Mathematical Preliminaries for Transforms, Subbands, and Wavelets

Similar documents
From Fourier Series towards Fourier Transform

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

Fourier Series: main points

ECE351: Signals and Systems I. Thinh Nguyen

Response of LTI Systems to Complex Exponentials

Fourier Techniques Chapters 2 & 3, Part I

Review Topics from Chapter 3&4. Fourier Series Fourier Transform Linear Time Invariant (LTI) Systems Energy-Type Signals Power-Type Signals

ELECTROMAGNETIC COMPATIBILITY HANDBOOK 1. Chapter 12: Spectra of Periodic and Aperiodic Signals

EEE 303: Signals and Linear Systems

Modeling of the CML FD noise-to-jitter conversion as an LPTV process

Department of Electronics & Telecommunication Engineering C.V.Raman College of Engineering

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Linear Systems Analysis in the Time Domain

Signal & Linear System Analysis

Note 6 Frequency Response

15/03/1439. Lectures on Signals & systems Engineering

Introduction to Fourier Transform

The Development of Suitable and Well-founded Numerical Methods to Solve Systems of Integro- Differential Equations,

MAT3700. Tutorial Letter 201/2/2016. Mathematics III (Engineering) Semester 2. Department of Mathematical sciences MAT3700/201/2/2016

2 Dirac delta function, modeling of impulse processes. 3 Sine integral function. Exponential integral function

NAME: SOLUTIONS EEE 203 HW 1

EE 529 Remote Sensing Techniques. Review

Fourier transform. Continuous-time Fourier transform (CTFT) ω ω

Section 8 Convolution and Deconvolution

1973 AP Calculus BC: Section I

Continous system: differential equations

FOURIER ANALYSIS Signals and System Analysis

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

NON-LINEAR PARAMETER ESTIMATION USING VOLTERRA SERIES WITH MULTI-TONE EXCITATION

Discrete Fourier Transform (DFT)

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Outline. Overlook. Controllability measures. Observability measures. Infinite Gramians. MOR: Balanced truncation based on infinite Gramians

Digital Signal Processing, Fall 2006

Ring of Large Number Mutually Coupled Oscillators Periodic Solutions

Discrete Fourier Transform. Nuno Vasconcelos UCSD

15. Numerical Methods

ESE-2018 PRELIMS TEST SERIES Date: 12 th November, 2017 ANSWERS. 61. (d) 121. (c) 2. (a) 62. (a) 122. (b) 3. (b) 63. (a) 123. (c) 4. (b) 64.

Problem Value Score Earned No/Wrong Rec -3 Total

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

[ ] Review. For a discrete-time periodic signal xn with period N, the Fourier series representation is

Chapter 3 Linear Equations of Higher Order (Page # 144)

6.003: Signals and Systems Lecture 20 April 22, 2010

Frequency Response. Lecture #12 Chapter 10. BME 310 Biomedical Computing - J.Schesser

Discrete-Time Signals and Systems. Introduction to Digital Signal Processing. Independent Variable. What is a Signal? What is a System?

Lectures 9 IIR Systems: First Order System

READING ASSIGNMENTS. Signal Processing First LECTURE OBJECTIVES TIME & FREQUENCY. This Lecture: Lecture 13 Digital Filtering of Analog Signals

Chapter 3 Fourier Series Representation of Periodic Signals

Physics 160 Lecture 3. R. Johnson April 6, 2015

Principles of Communications Lecture 1: Signals and Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Chapter 11 INTEGRAL EQUATIONS

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

( A) ( B) ( C) ( D) ( E)

Sampling. AD Conversion (Additional Material) Sampling: Band limited signal. Sampling. Sampling function (sampling comb) III(x) Shah.

Notes 03 largely plagiarized by %khc

ON H-TRICHOTOMY IN BANACH SPACES

The geometry of surfaces contact

Web-appendix 1: macro to calculate the range of ( ρ, for which R is positive definite

What Is the Difference between Gamma and Gaussian Distributions?

