Research Article Low Frequency Axial Flux Linear Oscillating Electric Drive Suitable for Short Strokes

Similar documents
Research Article A New Type of Magnetic Actuator Capable of Wall-Climbing Movement Using Inertia Force

FE Magnetic Field Analysis Simulation Models based Design, Development, Control and Testing of An Axial Flux Permanent Magnet Linear Oscillating Motor

Research Article Electromagnetic and Mechanical Characteristics Analysis of a Flat-Type Vertical-Gap Passive Magnetic Levitation Vibration Isolator

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

RELUCTANCE NETWORK MODEL OF A PERMANENT MAGNET TUBULAR MOTOR

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Flux: Examples of Devices

Shanming Wang, Ziguo Huang, Shujun Mu, and Xiangheng Wang. 1. Introduction

Revision Guide for Chapter 15

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 22, NO. 1, JANUARY /$ IEEE

Tutorial Sheet Fig. Q1

The initial magnetization curve shows the magnetic flux density that would result when an increasing magnetic field is applied to an initially

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Research Article Forward and Reverse Movements of a Linear Positioning Stage Based on the Parasitic Motion Principle

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion.

magneticsp17 September 14, of 17

Development of a new linear actuator for Androids

2577. The analytical solution of 2D electromagnetic wave equation for eddy currents in the cylindrical solid rotor structures

Regular paper. Design and FE Analysis of BLDC Motor for Electro- Mechanical Actuator

Comparative investigation of permanent magnet linear oscillatory actuators used in orbital friction vibration machine

Measurement of Flux Linkage and Inductance Profile of SRM

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3 - MAGNETISM and INDUCTION

Tubular Linear Permanent Magnet Actuator with Fractional Slots

STAR-CCM+ and SPEED for electric machine cooling analysis

Accurate Joule Loss Estimation for Rotating Machines: An Engineering Approach

Revision Guide for Chapter 15

Proposal of short armature core double-sided transverse flux type linear synchronous motor

Research Article Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling

Unified Torque Expressions of AC Machines. Qian Wu

A low cost linear induction motor for laboratory experiments

2002 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

4.7.1 Permanent and induced magnetism, magnetic forces and fields. Content Key opportunities for skills development

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

Analysis of permanent magnet linear motor parameters taking its heating into account

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

EE 410/510: Electromechanical Systems Chapter 4

4 Finite Element Analysis of a three-phase PM synchronous machine

CPPM Mahine: A Synchronous Permanent Magnet Machine with Field Weakening

DESIGN AND ANALYSIS OF AXIAL-FLUX CORELESS PERMANENT MAGNET DISK GENERATOR

Research Article Thermal Analysis of Air-Core Power Reactors

Vector Analysis and Equivalent Circuit of a Three-Phase Motor Stator

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator

IEEE Transactions on Applied Superconductivity. Copyright IEEE.

Magnetism & Electromagnetism

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

THE INFLUENCE OF THE ROTOR POLE SHAPE ON THE STATIC EFICIENCY OF THE SWITCHED RELUCTANCE MOTOR

Optimal Design of PM Axial Field Motor Based on PM Radial Field Motor Data

ENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM

Finite Element Based Transformer Operational Model for Dynamic Simulations

Project 1: Analysis of an induction machine using a FEM based software EJ Design of Electrical Machines

Generators for wind power conversion

1. Introduction. (Received 21 December 2012; accepted 28 February 2013)

PERMANENT MAGNET EXCITED TRANSVERSE FLUX LINEAR MOTOR WITH INNER MOVER FOR ROPELESS ELEVATOR

Prototype development model for conveyor using linear induction motor

MAGNETIC CIRCUITS. Magnetic Circuits

Analytical and numerical computation of the no-load magnetic field in induction motors

UJET VOL. 2, NO. 2, DEC Page 8

Chapter 15 Magnetic Circuits and Transformers

EN Power Electronics and Machines

THERMAL FIELD ANALYSIS IN DESIGN AND MANUFACTURING OF A PERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR

Outer rotor eddy current heater for wind turbines

Static Characteristics of Switched Reluctance Motor 6/4 By Finite Element Analysis

Study and Characterization of the Limiting Thermal Phenomena in Low-Speed Permanent Magnet Synchronous Generators for Wind Energy

Static Analysis of 18-Slot/16-Pole Permanent Magnet Synchronous Motor Using FEA

AXIAL FLUX INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR WITH SINUSOIDALLY SHAPED MAGNETS

This is a repository copy of Design optimization of radially magnetized, iron-cored, tubular permanent-magnet machines and drive systems.

