Chromite and tourmaline chemical composition as a guide to mineral exploration

Similar documents
Magmatic Ore Deposits:

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

POTENTIAL FOR SIGNIFICANT UNDISCOVERED METALLIC ORE DEPOSITS IN MAINE. John F. Slack U.S. Geological Survey (Emeritus), Farmington, ME 04938

Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania. Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis


Chapter IV MINERAL CHEMISTRY

A classification scheme for ore deposits Einaudi, (2000),

Ore deposits related to mafic igneous rocks Diamonds - GLY 361 Lecture 3

The Geology of ORE DEPOSITS. John M. Guilbert. University of Arizona. Charles F. Park, Jr. W. H. Freeman and Company / New York

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

What is going on here?

Types of Metamorphism!

Introduction to Prospecting. Session Four Ore Deposits

Supporting Information

Major and trace element chemistry of gahnite in metamorphosed massive sulphide deposits: discrimination diagrams to determine provenance

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

GEOLOGY 285: INTRO. PETROLOGY

Native elements, sulfides, oxides, & hydroxides. JD Price

muscovite PART 4 SHEET SILICATES

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

The Composition of the Continental Crust

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

GY111 Earth Materials Practice Final Exam

Metamorphic Energy Flow. Categories of Metamorphism. Inherited Protolith Character. Inherited Fabric. Chemical Composition

INTRODUCTION. J. Méric 1, P. Pagé 1, S.-J. Barnes 1,2 and M.G. Houlé 3

Geos 306, Mineralogy Final Exam, Dec 12, pts

amphibole PART 3 Pyroxene: augite CHAIN SILICATES

Lecture 36. Igneous geochemistry

GY111 Earth Materials Practice Final Exam

Real-Life Applications: Economic Mineral Deposits

Economic Ores. - Mostly metals

Alteration of the Kambalda Komatiite Formation in the Hannan Lake area, near Kalgoorlie, Western Australia

Características e Critérios da Exploração de Depósitos Orogenéticos de Ouro

Ore deposits related to mafic igneous rocks carbonatitehosted. deposits - GLY 361 Lecture 6

BUREAU OF MINERAL RESOURCES, GEOLOGY AND GEOPHYS-ICS

Ore Deposits and Mantle Plumes

GY303 Igneous & Metamorphic Petrology. Lecture 7: Magma Sources and Tectonic Environments

OROGENIC MINERALIZATIONS A NEW EXPLORATION TARGET FOR GOLD- POLYMETALLIC ORE DEPOSITS IN GREECE

Lecture 6 - Igneous Rocks and Volcanoes

How do you define Resource? Resources

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data)

New geologic mapping + and associated economic potential on northern Hall Peninsula, Baffin Island, Nunavut

The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks

EMMR25 Mineralogy: Ol + opx + chlorite + cpx + amphibole + serpentine + opaque

Metcalf and Buck. GSA Data Repository

Worked Example of Batch Melting: Rb and Sr

16. Metamorphic Rocks II (p )

Gossan s Industrial Mineral Opportunities in Manitoba

Chapter 4 Rocks & Igneous Rocks

SHORT TABLE OF CONTENTS

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

Rutile as a potential indicator mineral for metamorphosed metallic ore deposits

Shortcuts to mineral formulae

How many drillholes do I need to upgrade my Inferred Resource? Andrew Fowler Kathy Zunica

GY 112 Lecture Notes Archean Geology

Evaluating the Intrusion-Related Model for the Archean Low-Grade, High- Tonnage Côté Gold Au(-Cu) Deposit

Paper 1: THE ROLE OF FLUORINE IN THE FORMATION OF COLOR ZONING IN RUBIES FROM MONG HSU, MYANMAR (BURMA)

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

Supplementary Information

Igneous Rocks. Igneous Rocks. Genetic Classification of

EAS 4550: Geochemistry Problem Set 4 Solutions Due Sept. 27, 2017

Darrell J. Henry and Charles V. Guidotti, 1985, Tourmaline as a petrogenetic indicator mineral: an example from the staurolitegrade metapelites of NW

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS [Lu] [Hf]

PICRITES OF THE NORTHERN NURATAU (SOUTHERN TIEN SHAN, UZBEKISTAN)

PGE potential of Ultramafic-Mafic Intrusions in Ontario: Vectors to PGE mineralization and where next..