EE 350 Signals and Systems Spring 2005 Sample Exam #2 - Solutions

Laguerre wavelet and its programming

Revisiting what you have learned in Advanced Mathematical Analysis

EXERCISE - 01 CHECK YOUR GRASP

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

(looks like a time sequence) i function of ˆ ω (looks like a transform) 2. Interpretations of X ( e ) DFT View OLA implementation

3.2. Derivation of Laplace Transforms of Simple Functions

Fractional Sampling using the Asynchronous Shah with application to LINEAR PHASE FIR FILTER DESIGN

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Linear Time Invariant Systems

Frequency Response & Digital Filters

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

(A) 1 (B) 1 + (sin 1) (C) 1 (sin 1) (D) (sin 1) 1 (C) and g be the inverse of f. Then the value of g'(0) is. (C) a. dx (a > 0) is

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Trigonometric Formula

Control Systems. Transient and Steady State Response.

Chapter 7 INTEGRAL EQUATIONS

Fourier Eigenfunctions, Uncertainty Gabor Principle And Isoresolution Wavelets

The Eigen Function of Linear Systems

Sampling Example. ( ) δ ( f 1) (1/2)cos(12πt), T 0 = 1

EE Control Systems LECTURE 11

ECE-314 Fall 2012 Review Questions

Poisson Arrival Process

Poisson Arrival Process

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Signals & Systems - Chapter 3

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Analysis of Non-Sinusoidal Waveforms Part 2 Laplace Transform

Chapter 2 The Poisson Process

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Digital Signal Processing

Mixing time with Coupling

12 Getting Started With Fourier Analysis

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

Chap 2: Reliability and Availability Models

x, x, e are not periodic. Properties of periodic function: 1. For any integer n,

DFT: Discrete Fourier Transform

CSE 245: Computer Aided Circuit Simulation and Verification

Circuits and Systems I

Double Slits in Space and Time

Transcription:

Mahmaical Prlimiaris for rasforms, Subbads, ad Wavls C.M. Liu Prcpual Sigal Procssig Lab Collg of Compur Scic Naioal Chiao-ug Uivrsiy hp://www.csi.cu.du.w/~cmliu/courss/comprssio/ Offic: EC538 (03)5731877 cmliu@cs.cu.du.w

Radig Assigm 2 Rviw 12.1-12.3 /pp. 355-362/ You should kows his alrady opics: Do/ir produc Vcor spac Subspac Basis Orhogoal & orhoormal ss

3 Vcor Spac

4 Vcor Spac-- Exampl

5 Subspac ad Basis

6 Ir Produc

7 Ir Produc Exampls

8 Orhogoal ad Orhoormal Ss

9 Orhoormal Ss

10 Orhoormal Ss

11 5. Orhoormal Ss

Fourir Sris 12 Origially dvlopd i 1812 o sudy ha diffusio quaios Giv a priodic fucio f() w/ priod : f ( ) f ( + ), ± 1, ± 2,K rigoomric form: 2π 0 1 0 1 0 f ( ) a + a cosω + b si ω, ω0 Eulr s idiy: i φ cosφ + i siφ, i 1. Expoial form: i 0 f ( ) c ω

Fourir Sris (2) 13 Basis: { i ω } 0 Ir produc: 1 ( ), ( ) 0 + f g f ( ) g( )* d, ( 0 0 0) + + iw imw 0 i im 0 0 0 ω0 ω0 i ( m) ω0, 1 0 d 1 0 d

Fourir Sris (3) 14 L m: iω 1 0 iω0 ( ) 0, i ω d 1 0 L k m 0 iω 1 0 imω0, 0 1 ikω 0 ikω 0 d 1 ikω ( ik 2π 1) 0 0 ( ikω 1) 0 ik 2π cos( 2kπ ) + i si(2kπ ) 1, ω0 2π

Fourir Sris Advaags 15 f() (or f(x)) rprss h sigal as a fucio of im/spac A Fourir sris givs us a frqucy-basd rprsaio: { 2iω } flucuas wic as fas as { iω } { 4iω } flucuas wic as fas as { 2iω } {c } giv us a masur how much of ach of h diffr basis flucuaios ar prs i h sigal Rcall ha 1 cycl pr scod 1 Hz