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement

Introduction to Synchronous. Machines. Kevin Gaughan

4.7 Magnetism and electromagnetism

Electromagnetic Induction & Inductors

Design, analysis and fabrication of linear permanent magnet synchronous machine

CHAPTER 3 INFLUENCE OF STATOR SLOT-SHAPE ON THE ENERGY CONSERVATION ASSOCIATED WITH THE SUBMERSIBLE INDUCTION MOTORS

IN recent years, dynamic simulation of electromagnetic actuators has been the

ELECTRIC MACHINE TORQUE PRODUCTION 101

This is a repository copy of Analysis and design optimization of an improved axially magnetized tubular permanent-magnet machine.

PRINCIPLE OF DESIGN OF FOUR PHASE LOW POWER SWITCHED RELUCTANCE MACHINE AIMED TO THE MAXIMUM TORQUE PRODUCTION

ACCURACY ASSESSMENT OF THE LINEAR INDUCTION MOTOR PERFORMANCE USING ADAPTIVE FEM

DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS

Chapter 1 Magnetic Circuits

Analysis and Performance Evaluation of an Axial-Field Brushless PM Machine Utilising Soft Magnetic Composites

Modeling and Design Optimization of Permanent Magnet Linear Synchronous Motor with Halbach Array

Measurements in Mechatronic design. Transducers

4.7 Magnetism and electromagnetism

Eddy Current Losses in the Tank Wall of Power Transformers

Basics of Permanent Magnet - Machines

Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor

Loss analysis of a 1 MW class HTS synchronous motor

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor

Electrical and Magnetic Modelling of a Power Transformer: A Bond Graph Approach

Simulation of Direct Torque Control of Induction motor using Space Vector Modulation Methodology

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Lesson 17: Synchronous Machines

This is a repository copy of Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines.

Transcription:

IRN Electronics, Article ID 765161, 5 pages http://dx.doi.org/10.1155/2014/765161 Research Article Low Frequency Axial Flux Linear Oscillating Electric Drive uitable for hort trokes Govindaraj Thangavel Department of Electrical & Electronics Engineering, Muthayammal Engineering College, Rasipuram 637 408, India Correspondence should be addressed to Govindaraj Thangavel; govindarajthangavel@gmail.com Received 23 eptember 2013; Accepted 20 October 2013; Published 30 January 2014 Academic Editors: M. Hopkinson and R. Newcomb Copyright 2014 Govindaraj Thangavel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The design, analysis, and control methodology of an energy efficient and high force to weight ratio rare earth N42 NdFeB based permanent magnet linear oscillating motor has been described. For this axial flux machine the mover is consisting of Aluminium structure embedded with rare earth permanent magnets of high energy density. Microcontroller based drive is developed for frequency and thrust control of the machine. Finite element method using FEMM is employed for analysis of various performance parameters of machine. The same parameters are also compared with the measured ones, which yields a good agreement to the proposed design. 1. Introduction Permanent magnet linear oscillating motors (PMLOMs) are finding increased suitability for many applications [1 3]. These motors require accurate oscillating/reciprocating characteristics for high precision application. Also the power requirements for these motors play an important role from efficiency point of view. The use of linear reluctance motors is already studied [2] under alternating current and also with direct current supply [3, 4]. The d.c. motors are having negligible core losses and therefore show higher efficiency than the a.c. ones, although the a.c. motors are employed in many applications [3]. The a.c. motors are used in pumps and many linear actuators [5]. The linear oscillating motors (LOMs) differ in terms and technologies as well as construction [3] from their rotating counterparts. The motors with the small oscillating frequency but high stroke length are used as a shuttle power drive for looms (in the textile industry) or as electric hammers. In [1, 3] the different applications for low frequency operation are given. In [6, 7] magnetic field analysis for tubular motors has been presented for mostly flat induction motors. In [5, 8, 9] the field circuit models have also been applied for simulation of dynamic characteristics of the tubular motors. However, the investigations did not include the permanent magnet axial flux type linear oscillating motors (PMLOMs). The short stroke oscillators are mainly applicable in water pumps. These motors work relatively at higher frequencies. The proposed motor as given in this paper is suitable for short stroke and low frequency application from 0 to 5 Hz. This machine has applicability for the development ofheartpumpwithadjustablestrokefrequencyandthrust force. In the present work, the field calculations of the PMLOMs and their speed and thrust control techniques are presented. In formulated motion and electrical circuit equations, the calculated parameters are used. A PMLOM is a device, which directly uses the forces of attraction and repulsion between a permanent magnet and an electromagnet. The main structure of the motor is shown in Figure 1. Theproposedmotor can easily be powered and controlled by a small, portable microcontroller based power system. It has a high forcedensity, high efficiency, and smaller size and weight. It can satisfy the performance requirements with a variable strokevolumeandbeatratecontrol.uitablesimulationsand experiments validate the proposed concept. 2. Permanent Magnet Linear Oscillating Motor (PMLOM) 2.1. Principle of Oscillating Motion. PM attraction/repulsion type linear motor is shown in Figure 1,fromwhichitfollows