Chemistry and the Earth. Martin F. Schmidt, Jr.

Evolution of the Malko Tarnovo plutonism and its significance for the formation of the ore deposits in the region.

VECTORING VOLCANOGENIC MASSIVE SULPHIDE MINERALIZATION AT THE RAINDROP ZONE, SNOW LAKE (NTS 63K16), MANITOBA by G.H. Gale

Metamorphism (means changed form

Chapter 8 10/19/2012. Introduction. Metamorphism. and Metamorphic Rocks. Introduction. Introduction. The Agents of Metamorphism

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

GEOL 3313 Petrology of Igneous and Metamorphic Rocks Study Guide for Final Examination Glen Mattioli

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Silica enrichment in the continental upper mantle via melt=rock reaction

Lecture part 60% Tests: 1st: Topic 1-3 (20%) 2nd: Topic 4-9 (20%) 3rd: Topic (20%) Final: all

Metamorphic Petrology. Jen Parks ESC 310, x6999

Archean Terranes. Archean Rocks. Southeastern Africa. West Greenland. Kaapvaal Craton. Ancient Gneiss Complex

Laser ICP-MS magnetite analyses: a tool to discriminate hydrothermal gold-associated from other magnetites

The Rock Cycle: Part Two

A Rock is a solid aggregate of minerals.

New gold discovery in the Paleoproterozoic Mauken greenstone belt

About Earth Materials

Minerals. Atoms, Elements, and Chemical Bonding. Definition of a Mineral 2-1

Serpentine Mine, Cyprus, 2007

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0

INTRODUCTION TO MINERALOGY 15

APPENDICES. Appendix 1

Magma fertility: Concepts and JCU research at NQ

Objectives of this Lab. Introduction. The Petrographic Microscope

2009 (25) ! & "# $ % / 5 1 / 3 & ) * / 1 1 / 8 " # (, 3 4 # 1# 2.( /0# ) "! %2 : % % 1 #

Metamorphic history of Nuvvuagittuq greenstone belt, Northeastern Superior Province, Northern Quebec, Canada

10/20/2015. How is magma different from lava? Magma is molten rock below the Earth s surface. Lava is magma that flows out onto Earth s surface.

Mineral Systems and Exploration Targeting. T. Campbell McCuaig - Centre for Exploration Targeting

Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

J. Mangas and F.J. Perez-Torrado. Departamento de Física. Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria.

Geol. 656 Isotope Geochemistry

Determination of tectonomagmatic environment of volcanic and subvolcanic rocks in North of Shahrekord by amphiboles geothermobarometry

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

predictive mineral discovery*cooperative Research Centre A legacy for mineral exploration science Mineral Systems Q3 Fluid reservoirs

Transcription:

Chromite and tourmaline chemical composition as a guide to mineral exploration Gabriel Voicu Université du Québec à Montréal, Canada and Cambior Management Services

Content of presentation Part 1 Chromite Introduction Methodology Comparison between all lithology types Discussion for each lithology type Conclusions Part 2 Tourmaline Introduction Methodology Discussion by ore deposit types Discussion by age Discussion by metamorphic facies Conclusions

PART 1 CHROMITE

Use of chromite composition for Define the geological context? Recognize the mineralized zones?

Methodology Chromite chemical analyses: SiO2, TiO2, V2O3, Al2O3, Cr2O3, Fe2O3, FeO, MnO, MgO, CaO, Na2O, K2O, ZnO, NiO Cationic formula Description References Chromite group mineral database - 26,000 chemical analyses (Barnes et Roeder, 2002) Division by geological environment - Lithology and tectonic context - Metamorphic grade Division mineralized/barren

Lithology and tectonic context Xenoliths Ophiolites, Oceanic and Alpine -type peridotites Layered mafic complexes Alaska -type ultramafic complexes Tholeitiic basalts and boninites Kimberlites, Alkaline rocks and lamprophyres Komatiites Mineralized Mineralized Mineralized Mineralized Mineralized Barren Barren Barren Barren Barren Barren Barren Note: mineralized includes any mineralization type (chromite, nickel, gold, PGE)

