Chapter 12 Introduction To The Laplace Transform

Similar documents
LaPlace Transform in Circuit Analysis

Chap.3 Laplace Transform

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

THE LAPLACE TRANSFORM

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Transfer function and the Laplace transformation

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Spring 2006 Process Dynamics, Operations, and Control Lesson 2: Mathematics Review

Why Laplace transforms?

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

Laplace Transforms recap for ccts

Boyce/DiPrima/Meade 11 th ed, Ch 6.1: Definition of Laplace Transform

2. The Laplace Transform

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Poisson process Markov process

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 4: Laplace Transforms

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

Chapter 13 Laplace Transform Analysis

Elementary Differential Equations and Boundary Value Problems

CSE 245: Computer Aided Circuit Simulation and Verification

Final Exam : Solutions

Midterm exam 2, April 7, 2009 (solutions)

Charging of capacitor through inductor and resistor

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

INTRODUCTION TO AUTOMATIC CONTROLS INDEX LAPLACE TRANSFORMS

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

Circuit Transients time

Chapter 9 The Laplace Transform

Note 6 Frequency Response

Veer Surendra Sai University of Technology, Burla. S u b j e c t : S i g n a l s a n d S y s t e m s - I S u b j e c t c o d e : B E E

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

13.1 Circuit Elements in the s Domain Circuit Analysis in the s Domain The Transfer Function and Natural Response 13.

Partial Fraction Expansion

Effect of sampling on frequency domain analysis

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Circuits and Systems I

General Article Application of differential equation in L-R and C-R circuit analysis by classical method. Abstract

Math 3301 Homework Set 6 Solutions 10 Points. = +. The guess for the particular P ( ) ( ) ( ) ( ) ( ) ( ) ( ) cos 2 t : 4D= 2

Wave Equation (2 Week)

XV Exponential and Logarithmic Functions

Continous system: differential equations

ECE Connections: What do Roots of Unity have to do with OP-AMPs? Louis Scharf, Colorado State University PART 1: Why Complex?

Lecture 26: Leapers and Creepers

Institute of Actuaries of India

fiziks Institute for NET/JRF, GATE, IIT JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES MATEMATICAL PHYSICS SOLUTIONS are

Lecture 1: Growth and decay of current in RL circuit. Growth of current in LR Circuit. D.K.Pandey

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

Lecture 2: Current in RC circuit D.K.Pandey

2. Transfer function. Kanazawa University Microelectronics Research Lab. Akio Kitagawa

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

H is equal to the surface current J S

Chapter 7: Inverse-Response Systems

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

Decline Curves. Exponential decline (constant fractional decline) Harmonic decline, and Hyperbolic decline.

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Nikesh Bajaj. Fourier Analysis and Synthesis Tool. Guess.? Question??? History. Fourier Series. Fourier. Nikesh Bajaj

LESSON 10: THE LAPLACE TRANSFORM

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Introduction to Fourier Transform

ECEN620: Network Theory Broadband Circuit Design Fall 2014

(1) Then we could wave our hands over this and it would become:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

2.1. Differential Equations and Solutions #3, 4, 17, 20, 24, 35

EE 434 Lecture 22. Bipolar Device Models

Double Slits in Space and Time

Fourier Series: main points

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

a dt a dt a dt dt If 1, then the poles in the transfer function are complex conjugates. Let s look at f t H t f s / s. So, for a 2 nd order system:

EECE 301 Signals & Systems Prof. Mark Fowler

Part B: Transform Methods. Professor E. Ambikairajah UNSW, Australia

7.4 QUANTUM MECHANICAL TREATMENT OF FLUCTUATIONS *

Logistic equation of Human population growth (generalization to the case of reactive environment).

Voltage v(z) ~ E(z)D. We can actually get to this wave behavior by using circuit theory, w/o going into details of the EM fields!