2 IRN Electronics D d Linear bush haft N L H tator 1 tator 2 a b b a g L m N Mover N N N N N F A N F R c d d c Linear oscillation Figure 1: Principle of operation of the PMLOM attraction force and repulsion force. 3. Performance Analysis of PMLOM 3.1. Attraction Force. Using the model and dimensions as given in Figure 1, the inductance of the exciting coil can be written as L= ψ I = μ 0N 2 xπd, (1) 2g where ψ is flux linkage, N is number of turns, μ 0 = 4π 10 7 H/m, d is diameter of the mover, I is current in exciting coil, g is axial airgap length, and x is displacement of the mover at any point of time. From Ampere s law, neglecting the reluctance drop in the iron, the main flux density in the airgap is determined by the magnetic circuit analysis of the permanent magnet and the electromagnet. When the polarities are opposite, the MMFs of primary coil and secondary PM assist each other, but when the polarity is the same, the MMfs of primary coil and secondary PM oppose each other. Knowing coil inductance L from (1), the force in terms of coil current I and the variation of the inductance L with the position x are given by F A = 1 2 I2 dl (x) dx = μ 0N 2 I 2 πd. (2) 4g It may also be shown from the basic electromagnetic field equations that the energy W m stored in the airgap is given by that the motor is a controlled magnet system and has a variable axial airgap. everal topological variations of the electromagnetic structures are feasible. The proposed motor has a cylindrical structure with two stators, each having two slot-embedded coils (coil 1 in stator 1 consists of coils aa and bb and coil 2 in stator 2 consists of coils cc and dd )anda mover with ring type rare earth permanent magnets. For the relative polarities of the currents in the various coils it may be readily verified that there will be an attraction force between coil 1 and the permanent magnets and a repulsion force betweencoil2andthepermanentmagnets.thus,themover will tend to move to the left. At the end of the stroke, the polarities of the currents in coils 1 and 2 are simultaneously reversed. This reversal changes the directions of the forces. A repulsion force now exists between coil 1 and the permanent magnets and an attraction force exists between coil 2 and the permanent magnets. Consequently, the mover tends to movetotheright.attheendofthestrokethepolarities of the currents in coils 1 and 2 are reversed again and go on cyclically. Hence, sustained oscillations are obtained. PMLOMs are based on several phenomena. The fundamental is the change in magnetic energy with the mover movement. The energy is maximum when the mover is situated nearer to any one of the stators. When it is moved away from the stator, energy is lower. The energy changing produces the magnetic force, which results in the oscillating motion of the mover. W m = B2 g 2μ 0 2gxπd, (3) where B g is airgap flux density. The electromagnetic force is obtained from F= W m x = B 2 g 2gπd. (4) 2μ 0 In these machines the flux density, B g,canbeincreased to 1 tesla without saturating the core, in which case the force density becomes 4 10 5 N/m 2. 3.2. Repulsion Force. Now, considering the repulsion force, we have the polarities of the currents reversed. The fluxes in the airgap are predominately radial. Qualitatively, it may be seen from Figure 1 that we now have a force of repulsion between the coil and the permanent magnets. For a small airgap and for a uniform flux density in the airgap a simple magnetic circuit approach yields the magnetic stored energy. From Ampere s law, neglecting the reluctance drop in the iron, the flux density of coil is related to the potential (MMF) by B E =μ 0 H E = H E = μ 0NI H2g, NI H2g, (5)