Metamorphic facies Greenschists Amphibolites Granulites/ eclogites

Chromite A solid solution Iron magnesio-ferrite, magnetite, franklinite, jacobsite, trevotite Chemical formula: XY 2 O 4 X = (Fe 2+, Mg, Ni, Mn, Co, Zn) Y = (Cr 3+, Fe 3+, Al, Ti, V) Ideal chemical composition: Cr = 46.46 %; Fe = 24.95 %; O = 28.59 % ; Cr 2 O 3 = 67.90 %; FeO = 32.10 % Chrome : magnesio-chromite, mangano-chromite, nichromite, cochromite, zinchromite Aluminium: spinel, hercynite, gahnite

Factors that influence chromite composition Temperature Fractional crystallization Oxygen fugacity Simultaneous Fe-Mg-Al silicate crystallization Cr/(Cr+Al) ratio is controlled by pressure and crystallization processes Fe 3+ /(Cr+Al+Fe 3+) vs. Mg/(Mg+Fe 2+) depends on oxygen fugacity Mg/(Mg+Fe 2+ ) ratio is controlled by temperature

Chromite replacement Magnetite veinlets Ilmenite exsolution in chromite Chromite complete replacement by magnetite Chromite Chromite partial replacement by magnetite Magnetite with chromite core

Significant variability for barren rocks (Fe 2 O 3 vs Cr 2 O3, Y-site) 80 70 Magnetite ideal composition 60 50 Fe2O3 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Chromite - ideal composition Cr2O3

Less variability for mineralized rocks (Fe 2 O 3 vs Cr 2 O3, Y-site) 80 70 Magnetite ideal composition 60 50 Fe2O3 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Cr2O3 Chromite - ideal composition

Barren rocks (Al 2 O 3 vs Cr 2 O 3, Y-site) 70 60 Spinel, hercynite, gahnite 50 Al2O3 40 30 20 10 0 0 20 40 60 80 Cr2O3

Mineralized rocks (Al 2 O 3 vs Cr 2 O3, Y-site) 70 60 Spinel, hercynite, gahnite 50 Al2O3 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Cr2O3

Barren rocks (MgO vs FeO, X-site) 25 Magnesio-chromite 20 MgO 15 10 5 0 0 5 10 15 20 25 30 35 FeO

Mineralized rocks (MgO vs FeO, X-site) 25 Magnesio-chromite 20 15 MgO 10 5 0 0 5 10 15 20 25 30 35 FeO

Mineralized rocks (Cr( 2 O 3 vs TiO 2, Y- site and FeO vs MnO,, X-siteX site) Kimberlites: Cr 2 O 3 Komatiites: variable Cr 2 O 3 Ophiolites: variable Cr 2 O 3, TiO 2 Layered complexes: variable Cr 2 O 3, TiO 2 Kimberlites: FeO Komatiites: FeO ; variable MnO Ophiolites: FeO, variable MnO Layered complexes: variable FeO, MnO 6 TiO2 5 4 3 2 1 0 0 10 20 30 40 50 60 70 80 Cr2O3 MnO 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20 25 30 35 FeO

Komatiites: Cr and Fe 2+ -rich, Al and Mg-poor Mineralized rocks (Y vs X cation ratios) 1 Kimberlites: Cr and Mg-rich, Al, Fe 2+ and Fe 3+ -poor Ophiolites: moderately Mgrich, Fe 3+ -poor, variable Cr and Al Layered complexes: Fe 3+ - poor, variable Cr, Al, and Mg Alaska -type: moderately Crrich, variable Al, Fe 2+ and Mg Fe 3+ /(Fe 3+ +Cr 3+ +Al 3+ ) Cr 3+ /(Cr 3+ +Al 3+ ) 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Fe 2+ /(Fe 2+ +Mg 2+ ) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Fe 2+ /(Fe 2+ +Mg 2+ )

Geological environments Kimberlites Komatiites Ophiolites, peridotites Layered mafic complexes Alaska -type complexes

Mineralized and barren kimberlites (Fe 2 O 3 vs Cr 2 O3, Y-site) 80 70 60 50 Gradual transition between chromite and magnetite Barren kimberlites Mineralized Kimberlites Fe2O3 40 30 Low Fe 2 O 3 20 10 0 0 10 20 30 40 50 60 70 80 Cr2O3

