIU, AND DINO LORENZINI

VALUATION THEORY, GENERALIZED IFS ATTRACTORS AND FRACTALS

Math 231b Lecture 16. G. Quick

Topology of Nonarchimedean Analytic Spaces

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

The Hopf argument. Yves Coudene. IRMAR, Université Rennes 1, campus beaulieu, bat Rennes cedex, France

Introduction. Hausdorff Measure on O-Minimal Structures. Outline

ABSOLUTE CONTINUITY OF FOLIATIONS

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see

LECTURE: KOBORDISMENTHEORIE, WINTER TERM 2011/12; SUMMARY AND LITERATURE

A MOTIVIC FUBINI THEOREM FOR THE TROPICALIZATION MAP. Notation. Let k be an algebraically closed field of characteristic zero.

DENSELY k-separable COMPACTA ARE DENSELY SEPARABLE

Definable Extension Theorems in O-minimal Structures. Matthias Aschenbrenner University of California, Los Angeles

INCOMPRESSIBILITY OF GENERIC ORTHOGONAL GRASSMANNIANS

B. Appendix B. Topological vector spaces

Stable tangential families and singularities of their envelopes

Math 426 Homework 4 Due 3 November 2017

1 Existence of the Néron model

On log flat descent. Luc Illusie, Chikara Nakayama, and Takeshi Tsuji

10. Smooth Varieties. 82 Andreas Gathmann

VERY STABLE BUNDLES AND PROPERNESS OF THE HITCHIN MAP

A generic property of families of Lagrangian systems

Representations and Linear Actions

A NOTE ON C-ANALYTIC SETS. Alessandro Tancredi

TROPICAL BRILL-NOETHER THEORY

A PROOF OF THE DIFFERENTIABLE INVARIANCE OF THE MULTIPLICITY USING SPHERICAL BLOWING-UP. 1. Introduction

Peak Point Theorems for Uniform Algebras on Smooth Manifolds

(iv) Whitney s condition B. Suppose S β S α. If two sequences (a k ) S α and (b k ) S β both converge to the same x S β then lim.

Contents. O-minimal geometry. Tobias Kaiser. Universität Passau. 19. Juli O-minimal geometry

Analytic and Algebraic Geometry 2

Fix(g). Orb(x) i=1. O i G. i=1. O i. i=1 x O i. = n G

Motivic integration on Artin n-stacks

7 Complete metric spaces and function spaces

Robustness for a Liouville type theorem in exterior domains

A Gauss-Bonnet theorem for constructible sheaves on reductive groups

π X : X Y X and π Y : X Y Y

Generic section of a hyperplane arrangement and twisted Hurewicz maps

INVERSE FUNCTION THEOREM and SURFACES IN R n

ON FUNCTIONS WHOSE GRAPH IS A HAMEL BASIS II

The Rademacher Cotype of Operators from l N

PARTIAL REGULARITY OF BRENIER SOLUTIONS OF THE MONGE-AMPÈRE EQUATION

ON THE NUMBER AND BOUNDEDNESS OF LOG MINIMAL MODELS OF GENERAL TYPE

MATH 4200 HW: PROBLEM SET FOUR: METRIC SPACES

Metric spaces and metrizability

Formal power series rings, inverse limits, and I-adic completions of rings

ON THE NUMBER AND BOUNDEDNESS OF LOG MINIMAL MODELS OF GENERAL TYPE

The theory of integration says that the natural map

Bordism and the Pontryagin-Thom Theorem

Demushkin s Theorem in Codimension One

REPRESENTABLE BANACH SPACES AND UNIFORMLY GÂTEAUX-SMOOTH NORMS. Julien Frontisi

Topological K-theory

Optimization and Optimal Control in Banach Spaces

Algebraic geometry over quaternions

Cobordant differentiable manifolds

fy (X(g)) Y (f)x(g) gy (X(f)) Y (g)x(f)) = fx(y (g)) + gx(y (f)) fy (X(g)) gy (X(f))

Metric Spaces Math 413 Honors Project

a double cover branched along the smooth quadratic line complex

KUIPER S THEOREM ON CONFORMALLY FLAT MANIFOLDS

About Hrushovski and Loeser s work on the homotopy type of Berkovich spaces

Functional Analysis HW #1

A proof of the differentiable invariance of the multiplicity using spherical blowing-up