IRN Electronics 3 (a) (b) 1.418e 000 : >1.492e 000 1.343e 000 : 1.418e 000 1.269e 000 : 1.343e 000 1.194e 000 : 1.269e 000 1.119e 000 : 1.194e 000 1.045e 000 : 1.119e 000 9.702e 001 : 1.045e 000 8.956e 001 : 9.702e 001 8.210 e 001 : 8.956e 001 7.464e 001 : 8.210e 001 6.718e 001 : 7.464e 001 5.972ee 001 : 6.718e 001 5.225e 001 : 5.972e 001 4.479e 001 : 5.225e 001 3.733e 001 : 4.479e 001 2.987e 001 : 3.733e 001 2.241e 001 : 2.987e 001 1.495e 001 : 2.241e 001 7.490e 002 : 1.495e 001 <2.912e 004 : 7.490e 002 Density plot: B (Tesla) Figure 2: (a) Finite element mesh of PMLOM while mover is oscillating with in stator 1. (b) Magnetic flux plotting of PMLOM while mover is oscillating with in stator 1, at 1 Hz. where H E is magnetic field intensity along radial direction and B E is flux density along radial direction. Referring to Figure 1, B E, φ E, ψ E,andL E can be obtained as φ E =B E πd (l s x)= μ 0NIπd (l s x) H2g ψ E =Nφ E L E = ψ E I =μ 0N 2 πd (l s x) H2g, where φ E is magnetic flux along radial direction, ψ E is magnetic flux linkage along radial direction, L E is inductance along radial direction, l s is stroke length, and H is thickness of mover. The above expression may be combined to give the repulsion force F R in terms of I and the variation of L E with x as F R = 1 L E 2 I2 x = μ 0 πd 2 (NI)2 H2g. (7) The repulsion force F R will assist the attractive force F A as shown in the Figures 2(a) and 2(b). Then combining (2)and (7), the total force F t becomes F t =F A F R = μ 0 2 (NI)2 πd ( 1 2g 1 ). (8) H2g 4. Magnetic Field Analysis imulation The proposed model was analyzed through FEMM environment, which provides the analysis through finite element method. The inductance of the stator at different frequency is calculated from the analysis. The magnetic flux density at the mover, exciting winding, and airgap region are calculated with FEM method. The calculation process involves the modeling of the geometry, setting boundary conditions and (6) Table 1: PMLOM parameters. Rated input voltage 70 V Rated input power 175 watts troke length 10 mm Outer diameter (stator) 93 mm tator core type Cold rolled grain oriented silicon steel Thickness of lamination 0.27 mm tator length 30mm Number of turns in coils aa and cc 500 Number of turns in coils bb and dd 250 Coil resistance 14.2 ohms lot depth 17 mm Magnet type Rare earthn42, NdFeB Permanent magnet length 2mm Coercivity 975000 A/m Remanence 1.2 T Outer diameter (mover) 65 mm haft diameter 8mm Coilinductance 0.18 Henry domain properties, generating the finite element mesh, and calculating the internal parameter at different frequency as well as at different displacement. Thus, after including the main dimensions of the machine (Figure 1) the physical properties of materials under investigation have been given. The corresponding mesh and plot of flux lines for the machine with the mover position are shown in Figures 2(a) and 2(b), respectively. The simulation was done with dimensions and parameters of the same machine taken for experiment. The parameters are given in Table 1.