Mineralized and barren kimberlites (FeO vs MgO,, X-site) X 25 20 Mineralized kimberlites Barren kimberlites 15 MgO 10 5 Low FeO 0 0 5 10 15 20 25 30 35 FeO

Kimberlites Cr/(Cr+Al) 1,00 0,90 0,80 0,70 0,60 0,50 0,40 Low Fe 2 O 3 content Chromite composition very close to ideal composition 0,30 0,20 0,10 0,00 0,00 0,20 0,40 0,60 0,80 1,00 Fe 2+ /(Fe 2+ +Mg)

Kimberlite Positive criteria Low FeO and Fe 2 O 3 content in chromite Magnetite borders Chromite close to ideal composition Negative criteria Cr 2 O 3 replacement by Fe 2 O 3

Geological environments Kimberlites Komatiites Ophiolites, peridotites Layered mafic complexes Alaska -type complexes

Komatiites (Fe 2 O 3 vs Cr 2 O3, Y-site) MAGNETITE 80 70 60 Chromite substitution by magnetite (metamorphism?) 50 Fe2O3 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Cr2O3 CHROMITE

Barren komatiites (FeO vs MgO,, X-site) X 25 MgO between 0% and 17% 20 MgO 15 10 5 0 0 5 10 15 20 25 30 35 FeO

Mineralized komatiites (FeO vs MgO,, X-site) X 25 20 MgO < 5% 15 MgO 10 5 0 0 5 10 15 20 25 30 35 FeO

Metamorphic komatiites (Fe 2 O 3 vs Cr 2 O3, Y-site) 100 90 80 70 Very good correlation for amphibolite facies Relatively good correlation for greenschist facies Lack of correlation for granulite and eclogite facies 60 Fe2O3 50 40 30 20 10 0 0 10 20 30 40 50 60 70 Cr2O3

Metamorphic komatiites (Al 2 O 3 vs Cr 2 O3, Y-site) Al content in the greenschist facies is higher in respect to amphibolite, granulite and eclogite facies 25 Cr content is very low in the granulite-eclogites facies in respect to amphibolite and greenschist facies Komatiites métamorphisées 20 Al2O3 15 10 5 0 0 10 20 30 40 50 60 70 Cr2O3

Metamorphic komatiites (MgO vs FeO, X-site) Three tendencies: Greenschist: regular Fe 2+ replacement by Mg Amphibolite: decrease in Mg and Fe 2+ contents (other chemical elements are involved) Granulite eclogite: increase in Mg and Fe 2+ contents (the only two elements in X-site) 20 18 16 14 MgO 12 10 8 6 4 2 0 0 10 20 30 40 FeO

Komatiites Positive criteria Negative criteria Low MgO contents (<5%) High MgO contents (> 5%) Lack of FeO substitution by MgO FeO substitution by MgO

Metamorphism effects When metamorphic grade increases: Cr 2 O 3 content decreases Al 2 O 3 content decreases Cr 2 O 3 frequent replacement by Fe 2 O 3 for the mineralized and barren komatiites probably reflects the metamorphic grade

Geological environments Kimberlites Komatiites Ophiolites, peridotites Layered mafic complexes Alaska -type complexes

Barren ophiolites, peridotites (Fe 2 O 3 vs Cr 2 O3, Y-site) MAGNETITE 80 70 60 Cr substitution by other elements 50 Fe2O3 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Cr2O3 CHROMITE

Mineralized ophiolites, peridotites (MgO vs FeO, X-site) 25 20 15 MgO 10 5 0 Magnesio-chromite presence 0 5 10 15 20 25 30 35 FeO

Ophiolites, peridotites (Cation ratios) Mineralized n = 2272 Barren n = 3051 1.00 1.00 0.80 0.80 Cr/(Cr+Al) 0.60 0.40 Fe 3+ /(Fe 3+ +Cr+Al) 0.60 0.40 0.20 0.20 0.00 0.00 0.20 0.40 0.60 0.80 1.00 0.00 0.00 0.20 0.40 0.60 0.80 1.00 Fe 2+ /(Fe 2+ +Mg) Fe 2+ /(Fe 2+ +Mg) TiO2 1 0.8 0.6 0.4 No significant differences between mineralized vs barren ophiolites 0.2 0 0 0.2 0.4 0.6 0.8 1 Fe 2+ /(Fe 2+ +Mg)