Math 320-2: Midterm 2 Practice Solutions Northwestern University, Winter 2015

Metric Spaces Math 413 Honors Project

P-adic Functions - Part 1

Solutions to Problem Set 1

BASIC MATRIX PERTURBATION THEORY

7 Lecture 7: Rational domains, Tate rings and analytic points

K-BI-LIPSCHITZ EQUIVALENCE OF REAL FUNCTION-GERMS. 1. Introduction

An Attempt of Characterization of Functions With Sharp Weakly Complete Epigraphs

ORBITAL INTEGRALS ARE MOTIVIC. 1. Introduction

ABSOLUTE VALUES AND VALUATIONS

6 Lecture 6: More constructions with Huber rings

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

SMALL SUBSETS OF THE REALS AND TREE FORCING NOTIONS

8 Complete fields and valuation rings

Math 210B. Artin Rees and completions

SOME PROPERTIES ON THE CLOSED SUBSETS IN BANACH SPACES

The Structure of C -algebras Associated with Hyperbolic Dynamical Systems

4 Countability axioms

Connectedness. Proposition 2.2. The following are equivalent for a topological space (X, T ).

Selçuk Demir WS 2017 Functional Analysis Homework Sheet

BI-LIPSCHITZ GEOMETRY OF COMPLEX SURFACE SINGULARITIES

On the smoothness of the conjugacy between circle maps with a break

arxiv:math/ v1 [math.at] 2 Oct 2002

FORMAL GROUPS OF CERTAIN Q-CURVES OVER QUADRATIC FIELDS

Variational Analysis and Tame Optimization

arxiv: v1 [math.ag] 24 Apr 2015

The Grothendieck Ring of Varieties

1. Artin s original conjecture

Axioms of separation

THE GEOMETRY BEHIND NON-ARCHIMEDEAN INTEGRALS. François Loeser. 5th European Congress of Mathematics Amsterdam, July 15, 2008

Rational curves on general type hypersurfaces

Three Descriptions of the Cohomology of Bun G (X) (Lecture 4)

Transcription:

A MOTIVIC LOCAL CAUCHY-CROFTON FORMULA ARTHUR FOREY Abstract. In this note, we establish a version of the local Cauchy-Crofton formula for definable sets in Henselian discretely valued fields of characteristic zero. It allows to compute the motivic local density of a set from the densities of its projections integrated over the Grassmannian. 1. Introduction The classical Cauchy-Crofton formula is a geometric measure theory result stating that the volume of a set X of dimension d can be recovered by integrating over the Grassmannian the number of points of intersection of X with affine spaces of codimension d, see for example [9]. It has been used by Lion [11] to show the existence of the local density of semi-pfaffian sets. Comte [5], [6] has established a local version of the formula for sets X R n definable in an o-minimal structure. The formula states that the local density of such a set X can be recovered by integrating over a Grassmannian the density of the projection of X on subspaces. This allows him to show the continuity of the real local density along Verdier s strata in [6]. This was generalized by Valette in [12] to show that the continuity also holds along Whitney s strata. The local Cauchy-Crofton formula appears as a first step toward comparing the local Lipschitz-Killing curvature invariants and the polar invariants of a germ of a definable set X R n. It is shown by Comte and Merle in [8] that one can recover one set of invariants by linear combination of the other, see also [7]. A notion of local density for definable sets in Henselian valued field of characteristic zero has been developed by the autor in [10]. The aim of this note is to establish a motivic analogue of the local Cauchy-Crofton formula. Our formula is a new step toward developing a theory of higher local curvature invariants in non-archimedean geometry. Let us describe briefly our formula. Fix an algebraically closed field k of characteristic zero and K = k((t. Fix X a semi-algebraic subset of K n of dimension d. We use the motivic integral of Cluckers and Loeser [3], which takes values in the localised Grothendieck group of varieties K(Var k loc. Denote by Θ d (X, x the motivic local density of X at x. Let G(n, d the Grassmannian variety of d-dimensional vector subspaces of K n. There is a volume form ω n,d invariant under GL n (O K -transformations such that 1 = G(n,d ω n,d. For V G(n, n d, let p V : K n K n /V be the canonical projection. There is a dense subset Ω G(n, n d such that for V Ω, p V is finite-to-one on X intersected with a small enough ball around x. Let p V!,x (1 X denote the motivic constructible function supported on p(x taking into account motivically the finite fibers of p V. The Date: November 23, 2017. 2010 Mathematics Subject Classification. Primary 03C98 and 12J10 and 14B05 and 32Sxx and Secondary 03C68 and 11S80. Key words and phrases. Motivic integration, Henselian valued fields, local density, metric invariants. This research was partially supported by ANR-15-CE40-0008 (Défigéo. 1

