Probability Distribution And Density For Functional Random Variables

Similar documents
A Probability Distribution Of Functional Random Variable With A Functional Data Analysis Application

Copulas. MOU Lili. December, 2014

Multivariate Distribution Models

1 Joint and marginal distributions

Lecture Quantitative Finance Spring Term 2015

Multivariate Statistics

Convexity of chance constraints with dependent random variables: the use of copulae

Multivariate Non-Normally Distributed Random Variables

On the Choice of Parametric Families of Copulas

Random Variables. Random variables. A numerically valued map X of an outcome ω from a sample space Ω to the real line R

Financial Econometrics and Volatility Models Copulas

Extreme Value Analysis and Spatial Extremes

MAXIMUM ENTROPIES COPULAS

Distributions of Functions of Random Variables

Information geometry for bivariate distribution control

2 Functions of random variables

MATH 425, FINAL EXAM SOLUTIONS

Modelling Dropouts by Conditional Distribution, a Copula-Based Approach

Review. December 4 th, Review

Product measure and Fubini s theorem

X n D X lim n F n (x) = F (x) for all x C F. lim n F n(u) = F (u) for all u C F. (2)

Probability Distributions and Estimation of Ali-Mikhail-Haq Copula

Lifetime Dependence Modelling using a Generalized Multivariate Pareto Distribution

Frequency Analysis & Probability Plots

Approximation of multivariate distribution functions MARGUS PIHLAK. June Tartu University. Institute of Mathematical Statistics

Lecture 3: Random variables, distributions, and transformations

Using copulas to model time dependence in stochastic frontier models

Theory of Statistical Tests

Estimation of multivariate critical layers: Applications to rainfall data

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Northwestern University Department of Electrical Engineering and Computer Science

2 (Statistics) Random variables

ON UNIFORM TAIL EXPANSIONS OF BIVARIATE COPULAS

A Brief Introduction to Copulas

Estimating Bivariate Tail: a copula based approach

Elements of Financial Engineering Course

Correlation: Copulas and Conditioning

Non parametric estimation of Archimedean copulas and tail dependence. Paris, february 19, 2015.

Gaussian processes for inference in stochastic differential equations

Goodness-of-Fit Testing with Empirical Copulas

Density Modeling and Clustering Using Dirichlet Diffusion Trees

Quick Tour of Basic Probability Theory and Linear Algebra

Continuous r.v. s: cdf s, Expected Values

Modelling Dependence with Copulas and Applications to Risk Management. Filip Lindskog, RiskLab, ETH Zürich

Lecture 4. Continuous Random Variables and Transformations of Random Variables

A Conditional Approach to Modeling Multivariate Extremes

Multivariate Distributions

Introduction to Probability and Statistics (Continued)

Machine Learning. Theory of Classification and Nonparametric Classifier. Lecture 2, January 16, What is theoretically the best classifier

Continuous Random Variables

Tail negative dependence and its applications for aggregate loss modeling

Kernel Logistic Regression and the Import Vector Machine

Statistics (1): Estimation

Bayesian decision theory Introduction to Pattern Recognition. Lectures 4 and 5: Bayesian decision theory

CSCI-567: Machine Learning (Spring 2019)

Contents 1. Coping with Copulas. Thorsten Schmidt 1. Department of Mathematics, University of Leipzig Dec 2006

Fundamentals of Unconstrained Optimization

Multivariate random variables

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Elements of Financial Engineering Course

Probability and Distributions

Modeling Dependence of Daily Stock Prices and Making Predictions of Future Movements

Bivariate Degradation Modeling Based on Gamma Process

VaR vs. Expected Shortfall

Random Matrix Eigenvalue Problems in Probabilistic Structural Mechanics

Statistics 3657 : Moment Approximations

Mutual Information and Optimal Data Coding

Minimum Hellinger Distance Estimation in a. Semiparametric Mixture Model

Continuous Random Variables

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Bayes spaces: use of improper priors and distances between densities

Introduction to Dependence Modelling

Sample Spaces, Random Variables

Politecnico di Torino. Porto Institutional Repository

ECE 4400:693 - Information Theory

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Hybrid Copula Bayesian Networks

