Chapter 2: Time-Domain Representations of Linear Time-Invariant Systems. Chih-Wei Liu

Similar documents
Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Linear Time Invariant Systems

ECE 570 Session 7 IC 752-E Computer Aided Engineering for Integrated Circuits. Transient analysis. Discuss time marching methods used in SPICE

Notes 03 largely plagiarized by %khc

DETERMINATION OF PARTICULAR SOLUTIONS OF NONHOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS BY DISCRETE DECONVOLUTION

ECE-314 Fall 2012 Review Questions

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Manipulations involving the signal amplitude (dependent variable).

6.003: Signals and Systems

The Eigen Function of Linear Systems

6.003: Signal Processing Lecture 2a September 11, 2018

Section 8 Convolution and Deconvolution

6.01: Introduction to EECS I Lecture 3 February 15, 2011

ME 3210 Mechatronics II Laboratory Lab 6: Second-Order Dynamic Response

12 Getting Started With Fourier Analysis

UNIT 6 Signals and Systems

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Modal Analysis of a Tight String

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback

Solutions Manual 4.1. nonlinear. 4.2 The Fourier Series is: and the fundamental frequency is ω 2π

Clock Skew and Signal Representation

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

CS623: Introduction to Computing with Neural Nets (lecture-10) Pushpak Bhattacharyya Computer Science and Engineering Department IIT Bombay

Stochastic Processes Adopted From p Chapter 9 Probability, Random Variables and Stochastic Processes, 4th Edition A. Papoulis and S.

Review Exercises for Chapter 9

Outline. simplest HMM (1) simple HMMs? simplest HMM (2) Parameter estimation for discrete hidden Markov models

Electrical Engineering Department Network Lab.

E will be denoted by n

Comparison between Fourier and Corrected Fourier Series Methods

Chapter 6 - Work and Energy

2 f(x) dx = 1, 0. 2f(x 1) dx d) 1 4t t6 t. t 2 dt i)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

INVESTMENT PROJECT EFFICIENCY EVALUATION

EGR 544 Communication Theory

Stability. Outline Stability Sab Stability of Digital Systems. Stability for Continuous-time Systems. system is its stability:

SHOCK AND VIBRATION RESPONSE SPECTRA COURSE Unit 21 Base Excitation Shock: Classical Pulse

6.003: Signals and Systems Lecture 20 April 22, 2010

N! AND THE GAMMA FUNCTION

MODERN CONTROL SYSTEMS

F (u) du. or f(t) = t

Lecture 9: Polynomial Approximations

ECE 340 Lecture 15 and 16: Diffusion of Carriers Class Outline:

6.003 Homework #5 Solutions

Numerical Method for Ordinary Differential Equation

Numerical Solution of Parabolic Volterra Integro-Differential Equations via Backward-Euler Scheme

The analysis of the method on the one variable function s limit Ke Wu

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

[ m] x = 0.25cos 20 t sin 20 t m

Continuous Time Linear Time Invariant (LTI) Systems. Dr. Ali Hussein Muqaibel. Introduction

12 th Mathematics Objective Test Solutions

Calculus BC 2015 Scoring Guidelines

SUMMATION OF INFINITE SERIES REVISITED

Wave Equation! ( ) with! b = 0; a =1; c = c 2. ( ) = det ( ) = 0. α = ±c. α = 1 2a b ± b2 4ac. c 2. u = f. v = f x ; t c v. t u. x t. t x = 2 f.

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

Clock Skew and Signal Representation. Program. Timing Engineering

Theoretical Physics Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter R Notes. Convolution

Problems and Solutions for Section 3.2 (3.15 through 3.25)

6.003: Signal Processing Lecture 1 September 6, 2018

Basic Results in Functional Analysis

Time-Domain Representations of LTI Systems

Moment Generating Function

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah.