B) 25y e. 5. Find the second partial f. 6. Find the second partials (including the mixed partials) of

PWM-Scheme and Current ripple of Switching Power Amplifiers

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Mixing Real-Time and Non-Real-Time. CSCE 990: Real-Time Systems. Steve Goddard.

whereby we can express the phase by any one of the formulas cos ( 3 whereby we can express the phase by any one of the formulas

where: u: input y: output x: state vector A, B, C, D are const matrices

Inverse Fourier Transform. Properties of Continuous time Fourier Transform. Review. Linearity. Reading Assignment Oppenheim Sec pp.289.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

AN INTRODUCTION TO FOURIER ANALYSIS PROF. VEDAT TAVSANOĞLU

CONTROL SYSTEMS. Chapter 3 Mathematical Modelling of Physical Systems-Laplace Transforms. Prof.Dr. Fatih Mehmet Botsalı

An Indian Journal FULL PAPER. Trade Science Inc. A stage-structured model of a single-species with density-dependent and birth pulses ABSTRACT

6.8 Laplace Transform: General Formulas

Physics 160 Lecture 3. R. Johnson April 6, 2015

The Variance-Covariance Matrix

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 11

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: System Identification Theory For The User Lennart Ljung

Review Lecture 5. The source-free R-C/R-L circuit Step response of an RC/RL circuit. The time constant = RC The final capacitor voltage v( )

4.3 Design of Sections for Flexure (Part II)

Control Systems. Transient and Steady State Response.

EE 529 Remote Sensing Techniques. Review

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

CHAPTER. Linear Systems of Differential Equations. 6.1 Theory of Linear DE Systems. ! Nullcline Sketching. Equilibrium (unstable) at (0, 0)

EE202 Circuit Theory II

Transcription:

Chapr Inroducion To Th aplac Tranorm Diniion o h aplac Tranorm - Th Sp & Impul uncion aplac Tranorm o pciic uncion 5 Opraional Tranorm Applying h aplac Tranorm 7 Invr Tranorm o Raional uncion 8 Pol and Zro o 9 Iniial- and inal-valu Thorm

Ovrviw aplac ranorm i a chniqu ha i paricularly uul in linar circui analyi whn: Conidring ranin rpon g wiching o circui wih mulipl nod and mh Th ourc ar mor complicad han h impl dc lvl ump Inroducing h concp o ranr uncion o analyz rquncy-dpndn inuoidal ady-a rpon Chapr,

y poin Wha i h diniion o h aplac ranorm? Wha ar h aplac ranorm o uni p, impul, xponnial, and inuoidal uncion? Wha ar h aplac ranorm o h drivaiv, ingral, hi, and caling o a uncion? How o prorm parial racion xpanion or a raional uncion and prorm h invr aplac ranorm?

Scion Diniion o h aplac Tranorm

Wha i aplac ranorm? Tranorming a ral uncion o ral variabl o a complx uncion o complx variabl : { } Th ingral will convrg ovr a porion o d C h -plan g R >, and or mo o h uncion xcp or ho o lil inr g i drmind by only or > - Thu w u i o prdic h rpon ar iniial condiion hav bn ablihd krnl 5

Scion, Th Sp and Impul uncion Diniion o uni p uncion u Diniion o impul uncion d aplac ranorm o d and d'

Th uni p uncion u u, or ;, or u can b approximad by h limi o a linar ramp uncion: 7

Rprnaion o im hi and rvral Tim hi: u a Tim rvral: u a 8

Exampl : A pul o ini widh Q: Expr h picwi linar uncion a uprpoiion o uncion y y y y i a i b i 9

Exampl or ach inrval, can b xprd a h produc o a linar uncion and a quar pul dirnc bwn wo p uncion or xampl, or < <, h corrponding linar and quar pul uncion ar: y, and p u u Th nir uncion can b rprnd by: y p y p y p

Th impul uncion d An idalizd mah rprnaion o harply pakd imulu: d,, d d ohrwi; d ha zro duraion, inini pak ; ampliud, uni ara rngh

d i h drivaiv o u u lim d lim u

Th iing propry o d-uncion Sampling o a = a > can b ormulad by ingral o im d-a: I can b ud in calculaing h aplac ranorm o a d-uncion: lim lim a d a a d a d a a a a a d d d or any, C d d d

Th drivaiv o d-uncion ara = d lim on-idd ara = / oal ara = d lim

5 lim lim lim lim lim d d d d aplac ranorm o d' lim d Evn d' ha wll dind aplac ranorm!