2 ARTHUR FOREY motivic local Cauchy-Crofton formula is the following equality : Θ d (X, x = Θ d (p V!,x (1 X, 0ω n,n d (V. V Ω G(n,n d Our precise result appears as Theorem 4.1 at the end of Section 4 and applies more generally to any definable set in a tame or mixed tame theory of valued fields in the sense of [4]. A p-adic analogue has been developed by Cluckers, Comte and Loeser in [2, Section 6]. We will follow closely their approach. In the real and p-adic case of the formula, the function p V!,x (1 X is replaced by the function sending y p V (X to the cardinal of the finite set p 1 V (y. Such a choice would not lead to the correct result in our case. Acknowledgements. Many thanks to Georges Comte for encouraging me to work on this project and useful discussions. I also thanks Michel Raibaut for interesting comments. 2. Motivic integration and local density We assume the reader is familiar with the notion of motivic local density developed by the autor in [10] and in particular with Cluckers and Loeser s theory of motivic integration [3], [4]. See [10, Section 2.7] for a short summary of the theory. We adopt the notations and conventions of [10]. In particular, we fix T, a tame or mixed-tame theory of valued fields in the sense of [4]. Such a T always admits a Henselian discretely valued field of characteristic zero as a model. Definable means definable without parameters in T and K is (the underlining valued field of a model of T with discrete value group and residue field k enough saturated. For example, we can take for T the theory of a discretely valued field of characteristic zero in the Denef-Pas language ; if the residue field is of characteristic p > 0, one need to add the higher angular components. For each definable set X, Cluckers and Loeser define a ring of constructible motivic functions C(X, which include the characteristic functions of any definable set Y X. For ϕ C(X of support of dimension d and that is integrable, they define d ϕ C({ }. If d = dim(x, we drop the d from the notation. If ϕ is the characteristic function of some definable set Y X, we denote the integral µ d (Y. If the residue field k is algebraically closed, the target ring of motivic integration is equal to [ ( C({ } = K(Var k loc := K(Var k L 1, 1 1 L α α N where L = [A 1 k ]. Fix some definable set X K m of dimension d, and x K m, define θ n = µ d(x B(x, n L nd, where B(x, n is the ball of center x and valuative radius n. There is some e N such that for each i, the subsequence (θ ke+i k N converges to some d i C({ }. Here C({ } has a topology induced by the degree in L. We ],