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM

On the Conditional Value at Risk (CoVaR) from the copula perspective

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS

Introduction to Machine Learning (67577) Lecture 3

Trivariate copulas for characterisation of droughts

Probability and Estimation. Alan Moses

GENERAL MULTIVARIATE DEPENDENCE USING ASSOCIATED COPULAS

p. 6-1 Continuous Random Variables p. 6-2

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM

Simulating Exchangeable Multivariate Archimedean Copulas and its Applications. Authors: Florence Wu Emiliano A. Valdez Michael Sherris

Bivariate Rainfall and Runoff Analysis Using Entropy and Copula Theories

Chapter 6. Integration. 1. Integrals of Nonnegative Functions. a j µ(e j ) (ca j )µ(e j ) = c X. and ψ =

A measure of radial asymmetry for bivariate copulas based on Sobolev norm

4 Invariant Statistical Decision Problems

Random Variables and Their Distributions

Review of Probabilities and Basic Statistics

Asymptotic distribution of the sample average value-at-risk

DIFFERENTIAL CRITERIA FOR POSITIVE DEFINITENESS

Research Projects. Hanxiang Peng. March 4, Department of Mathematical Sciences Indiana University-Purdue University at Indianapolis

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

Brief Review of Probability

Ch3. Generating Random Variates with Non-Uniform Distributions

Asymptotic statistics using the Functional Delta Method

Transcription:

Probability Distribution And Density For Functional Random Variables E. Cuvelier 1 M. Noirhomme-Fraiture 1 1 Institut d Informatique Facultés Universitaires Notre-Dame de la paix Namur CIL Research Contact Day, 2006 Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 1 / 33

Outline 1 At The Beginning...A Symbolic Data Analysis Problem 2 Distribution Of A Functional Random Variable 3 The QAMM and QAMML distributions 4 The Gâteaux Density 5 A Classification Use 6 Conclusion Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 2 / 33

Symbolic Data Analysis(SDA) In A Nutshell SDA summarizes datasets using singles valued variables interval variables multi-valued weighted variables continuous probability distributions Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 3 / 33

A Classification Problem... A Functional Dataset f(x) 0.0 0.2 0.4 0.6 0.8 1.0 beta1 exp1 norm1 5 0 5 10 x Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 4 / 33

...Using Dynamical Clustering Extension For Mixture Decomposition Algorithm(Diday) Start with a random partition Repeat: Step 1 : Find parameters β i which maximize a criterion Step 2 : Build classes (P i ) with parameters found at Step 1 until stabilization of the partition. Choosen criterion : Log-Likelihood P i = {u : f (u, β i ) f (u, β m ) m} lvc(p, β) = K i u P i log(f i, σ(u)) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 5 / 33

...Using Dynamical Clustering Extension For Mixture Decomposition Algorithm(Diday) Start with a random partition Repeat: Step 1 : Find parameters β i which maximize a criterion Step 2 : Build classes (P i ) with parameters found at Step 1 until stabilization of the partition. Choosen criterion : Log-Likelihood P i = {u : f (u, β i ) f (u, β m ) m} lvc(p, β) = K i u P i log(f i, σ(u)) So we need CDF and PDF for functional random variable! Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 5 / 33

Define The Framework Framework D R a closed interval of R, C 0 (D) the set of continuous, bounded functions of domain D, for u C 0 (D) : u 2 = { D u (x) 2 dx} 1/2, L 2 (D) = { u C 0 (D) : u 2 < }, for u, v L 2 (D) : d 2 (u, v) = u v 2, Definition Let f, g L 2 (D), the pointwise order between f and g on D is defined by: f D g f (x) g(x), x D Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 6 / 33

Functional Random Variable Functional cumulative distribution function Ω set of objects "described" by u L 2 (D). functional random variable (frv) is any function from Ω to L 2 (D) : X : Ω L 2 (D) : ω X (ω) X(ω) : D R : r X(ω)(r) functional cumulative distribution function (fcdf) of a frv X : F X,D (u) = P {ω Ω : X(ω)(x) u(x), x D} = P[X(x) u(x), x D] with A(u) = {ω Ω : X(ω) D u} = P[X D u] (1) = P[A(u)] (2) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 7 / 33

