NONCOLLIDING BROWNIAN MOTIONS AND HARISH-CHANDRA FORMULA

Similar documents
SEA s workshop- MIT - July 10-14

Stochastic Differential Equations Related to Soft-Edge Scaling Limit

ON THE FIRST TIME THAT AN ITO PROCESS HITS A BARRIER

On the martingales obtained by an extension due to Saisho, Tanemura and Yor of Pitman s theorem

Maximal height of non-intersecting Brownian motions

Eigenvalues of the Laguerre Process as Non-colliding Squared Bessel Processes

Eigenvalue PDFs. Peter Forrester, M&S, University of Melbourne

Strong Markov property of determinatal processes

PITMAN S 2M X THEOREM FOR SKIP-FREE RANDOM WALKS WITH MARKOVIAN INCREMENTS

Strong Markov property of determinantal processes associated with extended kernels

Squared Bessel Process with Delay

Differential Equations for Dyson Processes

Determinantal point processes and random matrix theory in a nutshell

Burgers equation in the complex plane. Govind Menon Division of Applied Mathematics Brown University

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

Determinantal point processes and random matrix theory in a nutshell

The Density Matrix for the Ground State of 1-d Impenetrable Bosons in a Harmonic Trap

Triangular matrices and biorthogonal ensembles

Rectangular Young tableaux and the Jacobi ensemble

1 Intro to RMT (Gene)

Department of Applied Mathematics Faculty of EEMCS. University of Twente. Memorandum No Birth-death processes with killing

Citation Osaka Journal of Mathematics. 41(4)

Geometric Dyson Brownian motion and May Wigner stability

1. Stochastic Processes and filtrations

Krzysztof Burdzy University of Washington. = X(Y (t)), t 0}

Convergence of spectral measures and eigenvalue rigidity

On the quantiles of the Brownian motion and their hitting times.

On the submartingale / supermartingale property of diffusions in natural scale

A determinantal formula for the GOE Tracy-Widom distribution

Log-Convexity Properties of Schur Functions and Generalized Hypergeometric Functions of Matrix Argument. Donald St. P. Richards.

Homogenization of the Dyson Brownian Motion

From the mesoscopic to microscopic scale in random matrix theory

for all f satisfying E[ f(x) ] <.