4 IRN Electronics Triac 30 25 230 V 50 Hz A.C. R 1 C 1 Diac R g D 1 D 3 D 2 D 4 C 2 T 1 T 2 T 3 T 4 tator of PMLOM Total force (N) 20 15 10 5 Thrust control Gate drive PIC 16FA877 microcontroller Frequency control Figure 3: Power circuit of PMLOM. Gate pulse 0 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 Airgap (mm) Figure 5: Airgap versus total force resultant of oscillating mover of PMLOM. Power (W), voltage (V), force (N) 160 140 120 100 80 60 40 20 0 1.6 2.2 2.5 2.7 Current (A) Power Voltage Force Figure 6: Measured coil current versus power (W). Voltage (V) and Force (N) characteristics of PMLOM. in volts, and force in Newton at 1 Hz frequency characteristics is plotted and shown in Figure 6. Figure 4: Current waveform of PMLOM taken from Tektronix make torage oscilloscope. 5. Experimental Results The machine was given a variable voltage as shown in Figure 3. The input to the motor is through an IGBT based inverter whose gate drive is controlled by a PIC16F877A digital microcontroller. The output of the PIC processor is fed to a gate driver, which ultimately supplies the gating signals. The stroke frequency can be controlled through the microprocessor whereas the thrust force can be controlled by a phase angle controller through a triac. The input current waveform is taken through a Tektronix make torage oscilloscope and shown in Figure 4 for 2 Amps, 50 Volts supply at 5 Hz. The force measurement is done through a force transducer and then compared with theoretical values. The axial airgap length versus total force from (8) isshownin Figure 5.Themeasuredcurrentversuspowerinwatts,voltage 6. Conclusion Analytical solution to the forces and determination method of the integral parameters of a PMLOM are presented. Finite element method with FEMM4.2 is used for the field analysis of the different values of the exciting current and for variable mover position. Computer simulations for the magnetic field distribution and forces are given. To obtain experimentally the field distribution and its integral parameters, a physical model of the motor together with its electronic controller system has been developed and tested. The prototype has been operated in the oscillatory mode with small loads at low frequency up to 5 Hz. The theoretically calculated results are compared with the measured ones and found a good conformity. Conflict of Interests The author declares that there is no conflict of interests regarding the publication of this paper.

IRN Electronics 5 References [1] I. Boldea and. A. Nasar, Linear Motion Electromagnetic ystems, Wiley, New York, NY, UA, 1985. [2] E. A. Mendrela, Comparison of the performance of a linear reluctance oscillating motor operating under AC supply with one under DC supply, IEEE Transactions on Energy Conversion, vol. 14, no. 3, pp. 328 332, 1999. [3].A.NasarandI.Boldea,Linear Electric Motors, Prentice-Hall, Englewood Cliffs, NJ, UA, 1987. [4] B. Tomczuk and M. obol, Influence of the supply voltage on the dynamics of the one-phase tubular motor with reversal motion, in Proceedings of the 39th International ymposium Electrical Machines (ME 2003), pp. 417 426, Gdansk/Jurata, Poland, June 2003. [5] N. adowski, R. Carlson, A. M. Beckert, and J. P. A. Bastos, Dynamic modeling of a newly designed linear actuator using 3D edge elements analysis, IEEE Transactions on Magnetics,vol. 32,no.3,pp.1633 1636,1996. [6] M. Rizzo, 3-D finite element analysis of a linear reluctance motor by using difference scalar potential, IEEE Transactions on Magnetics,vol.32,no.3,pp.1533 1536,1996. [7] B. Tomczuk and M. obol, Analysis of tubular linear reluctance motor (TLRM) under various voltage supplying, in Proceedings of the 16 International Conference on Electrical Machines (ICEM 04), vol. 3, pp. 1099 1100, Cracow, Poland, eptember 2004. [8] L. Nowak, Dynamic FE analysis of quasiaxisymmetrical electromechanical converters, IEEE Transactions on Magnetics,vol. 30,, no. 5, pp. 3268 3271, 1994. [9] B. Tomczuk, Three-dimensional leakage reactance calculation and magnetic field analysis for unbounded problems, IEEE Transactions on Magnetics,vol.28,no.4,pp.1935 1940,1992.

Rotating Machinery Engineering The cientific World Journal Distributed ensor Networks ensors Control cience and Engineering Advances in Civil Engineering ubmit your manuscripts at Electrical and Computer Engineering Robotics VLI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & imulation in Engineering hock and Vibration Advances in Acoustics and Vibration