A simple example with N=20 sample functions y Empirical Estimation? 10 5 0 5 10 1 0.8 0.6 0.4 0.2 0.05 w v u F X,D (u) = F X,D (u) = F X,D (v) = F X,D (w) = #{f A:f (x) u(x), x D} #A 20 10 0 10 20 x Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 8 / 33

A simple example with N=20 sample functions y Empirical Estimation? 10 5 0 5 10 1 0.8 0.6 0.4 0.2 0.05 w v u F X,D (u) = F X,D (u) = 1 4 F X,D (v) = F X,D (w) = #{f A:f (x) u(x), x D} #A 20 10 0 10 20 x Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 8 / 33

A simple example with N=20 sample functions y Empirical Estimation? 10 5 0 5 10 1 0.8 0.6 0.4 0.2 0.05 w v u F X,D (u) = F X,D (u) = 1 4 F X,D (v) = 3 4 F X,D (w) = #{f A:f (x) u(x), x D} #A 20 10 0 10 20 x Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 8 / 33

A simple example with N=20 sample functions y Empirical Estimation? 10 5 0 5 10 1 0.8 0.6 0.4 0.2 0.05 w v u F X,D (u) = F X,D (u) = 1 4 F X,D (v) = 3 4 F X,D (w) = 0.1? #{f A:f (x) u(x), x D} #A 20 10 0 10 20 x Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 8 / 33

A simple example with N=20 sample functions y Empirical Estimation? 10 5 0 5 10 1 0.8 0.6 0.4 0.2 0.05 20 10 0 10 20 x w v u F X,D (u) = F X,D (u) = 1 4 F X,D (v) = 3 4 F X,D (w) = 0.1? #{f A:f (x) u(x), x D} #A But w is greater than 20% of the functions of A for most of the values of D?!? Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 8 / 33

Trying Approximations Let : n N 0, q = 2 n 1, { x n 1,..., xq n } D, x1 n = inf(d) & x q n = sup(d), i+1 x i n x n = D q A n (u) = q i=1 {ω Ω : X(ω)(x n i ) u(x n i )} A(u) = {ω Ω : X(ω) D u} F X,D (u) = P[A(u)] P[A n (u)] = H ( u(x n 1 ),..., u(x n q ) ) where H(,..., ) is a joint distribution of dimension q. Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 9 / 33

Which Joint Distributions Are Suitable? F X,D (u) = P[A(u)] P[A n (u)] = H ( u(x n 1 ),..., u(x n q ) ) Normal? Student? take a matrix as parameter Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 10 / 33

Which Joint Distributions Are Suitable? F X,D (u) = P[A(u)] P[A n (u)] = H ( u(x n 1 ),..., u(x n q ) ) Normal? Student? take a matrix as parameter (q 2 q) real parameters What s the matter when q? Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 10 / 33

Which Joint Distributions Are Suitable? F X,D (u) = P[A(u)] P[A n (u)] = H ( u(x n 1 ),..., u(x n q ) ) Normal? Student? take a matrix as parameter (q 2 q) real parameters What s the matter when q? And why not a DIY distribution using Copulas? Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 10 / 33

What Is A Copula? Definition A copula is a multivariate cumulative distribution function defined on the n-dimensional unit cube [0, 1] n such that every marginal distribution is uniform on the interval [0, 1] : C : [0, 1] n [0, 1] : (u 1,..., u n ) C(u 1,..., u n ) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 11 / 33

What Is A Copula? Definition A copula is a multivariate cumulative distribution function defined on the n-dimensional unit cube [0, 1] n such that every marginal distribution is uniform on the interval [0, 1] : C : [0, 1] n [0, 1] : (u 1,..., u n ) C(u 1,..., u n ) The interest of copulas comes from the following theorem: Theorem (Sklar s theorem) Let H be an n-dimensional distribution function with margins F 1,..., F n. Then there exists an n-copula C such that for all x R n, H(x 1,..., x n ) = C(F 1 (x 1 ),..., F n (x n )). (3) If F 1,..., F n are all continuous, then C is unique; otherwise, C is uniquely determined on Range of F 1... Range of F n Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 11 / 33