A MOTIVIC LOCAL CAUCHY-CROFTON FORMULA 3 define the motivic local density of X at x to be Θ d (X, x = 1 d i C({ } Q. e It is shown in [10] that one can compute the motivic local density on the tangent cone. Fix some Λ D, where D = {Λ n,m n, m N }, Λ n,m = { λ K ac m (λ = 1, v(λ = 0 mod n }. The Λ-tangent cone of X at x is the definable set C Λ x (X = {u K n i Z, y X, λ Λ, v(y x i, v(λ(y x u i}. The Λ-tangent cone with multiplicities is a definable function CM Λ x (X C(K m, of support C Λ x (X, well defined up to a set of dimension < d. For example, if X K m is of dimension m, there is no muliplicity to take into account and CM Λ x (X is the characteristic function of C Λ x (X. Theorems 3.25 and 5.12 from [10] state that there is a Λ such that for all Λ Λ, C Λ x (X = C Λ x (X and Θ d (X, x = Θ d (CM Λ x (X, 0. 3. Local constructible functions Consider a definable function π : X Y between definable sets X and Y of dimension n. Recall form [4] the notation π! (ϕ C(Y for any motivic constructible function ϕ C(X. If π is finite-to-one, there is a definable bijection g : X Z Y k s over Y, meaning that π is equal to the composition of g and the coordinate projection of Z to Y. Then π! (1 X is equal to the class of Z in the relative Grothendieck group of varieties over Y. If X is a definable subset of K n and x K n, define the ring of germs of constructible motivic functions at x by C(X x := C(X/, where ϕ ψ if there is an r N such that 1 B(x,r ϕ = 1 B(x,r ψ. in particular, if ϕ ψ are locally bounded, then Θ d (ϕ, x = Θ d (ψ, x hence the local motivic density is defined on C(K n x. Consider now a linear projection π : K n K d and let X K n a definable set of dimension d. Say that condition ( is satisfied if π X B(x,r is finite-to-one for some r 0. Then define π!,x (ϕ = π! (1 B(x,r ϕ C(Y π(x for ϕ C(X x. It does not depend on the large enough r chosen. Indeed, as π : X B(x, r Y is finite-to-one, then there is W r R s s finite with X B(x, r W r Y and the composite W Y π X B(x, r Y being the projection on Y. Hence (up to taking a finite definable partition of X, for some r 0, for any r r 0, W r = W r0 and π(x B(x, r = π(y B(π(x, αr, which means that π! (1 B(x,r ϕ C(Y / π(x is independent of r. 4. Grassmannians Fix a point x K n and view K n as a K-vector space with origin 0. Then denote by G(n, d K the Grassmannian of dimension d subvector spaces of K n. The canonical volume form on G(n, d K invariant under GL n (O K -transformations induce a constuctible function ω n,d on G(n, d invariant under GL n (O K transformations, see [3, Section 15] for details. Since G(n, d k is smooth and proper, the motivic volume of G(n, d K is equal to the class [G(n, d k ] of G(n, d k is the (localized

4 ARTHUR FOREY Grothendieck group of varieties over the residue field k. Denoting F q the finite field with q elements, it is known, see for example [1], that The proof rely on the fact that G(n, d(f q = (qn 1(q n q (q n q r 1 (q r 1(q r q (q r q r 1. GL n (F q = G(n, r(f q GL r (F q q r(n r GL n r (F q. The analog of this formula holds in K(Var k. One also computes [GL n,k ] = (L n 1(L n L (L n L n 1 K(Var k by induction on the class of the space of r linearly independent vectors in k n. By combining those two facts, we get [G(n, d k ] = (Ln 1(L n L (L n L r 1 (L r 1(L r L (L r L r 1 K(Var k loc. Note that even if the right hand side can be written without denominator, hence as an element of K(Var k, one has to work in K(Var k loc to show the equality with this method. In particular, this shows that [G(n, d k ] is invertible in K(Var k loc. The motivic volume of G(n, r K is then invertible. Hence we can normalize ω n,r such that 1 = ω n,r (V. V G(n,r For V G(n, n d, define p V : K n K n /V the canonical projection. We identify K n /V to K d as follows. There is some g GL n (O K such that g(k n d {0} d = V. We identify K n /V to g({0} n d K n d. The particular choice of g does not matter thanks to the change of variable formula. If X is a dimension d definable subset of K n then there is an dense definable subset Ω = Ω(X, x of G(n, n d such that for every V Ω, π V satisfies condition (. Indeed the tangent K -cone of X is of dimension at most d and it suffices to set } Ω = {V G(n, n d V Cx K (X = {0}, which is indeed dense in G(n, n d. In particular, for any V Ω, p!,x (ϕ is well defined for any ϕ C(X x. With these notations, we can now state our motivic local Cauchy-Crofton formula. Recall that Θ d (X, x C({ } Q is the motivic local density of X at x, Theorem 4.1 (local Cauchy-Crofton. Let X K n a definable set of dimension d and x K n. Then Θ d (X, x = Θ d (p V!,x (1 X, 0ω n,n d (V. V Ω G(n,n d By [10, Proposition 3.8], we may assume X = X. We can also assume x = 0 and 0 X. Indeed, if 0 / X, then both sides of the formula are 0. 5. Tangential Crofton formula We start by proving the theorem in the particular case where X is a Λ-cone. Lemma 5.1. Let X be a definable Λ-cone with origin 0 contained in some Π G(n, d. Then Θ d (X, 0 = Θ d (p V (1 X, 0ω n,n d (V. V Ω G(n,n d