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

If boundary values are necessary, they are called mixed initial-boundary value problems. Again, the simplest prototypes of these IV problems are:

Signals and Systems Linear Time-Invariant (LTI) Systems

K3 p K2 p Kp 0 p 2 p 3 p

1 Notes on Little s Law (l = λw)

Time Dependent Queuing

A Two-Level Quantum Analysis of ERP Data for Mock-Interrogation Trials. Michael Schillaci Jennifer Vendemia Robert Buzan Eric Green

Using Linnik's Identity to Approximate the Prime Counting Function with the Logarithmic Integral

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

Chapter 2. Foundations of quantum mechanics

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Advection! Discontinuous! solutions shocks! Shock Speed! ! f. !t + U!f. ! t! x. dx dt = U; t = 0

h[n] is the impulse response of the discrete-time system:

EECS 723-Microwave Engineering

Pure Math 30: Explained!

Actuarial Society of India

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

MCR3U FINAL EXAM REVIEW (JANUARY 2015)

The Moment Approximation of the First Passage Time For The Birth Death Diffusion Process with Immigraton to a Moving Linear Barrier

Four equations describe the dynamic solution to RBC model. Consumption-leisure efficiency condition. Consumption-investment efficiency condition

Transient Behavior Analysis of a Finite Capacity Queue with Working Breakdowns and Server Vacations

F.Y. Diploma : Sem. II [AE/CH/FG/ME/PT/PG] Applied Mathematics

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

Transform Techniques

EE 313 Linear Signals & Systems (Fall 2018) Solution Set for Homework #8 on Continuous-Time Signals & Systems

ECE 350 Matlab-Based Project #3

INSTANTANEOUS INTEREST RATES AND HAZARD RATES

INTEGER INTERVAL VALUE OF NEWTON DIVIDED DIFFERENCE AND FORWARD AND BACKWARD INTERPOLATION FORMULA

Comparison between the Discrete and Continuous Time Models

Department of Mathematical and Statistical Sciences University of Alberta

MITPress NewMath.cls LAT E X Book Style Size: 7x9 September 27, :04am. Contents

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 4 9/16/2013. Applications of the large deviation technique

THE GENERATION OF THE CURVED SPUR GEARS TOOTHING

International Journal of Multidisciplinary Approach and Studies. Channel Capacity Analysis For L-Mrc Receiver Over Η-µ Fading Channel

Math 6710, Fall 2016 Final Exam Solutions

Transcription:

Caper : Time-Domai Represeaios of Liear Time-Ivaria Sysems Ci-Wei Liu

Oulie Iroucio Te Covoluio Sum Covoluio Sum Evaluaio Proceure Te Covoluio Iegral Covoluio Iegral Evaluaio Proceure Iercoecios of LTI Sysems Relaios bewee LTI Sysem Properies a e Impulse Respose Sep Respose Differeial a Differece Equaio Represeaios Solvig Differeial a Differece Equaios Lec - cwliu@wis.ee.cu.eu.w

Oulie Caracerisics of Sysems Describe by Differeial a Differece Equaios Block Diagram Represeaios Sae-Variable Descripios of LTI Sysems Eplorig Coceps wi MATLAB Summary 3 Lec - cwliu@wis.ee.cu.eu.w

Iroucio Meos of ime-omai caracerizig a LTI sysem A IO-relaiosip a bo oupu sigal a ipu sigal are represee as fucios of ime Impulse Respose Te oupu of a LTI sysem ue o a ui impulse sigal ipu applie a ime =0 or =0 Liear cosa-coefficie iffereial or ifferece equaio Block Diagram Grapical represeaio of a LTI sysem by scalar muliplicaio, aiio, a a ime sif for iscree-ime sysems or iegraio for coiuous-ime sysems Sae-Variable Descripio A series of couple equaios represeig e beavior of e sysem s saes a relaig saes o e oupu of e sysem 4 Lec - cwliu@wis.ee.cu.eu.w

A arbirary sigal is epresse as a weige superposiio of sife impulses k k k = eire sigal; k = specific value of e sigal a ime k. 0 A series of ime-sife versios of e weige impulse sigal 5 0 k k Lec - cwliu@wis.ee.cu.eu.w k

Te Covoluio Sum a Te Impulse Respose A arbirary sigal ca be epresse as a weige superposiio of sife impulses Te weigs are jus e ipu sample values a e correspoig ime sifs Impulse respose of LTI sysem H{ }: H{} 6 LTI sysem Ipu Oupu y k k k k k k H k k k H H y } { } { Covoluio sum liear ime-ivaria y Lec - cwliu@wis.ee.cu.eu.w