Archimedean Copulas Definition An Archimedean copula is a function [0, 1] n [0, 1] given by [ n ] C(u 1,..., u n ) = ψ φ(u i ) i=1 (4) where φ, called the generator, is a function φ : [0, 1] [0, ] such: φ is a continuous strictly decreasing function φ(0) = & φ(1) = 0 ψ = φ 1 is completely monotonic on [0, [ i.e. for all t in [0, [ and for all k. ( 1) k d k ψ(t) 0 (5) dtk Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 12 / 33

Families of Archimedean Copulas Name Generator φ Domain of θ Clayton φ θ (t) = t θ 1 θ > 0 Frank φ θ (t) = ln e θ t 1 e θ 1 θ > 0 Gumbel-Hougaard φ θ (t) = ( ln t) θ θ 1 Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 13 / 33

Surfaces Of Distributions And Densities - All You Need Is Margins Definition Let G and g the surface of distributions and the surface of densities, that give the distribution and the density of X(x) for a chosen x D : G : D R [0, 1] : (x, y) G (x, y) = P[X(x) y] g : D R [0, 1] : (x, y) g (x, y) = G (x, y) x Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 14 / 33

Surfaces Of Distributions And Densities - All You Need Is Margins Definition Let G and g the surface of distributions and the surface of densities, that give the distribution and the density of X(x) for a chosen x D : G : D R [0, 1] : (x, y) G (x, y) = P[X(x) y] g : D R [0, 1] : (x, y) g (x, y) = G (x, y) x Normal Case Ĝ (x, y) = F N (µ(x),σ(x)) (y) ĝ (x, y) = f N (µ(x),σ(x)) (y) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 14 / 33

Surfaces Of Distributions And Densities - All You Need Is Margins Definition Let G and g the surface of distributions and the surface of densities, that give the distribution and the density of X(x) for a chosen x D : G : D R [0, 1] : (x, y) G (x, y) = P[X(x) y] g : D R [0, 1] : (x, y) g (x, y) = G (x, y) x Normal Case Ĝ (x, y) = F N (µ(x),σ(x)) (y) ĝ (x, y) = f N (µ(x),σ(x)) (y) Estimation Case Ĝ (x, y) = #{X i (x) y} ĝ (x, y) = N ( ) N i=1 K y Xi (x) h(x) N h(x) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 14 / 33

Surfaces Of Distributions And Densities - Example y Z Z 10 5 0 5 10 1 0.8 0.6 0.4 0.2 0.05 20 10 0 10 20 x w v u 1.0 0.8 0.6 0.4 0.2 0.0 10 5 Y 0 5 10 10 0 X 10 0.10 0.08 0.06 0.04 0.02 10 5 Y 0 5 10 10 0 X 10 Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 15 / 33

Copula + Surface of Distributions : FCDF? A(u) = {ω Ω : X(ω) D u} q A n (u) = {ω Ω : X(ω)(xi n ) u(xi n )} i=1 F X,D (u) = P[A(u)] P[A n (u)] = H(u(x n 1 ),..., u(x n q )) = C ( G [x1 n, u (x 1 n )],..., G [ xq n, u ( xq n )]) ) (6) ( q ) = ψ φ (G [xi n, u (xi n )]) (7) i=1 Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 16 / 33

Bad News - Volumetric Behavior Objection : A Kind Of Volumetric Behavior Let s call a function u L 2 (D) such a functional quantile of value p(q p ). Then G(x, u(x)) = p, x D (8) P[A n (u)] = ψ [ q i=1 [ q ] = ψ φ(p) i=1 φ (G [x n i, u(x n i )]) = ψ (q φ (p)) < p More you try, more you move away!!! ] Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 17 / 33

Bad News Update - Null Limit Theorem If for u L 2 (D) : G(x, u(x)) < 1, x D Then [ q ] lim ψ φ (G [x n q i, u (xi n ))]) i=1 = 0 (9) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 18 / 33