c 2005 Society for Industrial and Applied Mathematics

Man Kyu Im*, Un Cig Ji **, and Jae Hee Kim ***

Localization transition of d-friendly walkers

Random matrix pencils and level crossings

OPTIMAL SOLUTIONS TO STOCHASTIC DIFFERENTIAL INCLUSIONS

Estimates for the density of functionals of SDE s with irregular drift

The Cameron-Martin-Girsanov (CMG) Theorem

Universality for random matrices and log-gases

Math Matrix Algebra

Geometric RSK, Whittaker functions and random polymers

p 1 ( Y p dp) 1/p ( X p dp) 1 1 p

Progress in the method of Ghosts and Shadows for Beta Ensembles

Linear Systems and Matrices

Lecture Notes Introduction to Cluster Algebra

Clifford Algebras and Spin Groups

Multivariate Generalized Ornstein-Uhlenbeck Processes

Linear Algebra: Matrix Eigenvalue Problems

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

MATRIX INTEGRALS AND MAP ENUMERATION 2

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida

Bulk scaling limits, open questions

THREE LECTURES ON QUASIDETERMINANTS

Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues

B8.3 Mathematical Models for Financial Derivatives. Hilary Term Solution Sheet 2

Generalized Gaussian Bridges of Prediction-Invertible Processes

MULTIDIMENSIONAL WICK-ITÔ FORMULA FOR GAUSSIAN PROCESSES

From longest increasing subsequences to Whittaker functions and random polymers

Applications of Ito s Formula

Size Effect of Diagonal Random Matrices

1 Brownian Local Time

RANDOM MATRIX THEORY AND TOEPLITZ DETERMINANTS

Algebraic Information Geometry for Learning Machines with Singularities

ON THE SECOND-ORDER CORRELATION FUNCTION OF THE CHARACTERISTIC POLYNOMIAL OF A HERMITIAN WIGNER MATRIX

Tools of stochastic calculus

The Wiener Itô Chaos Expansion

Persistence and global stability in discrete models of Lotka Volterra type

Valerio Cappellini. References

MATH 56A: STOCHASTIC PROCESSES CHAPTER 0

On Reflecting Brownian Motion with Drift

Reflected Brownian Motion

Obstacle problems and isotonicity

Interpolating between Wishart and inverse-wishart distributions

Jordan normal form notes (version date: 11/21/07)

Lecture I: Asymptotics for large GUE random matrices

Convergence at first and second order of some approximations of stochastic integrals

Research Article Least Squares Estimators for Unit Root Processes with Locally Stationary Disturbance

The norm of polynomials in large random matrices

Energy method for wave equations

BOUNDEDNESS OF SET-VALUED STOCHASTIC INTEGRALS

ON THE FRACTIONAL CAUCHY PROBLEM ASSOCIATED WITH A FELLER SEMIGROUP

Trace Inequalities for a Block Hadamard Product

Richard F. Bass Krzysztof Burdzy University of Washington

(2m)-TH MEAN BEHAVIOR OF SOLUTIONS OF STOCHASTIC DIFFERENTIAL EQUATIONS UNDER PARAMETRIC PERTURBATIONS

Radon Transforms and the Finite General Linear Groups

Wigner s semicircle law

MATRICES. a m,1 a m,n A =

Eigenvalues and Eigenvectors

Markov operators, classical orthogonal polynomial ensembles, and random matrices

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

A matrix over a field F is a rectangular array of elements from F. The symbol

Real roots of random polynomials and zero crossing properties of diffusion equation

Lower Tail Probabilities and Related Problems

Functional Limit theorems for the quadratic variation of a continuous time random walk and for certain stochastic integrals

Robust Control of Linear Quantum Systems

Divergence Theorems in Path Space. Denis Bell University of North Florida

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

Regularity of the density for the stochastic heat equation

Transcription:

Elect. Comm. in Probab. 8 (003) ELECTRONIC COMMUNICATIONS in PROBABILITY NONCOLLIDING BROWNIAN MOTIONS AND HARISH-CHANDRA FORMULA MAKOTO KATORI Department of Physics, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo-ku, Tokyo -855, Japan email: katori@phys.chuo-u.ac.jp HIDEKI TANEMURA Department of Mathematics and Informatics, Faculty of Science, Chiba University, -33 Yayoi-cho, Inage-ku, Chiba 63-85, Japan email: tanemura@math.s.chiba-u.ac.jp Submitted 7 June 003, accepted in final form 8 September 003 AMS 000 Subject classification: 8B4, 8B6, 8D60, 60G50 Keywords: random matrices, Dyson s Brownian motion, Imhof s relation, Harish-Chandra formula Abstract We consider a system of noncolliding Brownian motions introduced in our previous paper, in which the noncolliding condition is imposed in a finite time interval (0, T ]. This is a temporally inhomogeneous diffusion process whose transition probability density depends on a value of T, and in the limit T it converges to a temporally homogeneous diffusion process called Dyson s model of Brownian motions. It is known that the distribution of particle positions in Dyson s model coincides with that of eigenvalues of a Hermitian matrix-valued process, whose entries are independent Brownian motions. In the present paper we construct such a Hermitian matrix-valued process, whose entries are sums of Brownian motions and Brownian bridges given independently of each other, that its eigenvalues are identically distributed with the particle positions of our temporally inhomogeneous system of noncolliding Brownian motions. As a corollary of this identification we derive the Harish-Chandra formula for an integral over the unitary group. Introduction Dyson introduced a Hermitian matrix-valued process whose ij-entry equals to B ij (t)/ + Bij (t)/, if i < j N, and equals to B ii (t), if i = j, where B ij (t), B ij (t), i j N, are independent Brownian motions [5]. He found that its eigenvalues perform the Brownian motions with the drift terms acting as repulsive two-body forces proportional to the inverse of distances between them, which is now called Dyson s model of Brownian motions. A number of processes of eigenvalues have been studied for random matrices by