Covoluio Sum Eample Fiie Impulse Respose FIR k k k k k k??? 7 Lec - cwliu@wis.ee.cu.eu.w

Covoluio Sum? k k k k k k 8 Lec - cwliu@wis.ee.cu.eu.w

Illusraio of Covoluio Sum/Iegral Coiuous-ime sigals f * g -- y Oupu of e covoluio - 0 3 9 Lec - cwliu@wis.ee.cu.eu.w

Illusraio of Covoluio Sum g- f g- f - - - + - - + - - - + - - + - y - -3 3 f g - 0 3 0 Lec - cwliu@wis.ee.cu.eu.w

Covoluio Sum Evaluaio Proceure Reflec a sif covoluio sum evaluaio. Grap bo k a k as a fucio of e iepee variable k. To eermie k, firs reflec k abou k=0 o obai k. Te sif by.. Begi wi large a egaive. Ta is, sif k o e far lef o e ime ais. 3. Wrie e maemaical represeaio for e iermeiae sigal ω k=k k. 4. Icrease e sif i.e., move k owar e rig uil e maemaical represeaio for ω k cages. Te value of a wic e cage occurs efies e e of e curre ierval a e begiig of a ew ierval. 5. Le be i e ew ierval. Repea sep 3 a 4 uil all iervals of imes sifs a e correspoig maemaical represeaios for ω k are ieifie. Tis usually implies icreasig o a very large posiive umber. 6. For eac ierval of ime sifs, sum all e values of e correspoig ω k o obai y o a ierval y w k.6 k Lec - cwliu@wis.ee.cu.eu.w

Eample. 3 Cosier a sysem wi impulse respose u. Use Eq..6 o 4 eermie e oupu of e sysem a ime = 5, 5, a 0 we e ipu is =u. Sol: =u Figure.3 a Te ipu sigal k above e reflece a ime-sife impulse respose k, epice as a fucio of k. b Te prouc sigal w 5 k use o evaluae y 5. c Te prouc sigal w 5 k o evaluae y5. Te prouc sigal w 0 k o evaluae y0. Lec - cwliu@wis.ee.cu.eu.w

Eample. coi.. k: k 3, k k 4 0, oerwise. Iermeiae sigal w k: For = 5: w k 5 0 Eq..6 y5 = 0 For = 5: 5k 3, 0 k 5 w5 k 4 0, oerwise 5 Eq..6 3 y5 k 0 4 5k y For = 0: 0k 3, 0 k 0 w0 k 4 0, oerwise Eq..6 y 4 5 5 k 5 3 4 3 3 5 3.88 4 k0 3 4 4 3 0 4 0 0k 0 0 k 0 3 3 4 3 3 k04 4 k03 4 4 3 3.83 6 3 Lec - cwliu@wis.ee.cu.eu.w

Eample.3 Movig-Average Sysem Te oupu y of e four-poi movig-average sysem is relae o e ipu by 3 y k 4 k 0 Deermie e oupu of e sysem we e ipu is u u 0 <Sol.>. Firs fi e impulse respose of is sysem by leig =, wic yiels u u 4 4. Reflec a sif covoluio sum evaluaio k y k k w k.6 k 4 Lec - cwliu@wis.ee.cu.eu.w

Eample.3 coi. For < 0 a > : y = 0. For 0 3: s ierval: < 0 ierval: 0 3 3 r ierval: 3 < 9 4 ierval: 9 < 5 ierval: > 5 Lec - cwliu@wis.ee.cu.eu.w y k 0 e For 3 < 9: k3 /4 4 y /4 3 4 f For 9 < : 9 3 /4 9 3 4 4 y k3

Eample.4 Ifiie Impulse Respose IIR Sysem Te ipu-oupu relaiosip for e firs-orer recursive sysem is give by Deermie e oupu of e sysem we e ipu is bu4, assumig a b a a e sysem is causal. <Sol.>. Firs fi e impulse respose of is sysem by leig =, wic yiels. Reflec a sif covoluio sum evaluaio k y k k w k y y.6 k Sice e sysem is causal, we ave = 0 for < 0. For = 0,,,, we fi a 0 =, =, =,, or u Ifiie impulse respose IIR 6 Lec - cwliu@wis.ee.cu.eu.w