A Simple Transformation To Margins Lemma Let q N 0, F be a one dimensional cdf, and φ a generator of Archimedean copula, then the following expression is also a cdf. ( ) 1 F (x) = ψ φ (F (x)) q (10) Theorem Let q N 0, {F i 1 i q} be a set of one dimensional cdf, and φ a generator of Archimedean copula, then the following expression is a multivariate cdf. H (x 1,..., x q ) = ψ ( q i=1 φ (F i (x i )) ) = ψ ( 1 q ) q φ (F i (x i )) i=1 (11) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 19 / 33

Quasi-Arithmetic Means Definition Let [a, b] be a closed real interval, and q N 0. A quasi-arithmetic mean is a function M : [a, b] q [a, b] defined as follows: ( ) 1 q M(x 1,..., x q ) = ψ φ (x i ) q i=1 (12) where φ is a continuous strictly monotonic real function. The Quasi-Arithmetic Mean of Margins (QAMM) distribution ( ) 1 q H (x 1,..., x q ) = ψ φ (F i (x i )) q i=1 (13) QAMM avoid us the bad news! Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 20 / 33

OK, let us use QAMM F X,D (u) = P[A(u)] P[A n (u)] [ ] 1 q = ψ φ (G [x i, u(x i )]) q i=1 [ ] 1 q D = ψ D q φ (G [x i, u(x i )]) i=1 (14) And like we have D q = xi+1 n x i n = x i {1,..., q}, we can now take the limit [ ] lim P[A 1 q n(u)] = lim ψ φ (G [x i, u(x i )]) x (15) q q D i=1 Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 21 / 33

Quasi-Arithmetic Mean of Margins Limit (QAMML) Definition Let : X be a frv and u L 2 (D), G : D R [0, 1] : (x, y) G(x, y) = P[X(x) y] φ is a generator of Archimedean copula We define the Quasi-Arithmetic Mean of Margins Limit (QAMML) distribution of X by : [ ] 1 F X,D (u) = ψ D φ (G [x, u (x)]) dx D (16) Proposition If Q p L 2 (D) is a functional quantile of value p, then F X,D (Q p ) = p Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 22 / 33

QAMML - Example y 10 5 0 5 10 1 0.8 0.6 0.4 0.2 0.05 w v u Table: fcdf with several values for the parameter of Clayton s generator Par. u v w 0.5 0.2382 0.7010 0.3732 2 0.2380 0.7010 0.2545 8 0.2373 0.7007 0.1408 16 0.2362 0.7003 0.1144 20 10 0 10 20 x Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 23 / 33

And What About The Density? The Density Problem In An Infinite Dimension Space A fcdf is a incomplete tool without an associate density. q lim H(x 1,..., x q )? q x 1... x q Try To Preserve The Functional Quantile The QAMML distribution preserve the value of a functional quantile. We need to find a derivative operator which preserves this property, i.e. suppose that s 0 p < q 1, we search an operator D such : F X,D (Q q ) = F X,D (Q p ) + DF X,D (Q p ) d 2 (Q q, Q p ) + o ( ɛ ) (17) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 24 / 33

The Gâteaux differential Definition Suppose V and W are normed vector spaces, and an operator F : V W. The Gâteaux differential DF (u; s) of F at u in the direction s V is given by: DF (u; s) = F (u + ɛ s) F (u) lim ɛ 0 ɛ (18) = F (u) s (19) If DF (u; s) exists s L 2 (D) then F is Gâteaux differentiable and the map F (u) is the Gâteaux derivative of F at u. Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 25 / 33

Which Direction Choose? Find the direction between two functional quantiles. Suppose that G is a distribution with location and scale parameters, with l(x) and s(x) which give these parameters for a value x, then Q p (x) = Q (p; l(x), s(x)) = s(x) Q (α; 0, 1) + l(x) (20) And then the searched direction come easily, since : Q q (x) Q p (x) = s(x) [Q(q; 0, 1) Q(p; 0, 1)] = s(x) ɛ Where ɛ = Q(q; 0, 1) Q(p; 0, 1) is a constant, So we have Q q (x) = Q p (x) + s(x) ɛ (21) So, we use as direction a scale parameter, or more generally any statistical dispersion function s, like σ. Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 26 / 33