Scion aplac Tranorm o Spciic uncion

Eg Uni p uncion u u d, i R d Im R 7

Eg Singl-idd xponnial uncion a > Im a a a a d a d, i R a a -a R 8

9 Eg Sinuoidal uncion in in d d d

i o aplac ranorm pair Typ impul p ramp xponnial d u u u a a aplac ranorm o polynomial uncion:, n! n n

i o aplac ranorm pair Damping by xponnial dcay uncion cau a hi along h ral axi in h -domain in dampd in dampd ramp co coin in in Typ a u a u u u a a

Scion 5 Opraional Tranorm

Wha ar opraional ranorm? Opraional ranorm indica how h mahmaical opraion prormd on ihr or ar convrd ino h oppoi domain Uul in calculaing h aplac ranorm o a uncion g drivd by prorming om mah opraion on wih known

ir-ordr im drivaiv d d i - = d Eg d u, u, d u ingraion by par iniial condiion

5 Highr-ordr im drivaiv, g G g G g nh-ordr drivaiv: nd-ordr drivaiv: n n n n n iniial condiion iniial condiion

Tim ingral, ;, whr, v v u dx x u d v u d dx x dx x dx x dx x d dx x d v u v u dx x ini Th ormula i valid only i h uncion i ingrabl

Scaling a a a d; a l a d a, a a, i a Inuiivly, a largr valu o a corrpond o a narrowr uncion in h im domain bu a broadr uncion in h rquncy domain Th widh o a im h widh o /a i a conan indpndn o a 7

Tranlaion in h and domain Tranlaion in h im domain: a a u a, or a Tranlaion in h rquncy domain: a a Boh rlaion can b provn by chang o variabl o ingraion 8

Scion 7 Invr Tranorm o Raional uncion Diinc ral roo Diinc complx roo Rpad ral roo Rpad complx roo 5 Impropr raional uncion 9

Why only raional uncion? or linar, lumpd-paramr circui wih conan componn paramr, h -domain xprion or v, i ar alway raional uncion, i raio o wo polynomial: Gnral invr aplac ranorm: b b b a a a D N m m m m n n n n, i r i r d i involv wih complx ingral

How o calcula? I i a propr m > n raional uncion, h invr ranorm i calculad by parial racion xpanion, individual invr ranorm yp I i an impropr m n raional uncion, dcompo a h ummaion o a polynomial uncion and a propr raional uncion, which ar invr ranormd individually

Typ I: D ha diinc ral roo 8 8 5 9 8 95 8 5 9 ; 8 8 7, 8 8

Typ I: D ha diinc ral roo 8 7 8 7 8 8 7, 8 8 7 8 8 u Th circui i ovr-dampd

Typ II: D ha diinc complx roo 8 8,,,, : rooo, 5 D Conuga roo mu hav conuga coicin

5 Typ II: D ha diinc complx roo 5 co 8 R 8 8 8 8 8 8, 8 8 u u u u 5 Th circui how ovr-dampd or -ordr and undr-dampd characriic

Typ III: D ha rpad ral roo 5 5 5 5 5 high ordr 5 G 5 5 5 G 5 5 5 ;

7 Typ III: D ha rpad ral roo 5 5 5 5 5 5 5 5 5; 5 5 5 5 ; 5 5 5 5 G G G

8 Typ III: D ha rpad ral roo 5 5 5 5 5, 5 5 5 ; 5 5 5 5 5; 5 5 5 G G G

9 Typ III: D ha rpad ral roo 5 5 5!! 5 5 5 5 5 5 u Th circui how criically-dampd bhavior

Typ IV: D ha rpad complx roo 78 5 78 * * 8 78 ; 78 * * G G G high ordr

Typ IV: D ha rpad complx roo in co 9 co co 9 9 u u u c c c c c c c c Th circui how criically- and undr-dampd characriic

Uul ranormaion pair co co * * u u u a u a a a

Invr ranorm o impropr raional uncion 5 5 5 5 u d d d

Scion 8 Pol and Zro o

Diniion can b xprd a h raio o wo acord polynomial N/D Th roo o h dnominaor D ar calld pol and ar plod a X on h complx - plan Th roo o h numraor N ar calld zro and ar plod a o on h complx -plan 5

Exampl 8] 8][ [ ] ][ 5[ D N

y poin Wha i h diniion o h aplac ranorm? Wha ar h aplac ranorm o uni p, impul, xponnial, and inuoidal uncion? Wha ar h aplac ranorm o h drivaiv, ingral, hi, and caling o a uncion? How o prorm parial racion xpanion or a raional uncion and prorm h invr aplac ranorm? 7