Eample.4 coi. k k k b, 4k 0, oerwise k, k 0, oerwise w k k k b, 4k 0, oerwise For < 4: y = 0. For 4: y b 4 k k b b 4 k4 k k b b 5 7 Lec - cwliu@wis.ee.cu.eu.w

Eample.4 coi. 5 5 b y b 4 0, 4 b, 4 Figure.5c p. 0 c Te oupu y assumig a p = 0.9 a b = 0.8. 8 Lec - cwliu@wis.ee.cu.eu.w

Eample.5 Ivesme Compuaio y: e ivesme a e sar of perio Suppose a ieres a a fie rae per perio r%, e e ivesme compou grow rae is =+r% If ere is o eposis or wirawals, e y=y- If a ere is eposis or wirawals occurre a e sar of perio, says, e y=y-+ Please fi e value of a ivesme earig 8% per year if $000 is eposie a e sar of eac year for 0 years a e $500 is wiraw a e sar of eac year for 7 years. 9 Lec - cwliu@wis.ee.cu.eu.w

w k k 000.08, 0 k 0, oerwise 0 9. 0 6 7 k k 000.08, 0 k 9 000.08, 0 k 9 k k w k 500.08, 0 k w k500.08, 0 k 6 0, oerwise 0, oerwise 0 Lec - cwliu@wis.ee.cu.eu.w

Eample.5 coi. Figure.7 e Te oupu y represeig e value of e ivesme immeiaely afer e eposi or wirawal a e sar of year. Lec - cwliu@wis.ee.cu.eu.w

Coiuous Iegral Reflec-a-sif coiuous iegral evaluaio aalogous o e coiuous sum. Grap bo a as a fucio of e iepee variable. Begi wi e sif large a egaive, i.e. sif o e far lef o e ime ais o obai 3. Wrie e maemaical represeaio for e iermeiae sigal w =. 4. Icrease e sif i.e. move owar e rig uil e maemaical represeaio of w cages. Te value a wic e cage occurs efies e e of e curre se a e begiig of a ew se. 5. Le be i e ew se. Repea sep 3 a 4 uil all ses of sifs a e correspoig w are ieifie. Tis usually implies icreasig o a very large posiive umber. 6. For eac ses of sifs, iegrae w from = o =, o obai. w Lec - cwliu@wis.ee.cu.eu.w

Eample.6 Give a 3 uu u u Evaluae e covoluio iegral y =. <Sol.> w, 0, oerwise w, 3 0, oerwise 3 Lec - cwliu@wis.ee.cu.eu.w y 0,, 3 5, 3 5 0, 5

Impulse Respose of Coiuous-Time LTI Sysem H{} Lec - cwliu@wis.ee.cu.eu.w 4 Recall a LTI sysem Ipu Oupu y } { } { H H H y Liear Time-ivaria y Te oupu is a weige superposiio of impulse resposes ime sife by

Eample.&.7 RC Circui Sysem y Accorig o KVL, we ave Ri y, i.e. RC y If = u, i.e. e sep respose, e soluio is / RC y e u Please fi e impulse respose of e RC circui <Sol.> RC circui is LTI sysem. / RC y e, u u u / RC y e u, // RC // RC y e u / e u / // RC // RC u / u / e u / e u / 5 Lec - cwliu@wis.ee.cu.eu.w

lim 0 0 y lim y / RC e u / RC / RC e u u e e e u RC / RC / RC, Cacel eac oer! / RC y e u,.93 RC Eample.7 RC Circui Oupu i.e. e impulse respose of e RC circui sysem We ow assume e ime cosa i e RC circui sysem is RC = s. Use covoluio o eermie e volage across e capacior, y, resulig from a ipu volage u u. 6 Lec - cwliu@wis.ee.cu.eu.w

Eample.7 coi. <Sol.> RC circui is LTI sysem, so y =.. Grap of a :. Iervals of ime sifs:. For < 0, w = 0 7, 0 0, oerwise. For 0 <, w 3. For, a e, 0 w 0, oerwise 3. Covoluio iegral: For seco ierval 0 < : 0 3 For ir ierval : e, 0 0, oerwise y e e e e y e e e e e 0 Lec - cwliu@wis.ee.cu.eu.w, e e u 0, oerwise 0 0 --