A MOTIVIC LOCAL CAUCHY-CROFTON FORMULA 5 Proof. Assume Λ = Λ e,r. Fix some V G(n, n d such that π V : Π K d is bijective. As X is a Λ-cone and π V is linear, π V (X is also a Λ-cone. From the definition of local density, see also [10, Remark 3.11], we have (1 Θ d (X, 0 = and (2 Θ d (π V (X, 0 = 1 e(1 L d L di µ d (X S(0, i 1 e(1 L d L dj µ d (X S(0, j. j=0 Let A i = {y π V (X x X S(0, i, λ Λ, y = λπ V (x} Then since X is a Λ-cone and π V is bijective, we have a disjoint union π V (X\ {0} =. e 1 A i. Now set B j i = A i S(0, j and Di V e 1 =. j=0 ti j B j i. The set C j is indeed a disjoint union since it is the image of X S(0, i by the application ϕ V : x X t v(x v(π V (x π V (x. Indeed the function ϕ V restricted to X S(0, i is a definable bijection of image Di V since π V is linear and bijective on Π. By the change of variable formula, we have (3 µ d (Di V = L v(jac(ϕ V (x. By Fubini theorem we get µ d (Di V ω n,n d (V = X S(0,i x X S(0,i L v(jac(ϕ V (x ω n,n d (V. Set C i (x = L v(jac(ϕ V (x ω n,n d (V. We claim that C i (x is independent of x S(0, i. Indeed, if x, x S(0, i, we can find some g GL n (O K such that x = gx. Since ω n,n d is invariant under GL n (O K -transformations and ϕ V (x = ϕ gv (x, by the change of variable formula we get that C i (x is equal to L v(jac(ϕ V (x ω n,n d (V = L v(jac(ϕ V (gx ω n,n d (V. V G(n,n d Moreover, it is independent of i by linearity of π V, hence we denote it by C and we have (4 µ d (Di V ω n,n d (V = Cµ d (X S(0, i. We also have (5 L dj µ d (B j i = Ldi µ d (t i j B j i,

6 ARTHUR FOREY hence (6 L dj µ d (π V (X S(0, j = L dj µ d (B j i j=0 j=0 = L di µ d (t i j B j i j=0 = L di µ d (Di V. Combining Equations 2, 6 and 4, we get 1 Θ d (π V (X, 0ω n,n d (V = C e(1 L d L di µ d (X S(0, i. This last expression is equal to = CΘ d (X, 0. We find C = 1 by computing both sides of the previous equality with X = Π. This following lemma is the motivic analogous of the classical spherical Crofton formula, see for example [9, Theorem 3.2.48]. See also [2, Remark 6.2.4] for a reformulation in the p-adic case. Lemma 5.2. Let X be a definable Λ-cone with origin 0. Then Θ d (X, 0 = Θ d (p V!,0 (1 X, 0ω(V. Proof. We only have to modify slightly the proof of Lemma 5.1. Indeed, we use now the function ϕ V : x X t v(x v(π V (x π V (x. restricted to the smooth part of X. It is now longer injective on X S(0, i, however the motivic volume of the fibers is taken into account in p V!,0 (X. Hence we get similarly 1 Θ d (π V!,0 (X, 0ω n,n d (V = C e(1 L d L di µ d (X S(0, i, which is equal to CΘ d (X, 0. Once again, we find C = 1 by computing both sides for X a vector space of dimension d. 6. General case Before proving Theorem 4.1, we need a technical lemma. Lemma 6.1. Let X K n be a definable set of dimension d and V G(n, n d such that the projection p V : C0 Λ (X K d is finite-to-one. Then there is a definable k-partition of X such that for each k-part X ξ, there is a ξ-definable set C ξ of dimension less than d such that p V is injective on C0 Λ (X ξ \C ξ. Proof. We can assume Λ = K. As the projection p V : C0 Λ (X K d is finiteto-one, by finite b-minimality one can find a k-partition of C0 Λ (X such that p V is injective on each k-part of C0 Λ (X. For a k-part C0 Λ (X ξ, define B ξ to be the ξ-definable subset of K n defined as the union of lines l passing through 0 such that the distance between l S(0, 0 and C0 Λ (X ξ S(0, 0 is strictly smaller than the distance between l S(0, 0 and C0 Λ (X ξ S(0, 0 for every ξ ξ. Set X ξ = X B ξ. Then setting Y = X\ ξ X ξ, we have C0 Λ (Y empty and C0 Λ (X ξ C0 Λ(X ξ. Hence we set C ξ = C0 Λ(X ξ\c0 Λ (X ξ and we have X ξ and C ξ as required.