Noncolliding Brownian motions 3 Bru [, 3], Grabiner [7], König and O Connell [8], and others, but all of them are temporally homogeneous diffusion processes. In the present paper we introduce a Hermitian matrix-valued process, whose eigenvalues give a temporally inhomogeneous diffusion process. Let Y(t) = (Y (t), Y (t),..., Y N (t)) be the system of N independent Brownian motions in R conditioned never to collide to each other. It is constructed by the h-transform, in the sense of Doob [4], of the absorbing Brownian motion in a Weyl chamber of type A N, with its harmonic function = x R N : x < x < < x N } (.) h N (x) = i<j N (x j x i ), (.) x. We can prove that it is identically distributed with Dyson s model of Brownian motion. In our previous papers [4, 5], we introduce another system of noncolliding Brownian motions X(t) = (X (t), X (t),..., X N (t)), in which Brownian motions do not collide with each other in a finite time interval (0, T ]. This is a temporally inhomogeneous diffusion process, whose transition probability density depends on the value of T. It is easy to see that it converges to the process Y(t) in the limit T. Moreover, it was shown that P (X( ) dw) is absolutely continuous with respect to P (Y( ) dw) and that, in the case X(0) = Y(0) = 0, the Radon-Nikodym density is given by a constant multiple of /h N (w(t )). Since this fact can be regard as an N-dimensional generalization of the relation proved by Imhof [9] between a Brownian meander, which is temporally inhomogeneous, and a three-dimensional Bessel process, we called it generalized Imhof s relation [5]. The problem we consider in the present paper is to determine a matrix-valued process that realizes X(t) as the process of its eigenvalues. We found a hint in Yor [4] to solve this problem : equivalence in distribution between the square of the Brownian meander and the sum of the squares of a two-dimensional Bessel process and of an independent Brownian bridge. We prepare independent Brownian bridges β ij (t), i j N of duration T, which are independent of the Brownian motions B ij (t), i j N, and set a Hermitian matrixvalued process Ξ T (t), t [0, T ], such that its ij-entry equals to B ij (t)/ + β ij (t)/, if i < j N, and it equals to B ii (t), if i = j. Then we can prove that the eigenvalues of the matrix Ξ T (t) realize X(t), t [0, T ] (Theorem.). This result demonstrates the fact that a temporally inhomogeneous diffusion process X(t) in the N dimensional space can be represented as a projection of a combination of N(N + )/ independent Brownian motions and N(N )/ independent Brownian bridges. It is known that Brownian motions B ij (t), i, j N are decomposed orthogonally into the Brownian bridges B ij (t) (t/t )B ij (T ) and the processes (t/t )B ij (T ) (see, for instance, [3, 4]). Then the process Ξ T (t) can be decomposed into two independent matrix-valued processes Θ () (t) and Θ () (t) such that, for each t, the former realizes the distribution of Gaussian unitary ensemble (GUE) of complex Hermitian random matrices and the latter does of the Gaussian orthogonal ensemble (GOE) of real symmetric random matrices, respectively. This implies that the process Ξ T (t) is identified with a two-matrix model studied by Pandey and Mehta [0, ], which is a one-parameter interpolation of GUE and GOE, if the parameter of the model is appropriately related with time t. In [4] we showed this equivalence by using the Harish-Chandra formula for an integral over the unitary group [8]. The proof of Theorem. makes effective use of our generalized version of Imhof s relation and this equivalence is established. The Harish-Chandra formula is then derived as a corollary of our theorem (Corollary.3).