Ophiolites, peridotites Positive criteria Magnesio-chromite presence Chromite substitution by other Al 2 O 3 -rich minerals such as spinel, gahnite and hercynite Lack of Cr 2 O 3 replacement by Fe 2 O 3 Negative criteria Cr 2 O 3 replacement by Fe 2 O 3

Geological environments Kimberlites Komatiites Ophiolites, peridotites Layered mafic complexes Alaska -type complexes

Layered mafic complexes (Fe 2 O 3 vs Cr 2 O3, Y-site) MAGNETITE 80 70 Significant variability Two tendencies 60 50 To magnetite Fe2O3 40 30 20 10 0 To other minerals CHROMITE 0 10 20 30 40 50 60 70 80 Cr2O3

Layered mafic complexes Layered mafic complexes - Barren Barren Cr 3+ -poor Layered mafic complexes Mineralized and Barren Layered mafic complexes - Mineralized Mineralized Barren Cr 3+ -rich Magnetite/ilmenite-rich borders Mineralized

Layered mafic complexes Mineralized n = 646 Barren n = 3260 Complexes MUM lités Minéralisées et stériles Layered mafic complexes Mineralized and Barren Complexes Layered mafiques-ultramafiques mafic complexes lités Minéralisées Mineralized 1,00 1,00 Cr/(Cr+Al) 0,80 0,60 0,40 0,20 0,00 0,00 0,20 0,40 0,60 0,80 1,00 Fe 2+ /(Fe 2+ +Mg) Stériles Barren Minéralisées Mineralized Fe 3+ /(Fe 3+ +Cr+Al) 0,80 0,60 0,40 0,20 0,00 0,00 0,20 0,40 0,60 0,80 1,00 Fe 2+ /(Fe 2+ +Mg) Stériles Barren Minéralisées Mineralized TiO2 1,00 0,80 0,60 0,40 Complexes MUM lités Minéralisées et stériles Layered mafic complexes Mineralized and Barren No significant differences between chromites of mineralized vs barren complexes 0,20 0,00 0,00 0,20 0,40 0,60 0,80 1,00 Fe 2+ /(Fe 2+ +Mg) Barren Stériles Mineralized Minéralisées

Layered mafic complexes Layered mafic complexes - Barren Layered mafic complexes Mineralized and Barren Barren Magnetite/ ilmenite-rich borders Mineralized Layered mafic complexes - Mineralized Cr 3+ -rich / Fe 3+ -poor Barren Mineralized Mineralized Mineralized

Most mineralized layered Somme complexes X/32,1 have vs Somme (Sum X)/32.1 Y/67,9 ratios between 0.80 and 0.95, while most barren layered complexes have ratios between 0.90 and 1.05 1,15 Somme Y /67,9 SUM Y / 67.9 1,13 1,11 1,09 1,07 1,05 1,03 1,01 0,99 0,97 0,95 0,80 0,85 0,90 0,95 1,00 1,05 SUM X / 32.1 Somme X /32,1 Stériles Barren Minéralisées Mineralized MINERALIZED BARREN

Layered mafic complexes Positive Cr 2 O3 partial substitution by Fe 2 O 3 Negative Cr 2 O3 partial substitution by Al 2 O 3 Chromite substitution by other minerals such as spinel, gahnite and hercynite

Geological environments Kimberlites Komatiites Ophiolites, peridotites Layered mafic complexes Alaska-type ultramafic complexes

Alaska-type ultramafic complexes 80 70 60 50 MAGNETITE Chromite partial remplacement by magnetite Fe2O3 40 30 20 10 0 0 10 20 30 40 50 60 70 80 Cr2O3 CHROMITE

Alaska-type ultramafic complexes Alaska-type complexes - Barren Barren Alaska-type complexes Mineralized and barren Alaska-type complexes - Mineralized Fe 3+ -poor, Cr 3+ -rich chromites Al and Cr 3+ - poor chromites Mineralized Barren Mineralized Mineralized Mineralized No significant difference