The Gâteaux Density Definition Let X be a frv, F X,D its fcdf and u a function of L 2 (D). If s L 2 (D) is a function such s(x) measure the statistical dispersion of the values X(x), then we define the Gâteaux density of F X,D at u and in direction of s by: f X,D,s (u) = lim ɛ 0 F X,D (u + s ɛ) F X,D (u) d 2 (u + s.ɛ, u) = DF X,D(u; s) s 2 (22) Where DF X,D (u; s) is the Gâteaux differential of F X,D at u in the direction s V. Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 27 / 33

A functional Analysis Result Theorem Let the following integral transform : T (f ) = b a K (t, s) g [s, f (s)] ds (23) where the kernel K (s, t) is continuous on [a, b] 2, and g (s, t) is a function of two variables, defined and continuous on [a, b] ], + [. Then for any function h C [a, b] we have DT (f, h) = b a K (t, s) g v [s, f (s)] h(s) ds (24) Where DT (f, h) is the Gâteaux differential of T at f in the direction h. Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 28 / 33

Gâteaux Density for QAMML Theorem Let F X,D a fcdf, u a function of L 2 (D). If s L 2 (D) is a functional measure of the statistical dispersion of the values X(x), then the Gâteaux density of F X,D in u and in direction of s is given by: f X,D,s (u) = [ ] 1 1 s 2 D ψ φ (G [t, u(t)]) dt D D { } φ (G [t, u(t)]) g [t, u(t)] s(t) dt D (25) Theorem If Q p L 2 (D) is a functional quantile of value p, such g (x, Q p (x)) s(x) = π, x D then f X,D,s (Q p ) = π s 2 (26) Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 29 / 33

Recall Our Classification Problem... A Functional Dataset f(x) 0.0 0.2 0.4 0.6 0.8 1.0 beta1 exp1 norm1 5 0 5 10 x Table: Range of the parameters of the functional data Name Size Location Scale Normal 45 [ 1.52, 0.86] [0.79, 1.85] Beta 45 [ 2.74, 1.80] [8.07, 10.79] Exp 45 [ 5.19, 3.89] [0.51, 0.95] Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 30 / 33

...Using Dynamical Clustering Extension For Mixture Decomposition Algorithm( Diday) Start with a random partition Repeat: Step 1 : Find parameters β i which maximizes a criterion Step 2 : Build classes (P i ) with parameters found at Step 1 P i = {u : f X,Di,σ(u, β i ) f X,Dm,σ(u, β m ) m} until stabilization of the partition. Choosen criterion : Log-Likelihood Classifier K lvc(p, β) = log(f X,Di,σ(u)) (27) i u P i where D i the model s domain of the ith cluster. Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 31 / 33

Classification Results A Functional Dataset f(x) 0.0 0.2 0.4 0.6 0.8 1.0 beta1 exp1 norm1 5 0 5 10 x Methods runs 5 times, We keep result with the best criterion, Misclassification rate : 0.71% Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 32 / 33

Classification Results A Functional Dataset f(x) 0.0 0.2 0.4 0.6 0.8 1.0 beta1 exp1 norm1 5 0 5 10 x Methods runs 5 times, We keep result with the best criterion, Misclassification rate : 0.71% But your functional clusters are obviously very well separated! Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 32 / 33

Classification Results A Functional Dataset f(x) 0.0 0.2 0.4 0.6 0.8 1.0 beta1 exp1 norm1 5 0 5 10 x Methods runs 5 times, We keep result with the best criterion, Misclassification rate : 0.71% But your functional clusters are obviously very well separated! Yes, but if we don t find them here : forget all! Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 32 / 33

Summary & Future Works Summary QAMML is a new mathematical tool which can be used with existing probabilistic methods, Validation with the Dynamical clustering on functional data coming from the Symbolic Data Analysis framework. Future Works [ F X,D (u) = ψ D D, other cdf can be considered, ] φ (G [x, u (x)]) df where F is a uniform cdf over We look also towards the Sobolev spaces, and for a frv X consider the QAMML distributions of X, X,...X (p) and joint them with a copula. Many developments are still possibles. Cuvelier, Noirhomme-Fraiture (FUNDP) CDF & PDF for functional random variables CIL Day 2006 33 / 33