4 Electronic Communications in Probability As clarified by this paper, the Harish-Chandra integral formula implies the equivalence between temporally inhomogeneous systems of Brownian particles and multi-matrix models. This equivalence is very useful to calculate time-correlation functions of the particle systems. By using the method of orthogonal polynomials developed in the random matrix theory [9], determinantal expressions are derived for the correlations and by studying their asymptotic behaviors, infinite particle limits can be determined as reported in [, 3]. Extensions of the present results for the systematic study of relations between noncolliding Brownian motions with geometrical restrictions (e.g. with an absorbing wall at the origin [5, 7]) and other random matrix ensembles than GUE and GOE (see [9, 5, ], for instance), will be reported elsewhere [6]. Preliminaries and Statement of Results. Noncolliding Brownian motions We consider the Weyl chamber of type A N as (.) [6, 7]. By virtue of the Karlin-McGregor formula [, ], the transition density function f N (t, y x) of the absorbing Brownian motion in and the probability N N (t, x) that the Brownian motion started at x does not hit the boundary of up to time t > 0 are given by [ ] f N (t, y x) = det G t (x j, y i ), x, y, (.) i,j N and N N (t, x) = dyf N (t, y x), respectively, where G t (x, y) = (πt) / e (y x) /t. The function h N (x) given by (.) is a strictly positive harmonic function for absorbing Brownian motion in the Weyl chamber. We denote by Y(t) = (Y (t), Y (t),..., Y N (t)), t [0, ) the corresponding Doob h-transform [4], that is the temporally homogeneous diffusion process with transition probability density p N (s, x, t, y); p N (0, 0, t, y) = t N / C (N) exp } y h N (y), (.) t p N (s, x, t, y) = h N (x) f N (t s, y x)h N (y), (.3) for 0 < s < t <, x, y, where C (N) = (π) N/ N j= Γ(j). The process Y(t) represents the system of N Brownian motions conditioned never to collide. The diffusion process Y(t) solves the equation of Dyson s Brownian motion model [5] : dy i (t) = db i (t) + j N,j i dt, t [0, ), i =,,..., N, (.4) Y i (t) Y j (t) where B i (t), i =,,..., N, are independent one dimensional Brownian motions. For a given T > 0, we define gn T (s, x, t, y) = f N (t s, y x)n N (T t, y), (.5) N N (T s, x)

Noncolliding Brownian motions 5 for 0 < s < t T, x, y. The function gn T (s, x, t, y) can be regarded as the transition probability density from the state x at time s to the state y at time t, and associated with the temporally inhomogeneous diffusion process, X(t) = (X (t), X (t),..., X N (t)), t [0, T ], which represents the system of N Brownian motions conditioned not to collide with each other in a finite time interval [0, T ]. It was shown in [5] that as x 0, gn T (0, x, t, y) converges to g T N (0, 0, t, y) = T N(N )/4 t N / C (N) exp } y h N (y)n N (T t, y), (.6) t where C (N) = N/ N j= Γ(j/). Then the diffusion process X(t) solves the following equation: dx i (t) = db i (t) + b T i (t, X(t))dt, t [0, T ], i =,,..., N, (.7) where b T i (t, x) = x i ln N N (T t, x), i =,,..., N. From the transition probability densities (.), (.3) and (.6), (.5) of the processes, we have the following relation between the processes X(t) and Y(t) in the case X(0) = Y(0) = 0 [4, 5]: P (X( ) dw) = C (N)T N(N )/4 P (Y( ) dw). (.8) C (N)h N (w(t )) This is the generalized form of the relation obtained by Imhof [9] for the Brownian meander and the three-dimensional Bessel process. Then, we call it generalized Imhof s relation.. Hermitian matrix-valued processes We denote by H(N) the set of N N complex Hermitian matrices and by S(N) the set of N N real symmetric matrices. We consider complex-valued processes x ij (t), i, j M with x ij (t) = x ji (t), and Hermitian matrix-valued processes Ξ(t) = (x ij (t)) i,j N. Here we give two examples of Hermitian matrix-valued process. Let B R ij (t), BI ij (t), i j N be independent one dimensional Brownian motions. Put x R ij(t) = B R ij(t), if i < j, B R ii (t), if i = j, and x with x R ij (t) = xr ji (t) and xi ij (t) = xi ji (t) for i > j. I ij(t) = B I ij(t), if i < j, 0, if i = j, (i) GUE type matrix-valued process. Let Ξ GUE (t) = (x R ij (t) + x I ij (t)) i,j N. For fixed t [0, ), Ξ GUE (t) is in the Gaussian unitary ensemble (GUE), that is, its probability density function with respect to the volume element U(dH) of H(N) is given by µ GUE (H, t) = t N / C 3 (N) exp t } TrH, H H(N),