Alaska-type ultramafic complexes Mineralized n = 220 Barren n = 166 Cr/(Cr+Al) Barren Mineralized 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 Fe 2+ /(Fe 2+ +Mg) Fe 3+ /(Fe 3+ +Cr+Al) Barren Mineralized 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 0.00 0.20 0.40 0.60 0.80 1.00 Fe 2+ /(Fe 2+ +Mg) TiO2 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Barren Mineralized Mineralized: Mg and Cr-rich, variable Al, Fe 3+ and Ti contents Barren: Mg-poor, variable Cr, Al, Fe 3+ and Ti contents 0 0 0.2 0.4 0.6 0.8 1 Fe 2+ /(Fe 2+ +Mg)

Alaska-type ultramafic complexes Only few differences between the mineralized and barren complexes Positive: -MgO -FeO Negative: -MgO

In brief, Chromite chemical composition depends on: - Lithology; - Metamorphic grade - Physicochemical crystallization parameters - Chemical composition of initial magma

exploration tools Presence or absence of oxide substitution in Y-site; Fe 2+ replacement by Mg 2+ in X-site; Variation of absolute (e.g. komatiites) or relative (e.g. layered mafic complexes) oxide contents; Presence or absence of other minerals than chromite (magnetite, gahnite, spinel, magnesio-chromite); Variation of contents normalized to atomic weight

Part 2 Tourmaline

Objectives Evaluate tourmaline chemical composition in various contexts: lithologic tectonic metallogenic Evaluate tourmaline use as indicator mineral for mineralized environments Define tools to aid differentiating between tourmaline of mineralized vs barren host rocks

Methodology Compilation of published tourmaline group chemical analyses (by electronic microprobe only) Tourmaline group chemical analyses Structural formulae Description References Division mineralized/barren Tourmaline database divided by: Deposit type Host lithology Metamorphic facies Metallogenic model

Geotime division used in the tourmaline database Tourmaline - Age

Tourmaline Deposit types Tourmaline group minerals are found in: - hydrothermal deposits associated to granitoids and pegmatites - volcanogenic and sedimentary massive sulfide deposits (SMS and VMS) - orogenic gold deposits - iron formations - epithermal, porphyry or Carlin-type deposits - placer deposits

Tourmaline Host lithology and metamorphic facies Host rocks divided in: - volcanic - igneous - sedimentary - metamorphic Unmetamorphosed Metamorphic facies divided in: Greenschists Greenschists Amphibolites Amphibolites Granulites Amphibolites Granulites

Tourmaline classification Three main groups: 1. Na-rich tourmaline 2. Ca-rich tourmaline 3. X-site vacant tourmaline

Factors that influence tourmaline Bore concentration Metasomatism Petrographic composition of host lithology Leach processes of the host lithology Temperature composition

Na2O/(Na2O+CaO+K2O) 1.0 0.8 0.6 0.4 0.2 Tourmaline mineralized vs barren (alkali vs Fe#) 0.0 Barren Mineralized 0.0 0.2 0.4 0.6 0.8 1.0 FeOt/(FeOt+MgO) No difference between tourmaline chemical composition associated to mineralized vs barren rocks

Al/(Al+Mg+Fe) cations 0.9 0.7 Barren Mineralized Tourmaline mineralized vs barren (cation ratios) 0.5 0.0 0.1 0.1 0.2 0.2 0.3 0.3 Mg/(Mg+Al+Fe) cations No difference between tourmaline chemical composition associated to mineralized vs barren rocks

Tourmaline Deposit type [(FeO FeO+MgO) vs SiO 2 ] 20.0 FeOt+MgO 10.0 SMV and SMS Orogenic gold Iron formations Pegmatites Porphyry and skarn Epithermal 0.0 33.0 35.0 37.0 39.0 SiO2 - Fe+Mg variability in pegmatites - Si variability in massive sulfides - Higher Fe+Mg contents in porphyry and skarn in respect to epithermal - Similar Fe+Mg and Si contents in orogenic gold, massive sulfides and iron formations

Tourmaline Deposit type (MgO vs Fe#) 15 MgO 10 5 0 0.0 0.2 0.4 0.6 0.8 1.0 FeOt/(FeOt+MgO) SMV and SMS Porphyry and skarn Iron formations Epithermal Pegmatites Orogenic gold - Good correlation between Mg et Fe# for all deposit types - Significant variability of pegmatites and massive sulfides