A MOTIVIC LOCAL CAUCHY-CROFTON FORMULA 7 Proof of Theorem 4.1. From [10, Theorem 3.25], there is a Λ D such that Θ d (X, 0 = Θ d (CM0 Λ (X, 0. As in the proof of [10, Theorem 3.25], by [10, Proposition 2.14 and Lemma 3.9], we can assume X is the graph of a 1-Lipschitz function defined on some definable set U K d. In this case, CM0 Λ (X = 1 C Λ 0 (X. From Lemma 5.2, we have Θ d (C0 Λ (X, 0 = Θ d (p V!,0 (C0 Λ (X, 0ω n,n d (V. Hence we need to show that for every V in a dense subset of G(n, n d, Θ d (p V!,0 (C Λ 0 (X, 0 = Θ d (p V!,0 (X, 0. We can find a k-partition of X such that p V is injective on the k-parts. Replace X by one of the k-parts and suppose then that p V is injective on X. Fix a V G(n, n d such that p V is injective on C0 Λ (X. By Lemma 6.1, there is a k-partition of X (depending on V such that for each k-part X ξ there is a ξ-definable set C ξ of dimension less that d such that p V is injective on C0 Λ (X ξ \C ξ. By a new use of [10, Lemma 3.9], it suffices to show that As p V Θ d (p V!,0 (C Λ 0 (X ξ, 0 = Θ d (p V!,0 (X ξ, 0. is injective on X and C Λ 0 (X ξ \C ξ, we have p V!,0 (X = 1 pv (X and p V!,0 (C Λ 0 (X ξ = 1 pv (C Λ 0 (X ξ\c ξ + p V!,0 (C ξ. We have Θ d (p V!,0 (C ξ, 0 = 0 for dimensional reasons. As C0 Λ (p V (X = p V (C0 Λ (X the result follows from [10, Proposition 5.2]. References [1] G. E. Andrews. The Theory of Partitions. 1976. [2] R. Cluckers, G. Comte, and F. Loeser. Local metric properties and regular stratifications of p-adic definable sets. Comment. Math. Helv., 87(4:963 1009, 2012. [3] R. Cluckers and F. Loeser. Constructible motivic functions and motivic integration. Invent. Math., 173(1:23 121, 2008. [4] R. Cluckers and F. Loeser. Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero. J. Reine Angew. Math., 701:1 31, 2015. [5] G. Comte. Formule de Cauchy-Crofton pour la densité des ensembles sous-analytiques. C. R. Acad. Sci., Paris, Sér. I, Math., 328(6:505 508, 1999. [6] G. Comte. Équisingularité réelle: Nombres de Lelong et images polaires. Ann. Sci. École Norm. Sup. (4, 33(6:757 788, 2000. [7] G. Comte. Deformation of singularities and additive invariants. J. Singul., 13:11 41, 2015. [8] G. Comte and M. Merle. Équisingularité réelle. II. Invariants locaux et conditions de régularité. Ann. Sci. Éc. Norm. Supér. (4, 41(2:221 269, 2008. [9] H. Federer. Geometric Measure Theory. 1969. [10] A. Forey. Motivic local density. Math. Z., 287(1-2:361 403, Oct. 2017. [11] J.-M. Lion. Densité des ensembles semi-pfaffiens. Ann. Fac. Sci. Toulouse Math. (6, 7(1:87 92, 1998. [12] G. Valette. Volume, Whitney conditions and Lelong number. Ann. Pol. Math., 93(1:1 16, 2008. Sorbonne Universités, UPMC Univ Paris 06, UMR 7586 CNRS, Institut Mathématique de Jussieu, F-75005 Paris, France E-mail address: arthur.forey@imj-prg.fr URL: https://webusers.imj-prg.fr/ arthur.forey/