6 Electronic Communications in Probability where C 3 (N) = N/ π N /. Let U(N) be the space of all N N unitary matrices. For any U U(N), the probability µ GUE (H, t)u(dh) is invariant under the automorphism H U HU. It is known that the distribution of eigenvalues x of the matrix ensembles is given as } g GUE (x, t) = t N / C (N) exp x h N (x), t [9], and so p N (0, 0, t, x) = g GUE (x, t) from (.). (ii) GOE type matrix-valued process. Let Ξ GOE (t) = (x R ij (t)) i,j N. For fixed t [0, ), Ξ GOE (t) is in the Gaussian orthogonal ensemble (GOE), that is, its probability density function with respect to the volume element V(dA) of S(N) is given by µ GOE (A, t) = t N(N+)/4 C 4 (N) exp t } TrA, A S(N), where C 4 (N) = N/ π N(N+)/4. Let O(N) be the space of all N N real orthogonal matrices. For any V O(N), the probability µ GOE (H, t)v(da) is invariant under the automorphism A V T AV. It is known that the probability density of eigenvalues x of the matrix ensemble is given as g GOE (x, t) = t N(N+)/4 C (N) [9], and so g t N (0, 0, t, x) = ggoe (x, t) from (.6). exp } x h N (x), t We denote by U(t) = (u ij (t)) i,j N the family of unitary matrices which diagonalize Ξ(t): U(t) Ξ(t)U(t) = Λ(t) = diagλ i (t)}, where λ i (t)} are eigenvalues of Ξ(t) such that λ (t) λ (t) λ N (t). modification of Theorem in Bru [] we have the following. By a slight Proposition. Let x ij (t), i, j N be continuous semimartingales. The process λ(t) = (λ (t), λ (t),..., λ N (t)) satisfies dλ i (t) = dm i (t) + dj i (t), i =,,..., N, (.9) where M i (t) is the martingale with quadratic variation M i t = t 0 Γ ii(s)ds, and J i (t) is the process with finite variation given by dj i (t) = N j= λ i (t) λ j (t) (λ i λ j )Γ ij (t)dt + the finite variation part of (U(t) dξ(t)u(t)) ii with Γ ij (t)dt = (U (t)dξ(t)u(t)) ij (U (t)dξ(t)u(t)) ji. (.0)