Tourmaline Deposit type (FeO( t vs Al 2 O 3 ) 20.0 FeOt 10.0 3 2 1 SMV and SMS Orogenic gold Iron formations Pegmatites Porphyry and skarn Epithermal 0.0 20.0 30.0 40.0 Al2O3 - Three groups can be defined: -1: pegmatites; -2: orogenic gold, massive sulfides, iron formations and epithermal -3: porphyry and skarn -Significant variability of -pegmatites and massive sulfides

Tourmaline Deposit type (Fe-Mg-Ca) Orogenic gold SMV and SMS Iron formations Porphyry and skarn Epithermal Pegmatites - Significant Fe and Mg variability for orogenic gold and massive sulfides - Most pegmatites are Fe-rich, while other deposit types have higher Mg contents - Porphyry/skarn and epithermal show very little chemical variability - Most tourmalines associated to orogenic gold and iron formations are Ca-poor; - Higher Ca variability in massive sulfides in respect to other deposits

Tourmaline Deposit type (FeO t -MgO-Na 2 O) Orogenic gold SMV and SMS Iron formations Porphyry and skarn Epithermal Pegmatites - Less Na variability for all deposit types, but pegmatites - Significant Fe and Mg variability for orogenic gold and massive sulfides

Tourmaline Chemical composition vs Age Al/(Al+Mg+Fe) cations 0.9 0.7 Archean Proterozoic Paleozoic Mesozoic 0.5 0.0 0.1 0.1 0.2 0.2 0.3 0.3 Mg/(Mg+Al+Fe) cations Chemical composition doesn t vary with tourmaline deposition age High chemical variability of the Mg/(Mg+Al+Fe) ratio applies to all tourmalines, regardless of age

Tourmaline Chemical composition vs Age Significant variability of alkali metal ratios Tourmalines: âges Archean Proterozoic 0,9 Paleozoic Na/(Na+Ca) cations 0,8 0,7 0,6 0,5 0,0 0,1 0,2 0,3 Mg/(Mg+Al+Fe) cations Archéen Protérozoïque Paléozoïque Mésozoïque Mesozoic Chemical composition (cations) doesn't vary with the tourmaline deposition age

Tourmaline metamorphic facies 1.0 0.8 Amphibolite Greenschist-Amphibolite Greenschist Greenschist amphibolite Na2O/(Na2O+CaO) 0.6 0.4 0.2 Amphibolite- Granulite Granulite Unmetamorphozed Amphibolite Amphibolite granulite Granulite 0.0 0.0 0.2 0.4 0.6 0.8 1.0 FeOt/(FeOt+MgO) Unmetamorphozed Metamorphic facies affects tourmaline alkali metal ratios

Tourmaline metamorphic facies Tourmalines: faciès métamorphique Greenschist 15 Greenschist - amphibolite MgO 10 5 0 0.0 0.2 0.4 0.6 0.8 1.0 FeOt/(FeOt+MgO) Amphibolite Amphibolite - granulite Granulite Unmetamorphozed MgO vs Fe# correlation Mg and Fe metal ratios are not affected by metamorphism

Conclusions Tourmaline chemical composition characteristics that can be used as discrimination criteria A. Tourmaline associated to orogenic gold and iron formations is Ca-poor; B. Fe+Mg contents are higher in porphyry and skarns in respect to epithermal deposits C. Al content: porphyry and skarn < orogenic gold, massive sulfides, iron formations and epithermal < pegmatites D. Metamorphic facies influences the tourmaline alkali ratios

Conclusions Tourmaline chemical composition characteristics that cannot be used as discrimination criteria Alkali metal ratios, the Fe# and cation ratios cannot be used to discriminate between tourmaline associated to mineralized vs barren rocks. In the barren rocks, tourmaline composition reflects the chemistry of host rocks rather than that of the mineralizing fluids Tourmaline Fe+Mg and Si contents cannot discriminate between orogenic gold, massive sulfides and iron formations - High variability of Fe et Mg contents of orogenic gold and massive sulfides - No evident relationship between tourmaline chemical composition and the deposition age

Thank you