Eample.8 Suppose a e ipu a impulse respose of a LTI sysem are u u 3 u u a Fi e oupu of e sysem. <Sol.> Tere are five iervals s ierval: < 0 ierval: 0 < 3 r ierval: < 3 4 ierval: 3 < 5 5 ierval: 5 Figure.4 a Te reflece a ime-sife impulse respose, epice as a fucio of. b Te prouc sigal w for 0 <. c Te prouc sigal w for < 3. Te prouc sigal w for 3 < 5. e Te prouc sigal w for 5. f Te sysem oupu y. 8 Lec - cwliu@wis.ee.cu.eu.w

Oulie Iroucio Te Covoluio Sum Covoluio Sum Evaluaio Proceure Te Covoluio Iegral Covoluio Iegral Evaluaio Proceure Iercoecios of LTI Sysems Relaios bewee LTI Sysem Properies a e Impulse Respose Sep Respose Differeial a Differece Equaio Represeaios Solvig Differeial a Differece Equaios 9 Lec - cwliu@wis.ee.cu.eu.w

Iercoecio of LTI sysems Te resuls for coiuous- a iscree-ime sysems are early ieical. Parallel Coecio of LTI Sysems Disribuive propery Coiuous-ime case Discree-ime case Lec - cwliu@wis.ee.cu.eu.w 30 Equivale sysem. y

Iercoecio of LTI sysems. Cascae Coecio of LTI Sysems Associaive propery Equivale sysem Lec - cwliu@wis.ee.cu.eu.w 3 z v v z z y Cage variable by =

Iercoecio of LTI sysems Lec - cwliu@wis.ee.cu.eu.w 3. Cascae Coecio of LTI Sysems Commuaive propery Cage variable by =

Eample. Cosier e iercoecio of four LTI sysems. Te impulse resposes of e sysems are u, u u,,. 3 a 4 u Fi e impulse respose of e overall sysem. <Sol.> u u u u a. Parallel combiaio of a : 3 u u b. is i series wi 3 : c. 3 is i parallel wi 4 : 4 u u 33 Lec - cwliu@wis.ee.cu.eu.w

Relaio Bewee LTI Sysem Properies a e Impulse Respose Te impulse respose compleely caracerizes e IO beavior of a LTI sysem. Usig impulse respose o ceck weer e LTI sysem is memory, causal, or sable.. Memoryless LTI Sysems Te oupu epes oly o e curre ipu Coiio for memoryless LTI sysems c simply perform k c k scalar muliplicaio o e ipu. Causal LTI Sysem Te oupu epes oly o pas or prese ipus y 0. Coiio for causal LTI sysems k 0 for k 0 0 for 0 cao geerae a oupu before e ipu is applie 34 Lec - cwliu@wis.ee.cu.eu.w

Relaio Bewee LTI Sysem Properies a e Impulse Respose 3. BIBO sable LTI Sysems Te oupu is guaraee o be boue for every boue ipu. y M k k k k k k k M k M k k Coiio for memoryless LTI sysems k k Te impulse respose is absoluely summable/iegrable 35 Lec - cwliu@wis.ee.cu.eu.w

Eample. Firs-Orer Recursive Sysem Te firs-orer sysem is escribe by e ifferece equaio y y a as e impulse respose u Is is sysem causal, memoryless, a BIBO sable? <Sol.>. Te sysem is causal, sice = 0 for < 0.. Te sysem is o memoryless, sice 0 for > 0. 3. Sabiliy: Ceckig weer e impulse respose is absoluely summable? k k k iff < k k0 k0 A sysem ca be usable eve oug e impulse respose as a fiie value for all. Eg: Ieal iegraor: 36 y wi e impulse respose: = u. Ieal accumulaor: y k wi e impulse respose: = u k Lec - cwliu@wis.ee.cu.eu.w

Relaio Bewee LTI Sysem Properies a e Impulse Respose 4. Iverible Sysems A sysem is iverible if e ipu o e sysem ca be recovere from e oupu Associaive law y iv iv iv Coiio for memoryless LTI sysems iv i.e. Decovoluio a Equalizer iv Easy coiio, bu ifficul o fi or impleme 37 Lec - cwliu@wis.ee.cu.eu.w

Summary 38 Lec - cwliu@wis.ee.cu.eu.w