Noncolliding Brownian motions 7 For the process Ξ GUE (t), dξ GUE ij given as dλ i (t) = db i (t) + (t)dξ GUE kl (t) = δ il δ jk dt and Γ ij (t) =. The equation (.9) is j:j i dt, i N. λ i (t) λ j (t) Hence, the process λ(t) is the homogeneous diffusion that coincides with the system of noncolliding Brownian motions Y(t) with Y(0) = 0. ) For the process Ξ GOE (t), dξ GOE ij (t)dξ GOE kl (t) = (δ il δ jk + δ ik δ jl dt and Γ ij (t) = ( + δ ij). The equation (.9) is given as.3 Results dλ i (t) = db i (t) + j:j i dt, i N. λ i (t) λ j (t) Let β ij (t), i < j N be independent one dimensional Brownian bridges of duration T, which are the solutions of the following equation: t β ij (t) = Bij(t) I β ij (s) ds, 0 t T. 0 T s For t [0, T ], we put ξ ij (t) = β ij (t), if i < j, 0, if i = j, with ξ ij (t) = ξ ji (t) for i > j. We introduce the H(N)-valued process Ξ T (t) = (x R ij (t) + ξij (t)) i,j N. Then, the main result of this paper is the following theorem. Theorem. Let λ i (t), i =,,..., N be the eigenvalues of Ξ T (t) with λ (t) λ (t) λ N (t). The process λ(t) = (λ (t), λ (t),..., λ N (t)) is the temporally inhomogeneous diffusion that coincides with the noncolliding Brownian motions X(t) with X(0) = 0. As a corollary of the above result, we have the following formula, which is called the Harish- Chandra integral formula [8] (see also [0, 9]). Let du be the Haar measure of the space U(N) normalized as du =. U(N) Corollary.3 Let x = (x, x,..., x N ), y = (y, y,..., y N ). Then U(N) du exp } σ Tr(Λ x U Λ y U) = C (N)σ N [ ] det G σ (x i, y j ), h N (x)h N (y) i,j N where Λ x = diagx,..., x N } and Λ y = diagy,..., y N }. Remark Applying Proposition. we derive the following equation: dλ i (t) = db i (t) + λ i (t) λ j (t) dt λ i(t) S(N) µgoe (da)(u(t) AU(t)) ii dt, (.) T t j:j i

8 Electronic Communications in Probability i =,,..., N, where U(t) is one of the families of unitary matrices which diagonalize Ξ T (t). From the equations (.7) and (.) we have µ GOE (da)(u(t) AU(t)) ii S(N) = λ i (t) + (T t) λ i N N (T t, λ(t)) N N (T t, λ(t)) j:j i λ i (t) λ j (t). (.) The function N N (t, x) is expressed by a Pfaffian of the matrix whose ij-entry is Ψ((x j x i )/ t) with Ψ(u) = u dv. (See Lemma. in [5].) Then the right hand side of (.) 0 e v can be written explicitly. 3 Proofs 3. Proof of Theorem. For y R and i, j N, let β ij (t) = β ij (t : y), t [0, T ], = R, I, be diffusion processes which satisfy the following stochastic differential equations: β ij (t : y) = B ij (t) t 0 β ij (s : y) y ds, t [0, T ]. (3.) T s These processes are Brownian bridges of duration T starting form 0 and ending at y. For H = (y R ij + y I ij ) i,j N H(N) we put ξij(t R : yij) R = ξij(t I : yij) I = β R ij(t : y R ij), if i < j, βii R(t : yr ii ), if i = j, β I ij(t : y I ij), if i < j, 0, if i = j, with ξij R(t : yr ij ) = ξr ji (t : yr ji ) and ξi ij (t : yi ij ) = ξi ji (t : yi ji ) for i > j. We introduce the H(N)-valued process Ξ T (t : H) = (ξij R(t : yr ij ) + ξij I (t : yi ij )) i,j N, t [0, T ]. From the equation (3.) we have the equality Ξ T (t : H) = Ξ GUE (t) t 0 Ξ T (s : H) H ds, t [0, T ]. (3.) T s Let H U be a random matrix with distribution µ GUE (, T ), and A O be a random matrix with distribution µ GOE (, T ). Note that β ij (t : Y ), t [0, T ] is a Brownian motion when Y is a Gaussian random variable with variance T, which is independent of B ij (t), t [0, T ]. Then when H U and A O are independent of Ξ GUE (t), t [0, T ], Ξ T (t : H U ) = Ξ GUE (t), t [0, T ], (3.3) Ξ T (t : A O ) = Ξ T (t), t [0, T ], (3.4)