Fourir rasform 16 Cosidr h priodic xsio of a o-priodic fucio f(): f ( ) f ( ), P > Fourir sris xpasio: 1 iω0 2 fp( ) c, ( ) c f P 2 1 iω 0 d

Fourir rasform (2) 17 L C(, ) c, Δω ω 0 Δ 2 2 ) ( ), ( i P d f C ω i P C f Δω ), ( ) ( o rcovr f() from f P () w l Δ Δ d f d f i P i P ω ω ω ) ( ) ( lim 2 2 0

Fourir rasform (3) 18 Fourir rasform Ivrs Fourir rasform

F Propris: Prsval s horm 19 Ergy prsrvaio: No: 1/2π facor is a rsul of Hz-o-radias covrsio

F Propris: Modulaio 20 Jusificaio:

F Propris: Covoluio horm 21 Covoluio horm

Liar Sysms 22 L L b a liar sysm wih ipu f() ad oupu g(): g() L[f()] Propris Homogiy L[f 1 () + f 2 ()] L[f 1 ()] + L[f 2 ()] Scalig L[α f()] α L[f()] oghr kows as suprposiio

Liar Sysms (2) 23 W ar irsd i im-ivaria sysms: L[f( - 0 )] g( - 0 ) Scalig & dlay L[cos(ω 0 )] α cos(ω 0 ( - d )) or [ ω ] 0 i ω0 ( d ) α L i Phas: φ ω 0 d

Liar Sysms (3) 24 Gai fucio: α(ω) Phas fucio: φ(ω) rasfr fucio Covoluio H ( ω) α( ω) iφ ( ω) G ( ω) H ( ω) F( ω)

25 Impuls Rspos

Impuls Rspos (2) 26 by suprposiio:

Impuls Rspos (3) 27 L 0 Dirac dla fucio

Impuls Rspos (4) 28 Impuls rspos fucio Assumig im-ivariac: [ h( )] H ( ω) F Dla fucio sifig propry:

Filrs 29 Filr: A liar sysm ha prmis crai frqucy compos o pass hrough whil auaig h rs Low-pass filrs Allows oly compos blow frqucy W Hz Idal low-pass filr: H ( ω) Similarly High pass filr Bad pass filr: iαω ω < 2πW 0 ohrwis Badwidh W

Filr Exampls 30 Idal low-pass Idal high-pass Ral low-pass Idal bad-pass

31 Idal Samplig: Frqucy Viw

Fourir sris xpasio Cofficis hrough Ir Producs Hc Idal Samplig: Frqucy Viw (2) 32 W i P c F ω ω 2 1 ) ( W i W W P F W c ω π π ω π 2 1 2 2 ) ( 4 1 ω ω π ω d F W c W i 2 ) ( 2 1 2 1 W f W c 2 2 1 W i W W F W c ω π π ω π 2 1 2 2 ) ( 4 1

Idal Samplig: Frqucy Viw (3) 33 Rcosruc f() from c.

34 Idal Samplig im Domai Viw

35 Idal Samplig im Domai Viw

36 Idal Samplig im Domai Viw

Discr Fourir rasform (DF) 37 So far, w cosidrd coiuous fucios Wha abou discr sigal sampls? Rcall h Fourir sris of priodic fucio f() wih priod d f c ik k 0 0 ) ( 1 ω Assum w sampl h fucio N im durig ach priod. N k i N k i N k N f d N f F π ω δ 2 1 0 1 0 0 1 ) ( 1 0

DF (2) 38 akig 1 ad Dfiig h h priodic cofficis f f N F k N 1 0 f 2π k i N Sic k c i ω0 f ( ) k for N : f f ( N ) k c k 2π k i N

39 DF (3)

Rfrcs ad Homwork 40 Rfrcs Chaprs 2, 4, A.V. Opphim ad R.W. Schafr, Discr- im Sigal Procssig, Pric Hall, Ic., Eglwood Cliffs, Nw Jrsy, 2d Ediio, 1999. hp://www.csi.cu.du.w/~cmliu/courss/dsp/ Chapr 5, Sv J. Lo, Liar Algbra wih Applicaios, Svh Ediio Homworks 2, 3, 4