Noncolliding Brownian motions 9 in the sense of distribution. Since the distribution of the process Ξ GUE (t) is invariant under any unitary transformation, we obtain the following lemma from (3.). Lemma 3. For any U U(N) we have in distribution. U Ξ T (t : H)U = Ξ T (t : U HU), t [0, T ], From the above lemma it is obvious that if H () and H () are N N Hermitian matrices having the same eigenvalues, the processes of eigenvalues of Ξ T (t : H () ), t [0, T ] and Ξ(t : H () ), t [0, T ] are identical in distribution. For an N N Hermitian matrix H with eigenvalues a i } i N, we denote the probability distribution of the process of the eigenvalues of Ξ T (t : H) by Q T 0,a( ), t [0, T ]. We also denote by Q GUE ( ) the distribution of the process of eigenvalues of Ξ GUE (t), t [0, T ], and by Q T ( ) that of Ξ T (t), t [0, T ]. From the equalities (3.3) and (3.4) we have Q GUE ( ) = Q T ( ) = Q T 0,a( )g GUE (a, T )da, Q T 0,a( )g GOE (a, T )da. Since Q GUE ( ) is the distribution of the temporally homogeneous diffusion process Y(t) which describes noncolliding Brownian motions, by our generalized Imhof s relation (.8) we can conclude that Q T ( ) is the distribution of the temporally inhomogeneous diffusion process X(t) which describes our noncolliding Brownian motions. 3. Proof of Corollary.3 By (.6) we have gn T } (0, 0, t, y) = C (N) T N(N )/4 t N / exp y h N (y) t [ dz det exp (y j z i ) } ] R N i,j N < π(t t) (T t) = C (N) T N(N )/4 t N / (π(t t)) N/ h N (y) [ }] dz det exp y j i,j N t (y j z i ) (T t) = C (N) T N(N )/4 t N / (π(t t)) N/ h N (y) } [ dz exp z T det exp T i,j N t(t t) ( y j t ) }] T z i.

0 Electronic Communications in Probability Setting (t/t )z i = a i, i =,,..., N, t(t t)/t = σ and T/t = α, we have gn T (0, 0, t, y) = (π) N/ C (N) σ N α N(N+)/4 h N (y) da exp α [ R N a } det exp i,j N < σ (y j a i ) }]. (3.5) We write the transition probability density of the process Ξ T (t) by qn T (s, H, t, H ), 0 s < t T, for H, H H(N). Then by Theorem. and the fact that U(dH) = C U (N)h N (y) dudy, with C U (N) = C 3 (N)/C (N), we have gn T (0, 0, t, y) = C U (N)h N (y) du qn T (0, O, t, U Λ y U), (3.6) where O is the zero matrix. We introduce the H(N)-valued process Θ () (t) = (θ () ij (t)) i,j N and the S(N)-valued process Θ () (t) = (θ () ij (t)) i,j N which are defined by and θ () ij (t) = U(N) Bij(t) R t } T BR ij(t ) + β ij (t), if i < j, B R ii(t) t T BR ii(t ), if i = j, θ () ij (t) = t T B R ij(t ), if i < j, t T BR ii(t ), if i = j, respectively. Then Ξ T (t) = Θ () (t) + Θ () (t). Note that Bij R(t) (t/t )BR ij (T ) are Brownian bridges of duration T which are independent of (t/t )Bij R(T ). Hence Θ() (t) is in the GUE and Θ () (t) is in the GOE independent of Θ () (t). Since E[θ () ii (t) ] = σ and E[θ () ii (t) ] = /α, the transition probability density qn T (0, O, t, H) can be written by ( qn T (0, O, t, H) = V(dA) µ GOE A, S(N) α = C O(N)σ N α N(N+)/4 C 3 (N)C 4 (N) ) µ GUE (H A, σ ) da h N (a) exp α a } σ Tr(H Λ a), (3.7) where we used the fact V(dA) = C O (N)h N (a)dv da with the Haar measure dv of the space O(N) normalized as O(N) dv =, and C O(N) = C 4 (N)/C (N). Combining (3.5), (3.6) and (3.7) we have C (N)σ N N (π) N/ h N (y) = da h N (a) exp da exp α a } det i,j N α a } U(N) du exp [ exp }] σ (y j a i ) σ Tr(U Λ y U Λ a ) }. (3.8)

Noncolliding Brownian motions For each σ > 0, (3.8) holds for any α > 0 and we have C (N)σ N [ det h N (y)h N (a) exp i,j N πσ = du exp σ Tr(U Λ y U Λ a ) This completes the proof. References U(N) }] σ (y j a i ) [] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55, 4-6 (997). [] M. F. Bru, Diffusions of perturbed principal component analysis, J. Maltivated Anal. 9, 7-36 (989). [3] M. F. Bru, Wishart process, J. Theoret. Probab. 3, 75-75 (99). [4] J. L. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, 984. [5] F. J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Math. Phys. 3, 9-98 (96). [6] W. Fulton and J. Harris, Representation Theory, Springer, New York 99. [7] D. J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices, Ann. Inst. Henri Poincaré 35, 77-04 (999). [8] Harish-Chandra, Differential operators on a semisimple Lie algebra, Am. J. Math. 79, 87-0 (957). [9] J. P. Imhof, Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications, J. Appl. Prob., 500-50 (984). [0] C. Itzykson and J.-B. Zuber, The planar approximation. II, J. Math. Phys., 4-4 (980). [] S. Karlin and L. McGregor, Coincidence properties of birth and death processes, Pacific J. 9, 09-40 (959). [] S. Karlin and L. McGregor, Coincidence probabilities, Pacific J. 9, 4-64 (959). [3] M. Katori, T. Nagao and H. Tanemura, Infinite systems of non-colliding Brownian particles, to be published in Adv. Stud. Pure Math. Stochastic Analysis on Large Scale Interacting Systems, Mathematical Society of Japan, 003. [4] M. Katori and H. Tanemura, Scaling limit of vicious walks and two-matrix model, Phys. Rev. E 66, 005 (00). [5] M. Katori and H. Tanemura, Functional central limit theorems for vicious walkers, to appear in Stoch. Stoch. Rep. ; arxiv:math.pr/00386. [6] M. Katori and H. Tanemura, in preparation. [7] M. Katori, H. Tanemura, T. Nagao and N. Komatsuda, Vicious walk with a wall, noncolliding meanders, and chiral and Bogoliubov-deGennes random matrices, Phys. Rev. E 68, 0 (003). [8] W. König, and N. O Connell, Eigenvalues of the Laguerre process as non-colliding squared Bessel processes, Elect. Comm. in Probab. 6, 07-4 (00). [9] M. L. Mehta, Random Matrices, Academic Press, London 99 (nd ed.). [0] M. L. Mehta and A. Pandey, On some Gaussian ensemble of Hermitian matrices, J. Phys. A: Math. Gen. 6, 655-684 (983). [] T. Nagao, M. Katori and H. Tanemura, Dynamical correlations among vicious random walkers, Phys. Lett. A 307, 9-35 (003). [] A. Pandey and M. L. Mehta, Gaussian ensembles of random Hermitian matrices intermediate between orthogonal and unitary ones, Commun. Math. Phys. 87, 449-468 (983). [3] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer, 998 (3rd ed.). [4] M. Yor, Some Aspects of Brownian Motion, Part I: Some Special Functionals, Birkhäuser, Basel 99. [5] M. R. Zirnbauer, Riemannian symmetric superspaces and their origin in random-matrix theory, J. Math. Phys. 37, 4986-508 (996). }.